Comparison of Rhythmic Auditory Stimulation Gait Training with and Without Vibrotactile Feedback on Balance and Gait in Persons with Stroke: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Procedure
2.3. Intervention
2.4. Evaluation
2.5. Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Pretreatment Comparisons of Dependent Variables
3.3. Change in Balance
3.4. Change in Gait
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Sullivan, M.J.; Li, X.; Galligan, D.; Pendlebury, S.T. Cognitive recovery after stroke: Memory. Stroke 2023, 54, 44–54. [Google Scholar] [CrossRef]
- González-Santos, J.; Rodríguez-Fernández, P.; Pardo-Hernández, R.; González-Bernal, J.J.; Fernández-Solana, J.; Santamaría-Peláez, M. A cross-sectional study: Determining factors of functional independence and quality of life of patients one month after having suffered a stroke. Int. J. Environ. Health Res. 2023, 20, 995. [Google Scholar] [CrossRef] [PubMed]
- Freytes, I.M.; Sullivan, M.; Schmitzberger, M.; LeLaurin, J.; Orozco, T.; Eliazar-Macke, N.; Uphold, C. Types of stroke-related deficits and their impact on family caregiver’s depressive symptoms, burden, and quality of life. Disabil. Health J. 2021, 14, 101019. [Google Scholar] [CrossRef]
- Kwak, H.D.; Chung, E.; Lee, B.H. The effect of balance training using touch controller-based fully immersive virtual reality devices on balance and walking ability in patients with stroke: A pilot randomized controlled trial. Medicine 2024, 103, e38578. [Google Scholar] [CrossRef]
- Harburn, K.L.; Hill, K.M.; Kramer, J.F.; Noh, S.; Vandervoort, A.A.; Teasell, R. Clinical applicability and test-retest reliability of an external perturbation test of balance in stroke subjects. Arch. Phys. Med. Rehabil. 1995, 76, 317–323. [Google Scholar] [CrossRef]
- Ikai, T.; Kamikubo, T.; Takehara, I.; Nishi, M.; Miyano, S. Dynamic postural control in patients with hemiparesis. Am. J. Phys. Med. Rehabil. 2003, 82, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.Y.C.; Eng, J.J. Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density. Osteoporos. Int. 2008, 19, 919–927. [Google Scholar] [CrossRef]
- Mirelman, A.; Shema, S.; Maidan, I.; Hausdorff, J.M. Gait. In Handbook of Clinical Neurology; Elsevier: New York, NY, USA, 2018; Volume 159, pp. 119–134. [Google Scholar]
- Moucheboeuf, G.; Griffier, R.; Gasq, D.; Glize, B.; Bouyer, L.; Dehail, P.; Cassoudesalle, H. Effects of robotic gait training after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2020, 63, 518–534. [Google Scholar] [CrossRef]
- Fulk, G.D.; He, Y.; Boyne, P.; Dunning, K. Predicting home and community walking activity poststroke. Stroke 2017, 48, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Ohta, M.; Tanabe, S.; Tamari, M.; Katsuhira, J. Patterns of change in propulsion force and late braking force in patients with stroke walking at fast speeds. Sci. Rep. 2024, 14, 22316. [Google Scholar] [CrossRef]
- Okada, K.; Haruyama, K.; Okuyama, K.; Tsuzuki, K.; Nakamura, T.; Kawakami, M. Categorizing knee hyperextension patterns in hemiparetic gait and examining associated impairments in patients with chronic stroke. Gait Posture 2024, 113, 18–25. [Google Scholar] [CrossRef]
- Pelton, T.A.; Johannsen, L.; Chen, H.; Wing, A.M. Hemiparetic stepping to the beat: Asymmetric response to metronome phase shift during treadmill gait. Neurorehabil. Neural Repair 2010, 24, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Ha, G.H.; Lee, M.M.; Song, C.H. The Effects of Treadmill Walking and Bilateral Rhythmic Auditory Stimulation on Gait in Patients with Stroke. J. Spec. Educ. Rehabil. Sci. 2013, 52, 295–315. [Google Scholar]
