The Impact of Handheld Device Use on Hand Biomechanics
Abstract
1. Introduction
2. Methods
2.1. Search Methodology
2.2. Study Selection
2.3. Data Extraction and Synthesis
3. Results
3.1. Study Characteristics
3.2. Kinematic and Joint Studies
3.3. Muscle Studies
3.4. Nerve and Tendon Studies
4. Discussion
4.1. Joints and Kinematic Findings
4.2. Muscle Findings
4.3. Nerve Findings
4.4. Limitations
4.5. Clinical Insights and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silver, L.; Smith, A.; Kennedy, C.; Jiang, J.; Anderson, M.; Rainie, L. Mobile Connectivity in Emerging Economies; Pew Research Center: Washington, DC, USA, 2019. [Google Scholar]
- Wike, R.; Silver, L.; Fetterolf, J.; Huang, C.; Austin, S.; Clancy, L.; Gubbala, S. Social Media Seen as Mostly Good for Democracy Across Many Nations, but U.S. Is a Major Outlier; Pew Research Center: Washington, DC, USA, 2022. [Google Scholar]
- Kabali, H.K.; Irigoyen, M.M.; Nunez-Davis, R.; Budacki, J.G.; Mohanty, S.H.; Leister, K.P.; Bonner, R.L., Jr. Exposure and Use of Mobile Media Devices by Young Children. Pediatrics 2015, 136, 1044–1050. [Google Scholar] [CrossRef]
- Kılıç, A.O.; Sari, E.; Yucel, H.; Oğuz, M.M.; Polat, E.; Acoglu, E.A.; Senel, S. Exposure to and use of mobile devices in children aged 1-60 months. Eur. J. Pediatr. 2019, 178, 221–227. [Google Scholar] [CrossRef]
- Sun, X.; Haydel, K.F.; Matheson, D.; Desai, M.; Robinson, T.N. Are mobile phone ownership and age of acquisition associated with child adjustment? A 5-year prospective study among low-income Latinx children. Child Dev. 2023, 94, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Muraki, S. Effects of age, thumb length and screen size on thumb movement coverage on smartphone touchscreens. Int. J. Ind. Ergon. 2016, 53, 140–148. [Google Scholar] [CrossRef]
- Chang, J.; Choi, B.; Tjolleng, A.; Jung, K. Effects of button position on a soft keyboard: Muscle activity, touch time, and discomfort in two-thumb text entry. Appl. Ergon. 2017, 60, 282–292. [Google Scholar] [CrossRef]
- Kim, W.; Kim, Y.; Park, H.-S. In Vivo Measurement of Thumb Joint Reaction Forces During Smartphone Manipulation: A Biomechanical Analysis. J. Orthop. Res. 2019, 37, 2437–2444. [Google Scholar] [CrossRef]
- Chany, A.M.; Marras, W.S.; Burr, D.L. The effect of phone design on upper extremity discomfort and muscle fatigue. Hum. Factors J. Hum. Factors Ergon. Soc. 2007, 49, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Park, M.J.; Davis, D.; Chang, J. Ideal position for thumb interphalangeal arthrodesis in the era of smartphones and text communication. Orthopedics 2012, 35, 955–957. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, E. Ergonomic recommendations when texting on mobile phones. Work J. Prev. Assess. Rehabil. 2012, 41 (Suppl. S1), 5705–5706. [Google Scholar] [CrossRef]
- Gold, J.E.; Driban, J.B.; Thomas, N.; Chakravarty, T.; Channell, V.; Komaroff, E. Postures, typing strategies, and gender differences in mobile device usage: An observational study. Appl. Ergon. 2012, 43, 408–412. [Google Scholar] [CrossRef]
- Woo, H.C.; White, P.; Ng, H.K.; Lai, C.W. Development of Kinematic Graphs of Median Nerve during Active Finger Motion: Implications of Smartphone Use. PLoS ONE 2016, 11, e0158455. [Google Scholar] [CrossRef]
- Trudeau, M.B.; Young, J.G.; Jindrich, D.L.; Dennerlein, J.T. Thumb motor performance varies with thumb and wrist posture during single-handed mobile phone use. J. Biomech. 2012, 45, 2349–2354. [Google Scholar] [CrossRef] [PubMed]
- Trudeau, M.B.; Udtamadilok, T.; Karlson, A.K.; Dennerlein, J.T. Thumb motor performance varies by movement orientation, direction, and device size during single-handed mobile phone use. Hum. Factors J. Hum. Factors Ergon. Soc. 2012, 54, 52–59. [Google Scholar] [CrossRef]
- Xiong, J.; Muraki, S. An ergonomics study of thumb movements on smartphone touch screen. Ergonomics 2014, 57, 943–955. [Google Scholar] [CrossRef]
- Trudeau, M.B.; Asakawa, D.S.; Jindrich, D.L.; Dennerlein, J.T. Two-handed grip on a mobile phone affords greater thumb motor performance, decreased variability, and a more extended thumb posture than a one-handed grip. Appl. Ergon. 2016, 52, 24–28. [Google Scholar] [CrossRef]
- Jonsson, P.; Johnson, P.W.; Hagberg, M.; Forsman, M. Thumb joint movement and muscular activity during mobile phone texting—A methodological study. J. Electromyogr. Kinesiol. 2011, 21, 363–370. [Google Scholar] [CrossRef]
- Gustafsson, E.; Johnson, P.W.; Lindegård, A.; Hagberg, M. Technique, muscle activity and kinematic differences in young adults texting on mobile phones. Ergonomics 2011, 54, 477–487. [Google Scholar] [CrossRef]
- Pereira, A.; Miller, T.; Huang, Y.-M.; Odell, D.; Rempel, D. Holding a tablet computer with one hand: Effect of tablet design features on biomechanics and subjective usability among users with small hands. Ergonomics 2013, 56, 1363–1375. [Google Scholar] [CrossRef]
- Lee, S.; Kyung, G.; Lee, J.; Moon, S.K.; Park, K.J. Grasp and index finger reach zone during one-handed smartphone rear interaction: Effects of task type, phone width and hand length. Ergonomics 2016, 59, 1462–1472. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.K.; Chiu, Y.T.; Law, W.S. The deformation and longitudinal excursion of median nerve during digits movement and wrist extension. Man. Ther. 2014, 19, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, E.; Coenen, P.; Campbell, A.; Straker, L. Texting with touchscreen and keypad phones—A comparison of thumb kinematics, upper limb muscle activity, exertion, discomfort, and performance. Appl. Ergon. 2018, 70, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Coppola, S.M.; Lin, M.Y.C.; Schilkowsky, J.; Arezes, P.M.; Dennerlein, J.T. Tablet form factors and swipe gesture designs affect thumb biomechanics and performance during two-handed use. Appl. Ergon. 2018, 69, 40–46. [Google Scholar] [CrossRef]
- Eapen, C.; Kumar, B