- Yoon, S.K.; Kang, S.H. Effects of inclined treadmill walking training with rhythmic auditory stimulation on balance and gait in stroke patients: A pilot study. J. Korean Soc. Integr. Med. 2015, 3, 69–78. [Google Scholar] [CrossRef]
- Kim, J.D.; Cha, Y.J.; Youn, H.J. Effects of emphasized initial contact auditory feedback gait training on balance and gait in stroke patients. J. Korean Soc. Phys. Med. 2015, 10, 49–57. [Google Scholar] [CrossRef]
- Huang, H.; Wolf, S.L.; He, J. Recent developments in biofeedback for neuromotor rehabilitation. J. Neuroeng. Rehabil. 2006, 3, 11. [Google Scholar] [CrossRef]
- Hebert, E.; Landin, D.; Menickelli, J. Videotape feedback: What learners see and how they use it. Phys. Educ. Sport Pedagog. 1998, 4, 12–28. [Google Scholar]
- Van Vliet, P.M.; Wulf, G. Extrinsic feedback for motor learning after stroke: What is the evidence? Disabil. Rehabil. 2006, 28, 831–840. [Google Scholar] [CrossRef]
- Thaut, M.H.; Stephan, K.M.; Wunderlich, G.; Schicks, W.; Tellmann, L.; Herzog, H. Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex 2009, 45, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Thaut, M.H.; Kenyon, G.P.; Schauer, M.L.; McIntosh, G.C. The connection between rhythmicity and brain function. IEEE Eng. Med. Biol. Mag. 1999, 18, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Ermolaeva, V.Y.; Borgest, A.N. Intercortical connections of the auditory areas with the motor area. Neurosci. Behav. Physiol. 1980, 10, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Nombela, C.; Hughes, L.E.; Owen, A.M.; Grahn, J.A. Into the groove: Can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 2013, 37, 2564–2570. [Google Scholar] [CrossRef] [PubMed]
- Thaut, M.H.; McIntosh, G.C.; Hoemberg, V. Neurobiological foundations of neurologic music therapy: Rhythmic entrainment and the motor system. Front. Psychol. 2015, 5, 1185. [Google Scholar] [CrossRef]
- Kil, K.S.; Kim, H.; Shin, W.S. Effects of Vibrotactile Bio-Feedback Providing Pressure Information in Real Time on Static Balance and Weight Bearing Rate in Chronic Stroke Patients-Pilot Study. J. Korean Soc. Integr. Med. 2021, 9, 41–48. [Google Scholar]
- Sienko, K.H.; Balkwill, M.D.; Oddsson, L.I.; Wall, C. The effect of vibrotactile feedback on postural sway during locomotor activities. J. Neuroeng. Rehabil. 2013, 10, 93. [Google Scholar] [CrossRef]
- Thaut, M.H.; McIntosh, G.C.; Rice, R.R. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J. Neurol. Sci. 1997, 151, 207–212. [Google Scholar] [CrossRef]
- Suh, J.H.; Han, S.J.; Jeon, S.Y.; Kim, H.J.; Lee, J.E.; Yoon, T.S.; Chong, H.J. Effect of rhythmic auditory stimulation on gait and balance in hemiplegic stroke patients. NeuroRehabilitation 2014, 34, 193–199. [Google Scholar] [CrossRef]
- Carr, J.H.; Shepherd, R.B. Neurological Rehabilitation: Optimizing Motor Performance; Elsevier Health Sciences: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Song, G.B.; Ryu, H.J. Effects of gait training with rhythmic auditory stimulation on gait ability in stroke patients. J. Phys. Ther. Sci. 2016, 28, 1403–1406. [Google Scholar] [CrossRef]
- Gonzalez-Hoelling, S.; Bertran-Noguer, C.; Reig-Garcia, G.; Suñer-Soler, R. Effects of a music-based rhythmic auditory stimulation on gait and balance in subacute stroke. Int. J. Environ. Res. Public Health 2021, 18, 2032. [Google Scholar] [CrossRef]
- Mainka, S.; Wissel, J.; Völler, H.; Evers, S. The use of rhythmic auditory stimulation to optimize treadmill training for stroke patients: A randomized controlled trial. Front. Neurol. 2018, 9, 755. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, G.M.; Fahmy, E.M.; Ibrahim, M.F.; Nassief, A.A.; Elshebawy, H.; Mahfouz, M.M.; Elzanaty, M.Y. Efficacy of rhythmic auditory stimulation on gait parameters in hemiplegic stroke patients: A randomized controlled trial. Egypt J. Neurol. Psychiatr. Neurosurg. 2023, 59, 8. [Google Scholar] [CrossRef]
- Afzal, M.R.; Oh, M.K.; Lee, C.H.; Park, Y.S.; Yoon, J. A portable gait asymmetry rehabilitation system for individuals with stroke using a vibrotactile feedback. Biomed. Res. Int. 2015, 2015, 375638. [Google Scholar] [CrossRef]
- Ma, C.Z.H.; Zheng, Y.P.; Lee, W.C.C. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke. Top. Stroke Rehabil. 2018, 25, 20–27. [Google Scholar] [CrossRef]
- Genthe, K.; Schenck, C.; Eicholtz, S.; Zajac-Cox, L.; Wolf, S.; Kesar, T.M. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top. Stroke Rehabil. 2018, 25, 186–193. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, Y.M. Effects of Functional Electrical Stimulation Gait Training with Rhythmic Auditory Stimulation on Balance and Gait Ability of Stroke Patients. J. Korean Soc. Phys. Med. 2018, 13, 95–103. [Google Scholar] [CrossRef]
- Lee, Y.G.; Shin, S.H. Improvement of gait in patients with stroke using rhythmic sensory stimulation: A case-control study. J. Clin. Med. 2022, 11, 425. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Reference values for the timed up and go test: A descriptive meta-analysis. J. Geriatr. Phys. Ther. 2006, 29, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Panel on Prevention of Falls in Older Persons; American Geriatrics Society and British Geriatrics Society. Summary of the updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J. Am. Geriatr. Soc. 2011, 59, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Peng, J.L.; Xiang, W.; Huang, Y.J.; Chen, A.L. Effects of rhythmic auditory stimulation on motor function and balance ability in stroke: A systematic review and meta-analysis of clinical randomized controlled studies. Front. Neurosci. 2022, 16, 1043575. [Google Scholar] [CrossRef]
- Xu, J.; Bao, T.; Lee, U.H.; Kinnaird, C.; Carender, W.; Huang, Y.; Sienko, K.H.; Shull, P.B. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: Proof-of-concept. J. Neuroeng. Rehabil. 2017, 14, 102. [Google Scholar] [CrossRef]
- Stevenson, T.J. Detecting change in patients with stroke using the Berg Balance Scale. Aust. J. Physiother. 2001, 47, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Stretton, C.M.; Mudge, S.; Garrett, N. Does clinic-measured gait speed differ from gait speed measured in the community in people with stroke? Clin. Rehabil. 2006, 20, 438–444. [Google Scholar] [CrossRef]
- Balasubramanian, C.K.; Bowden, M.G.; Neptune, R.R.; Kautz, S.A. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch. Phys. Med. Rehabil. 2007, 88, 43–49. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Shin, W.S. Effects of vibrotactile Biofeedback providing real-time pressure information on static balance ability and Weight Distribution Symmetry Index in patients with chronic stroke. Brain Sci. 2022, 12, 358. [Google Scholar] [CrossRef]
- De Angelis, S.; Princi, A.A.; Dal Farra, F.; Morone, G.; Caltagirone, C.; Tramontano, M. Vibrotactile-based rehabilitation on balance and gait in patients with neurological diseases: A systematic review and metanalysis. Brain Sci. 2021, 11, 518. [Google Scholar] [CrossRef] [PubMed]
- Michelini, A.; Sivasambu, H.; Andrysek, J. The short-term effects of rhythmic vibrotactile and auditory biofeedback on the gait of individuals after weight-induced asymmetry. Can. Prosthet. Orthot. J. 2022, 5, 36223. [Google Scholar] [CrossRef] [PubMed]




| Group | Intervention Contents | Session Time (Minute) |
|---|---|---|
| RAS-V | Conventional physical therapy (NDT) | 30 |
| Warm up | 3 | |
| RAS + Vibrotactile feedback | 25 | |
| Cool down | 2 | |
| RG | Conventional physical therapy (NDT) | 30 |
| Warm up | 3 | |
| RAS | 25 | |
| Cool down | 2 |
| Variables | RAS-V Mean ± SD | RG Mean ± SD | x2/t | p |
|---|---|---|---|---|
| Sex, male/female | 5/6 | 7/4 | 0.733 | 0.670 |
| Age, years | 70.27 ± 13.33 | 63 ± 11.77 | 1.356 | 0.190 |
| Weight, kg | 64.64 ± 7.85 | 57.73 ± 7.95 | 2.051 | 0.054 |
| Height, cm | 162.36 ± 10.99 | 163.45 ± 7.55 | 0.271 | 0.789 |
| Lesion type, Inf/Hrr | 9/2 | 7/4 | 0.917 | 0.635 |
| Lesion side, Right/Left | 5/6 | 8/3 | 1.692 | 0.387 |
| MMSE-K, score | 25.91 ± 1.81 | 26.36 ± 1.91 | 0.572 | 0.574 |
| RAS-V Mean ± SD | RG Mean ± SD | t | p | |
|---|---|---|---|---|
| BBS, score | 22.82 ± 8.80 | 27.27 ± 9.64 | 1.132 | 0.271 |
| TUG, s | 30.70 ± 16.33 | 20.75 ± 6.72 | 1.869 | 0.076 |
| Cadence, steps/min | 78.23 ± 16.68 | 88.74 ± 15.84 | 1.516 | 0.145 |
| Velocity, m/s | 0.91 ± 0.34 | 1.19 ± 0.42 | 1.735 | 0.098 |
| Stride length, cm | 1.42 ± 0.33 | 1.61 ± 0.38 | 1.280 | 0.215 |
| 10 mWT, s | 26.41 ± 13.52 | 19.41 ± 7.35 | 1.508 | 0.147 |
| RAS-V Mean ± SD | RG Mean ± SD | t | p | d | 95% CI | ||
|---|---|---|---|---|---|---|---|
| BBS, score | Pre | 22.82 ± 8.80 | 27.27 ± 9.64 | ||||
| Post | 27.82 ± 9.78 | 31.00 ± 9.18 | |||||
| Post-Pre | 5.00 ± 3.26 | 3.73 ± 2.10 | 1.089 | 0.29 | 0.46 † | (−0.39, 1.31) | |
| t | 5.093 | 5.881 | |||||
| p | 0.000 | 0.000 | |||||
| TUG, s | Pre | 30.70 ± 16.33 | 20.75 ± 6.72 | ||||
| Post | 26.18 ± 13.52 | 19.70 ± 6.29 | |||||
| Post-Pre | 4.53 ± 3.82 | 1.05 ± 0.92 | 2.931 | 0.013 | 1.25 ‡ | (0.47, 2.04) | |
| t | 3.929 | 3.778 | |||||
| p | 0.003 | 0.004 | |||||
| RAS-V Mean ± SD | RG Mean ± SD | t | p | d | 95% CI | ||
|---|---|---|---|---|---|---|---|
| Cadence, steps/min | Pre | 78.23 ± 16.68 | 88.74 ± 15.84 | ||||
| Post | 91.61 ± 17.92 | 91.37 ± 17.76 | |||||
| Post-Pre | 13.38 ± 7.53 | 2.63 ± 8.21 | 3.202 | 0.004 | 1.36 ‡ | (0.57, 2.16) | |
| t | 5.893 | 1.061 | |||||
| p | 0.000 | 0.31 | |||||
| Velocity, m/s | Pre | 0.91 ± 0.34 | 1.19 ± 0.42 | ||||
| Post | 1.10 ± 0.35 | 1.20 ± 0.47 | |||||
| Post-Pre | 0.19 ± 0.22 | 0.01 ± 0.09 | 2.470 | 0.028 | 1.07 ‡ | (0.31, 1.84) | |
| t | 2.851 | 0.471 | |||||
| p | 0.017 | 0.65 | |||||
| Stride length, cm | Pre | 1.42 ± 0.33 | 1.61 ± 0.38 | ||||
| Post | 1.61 ± 0.38 | 1.66 ± 0.43 | |||||
| Post-Pre | 0.19 ± 0.34 | 0.05 ± 0.10 | 1.374 | 0.19 | 0.56 † | (−0.17, 1.29) | |
| t | 1.894 | 1.549 | |||||
| p | 0.09 | 0.15 | |||||
| 10 mWT, s | Pre | 26.41 ± 13.52 | 19.41 ± 7.35 | ||||
| Post | 21.30 ± 11.71 | 18.75 ± 7.51 | |||||
| Post-Pre | 5.11 ± 4.92 | 0.65 ± 1.91 | 2.798 | 0.015 | 1.20 ‡ | (0.42, 1.97) | |
| t | 3.441 | 1.138 | |||||
| p | 0.006 | 0.28 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Kim, S.-M.; Jang, S.-H. Comparison of Rhythmic Auditory Stimulation Gait Training with and Without Vibrotactile Feedback on Balance and Gait in Persons with Stroke: A Randomized Controlled Trial. Bioengineering 2025, 12, 1177. https://doi.org/10.3390/bioengineering12111177
Kim S-J, Kim S-M, Jang S-H. Comparison of Rhythmic Auditory Stimulation Gait Training with and Without Vibrotactile Feedback on Balance and Gait in Persons with Stroke: A Randomized Controlled Trial. Bioengineering. 2025; 12(11):1177. https://doi.org/10.3390/bioengineering12111177
Chicago/Turabian StyleKim, Su-Jin, Sun-Min Kim, and Sang-Hun Jang. 2025. "Comparison of Rhythmic Auditory Stimulation Gait Training with and Without Vibrotactile Feedback on Balance and Gait in Persons with Stroke: A Randomized Controlled Trial" Bioengineering 12, no. 11: 1177. https://doi.org/10.3390/bioengineering12111177
APA StyleKim, S.-J., Kim, S.-M., & Jang, S.-H. (2025). Comparison of Rhythmic Auditory Stimulation Gait Training with and Without Vibrotactile Feedback on Balance and Gait in Persons with Stroke: A Randomized Controlled Trial. Bioengineering, 12(11), 1177. https://doi.org/10.3390/bioengineering12111177

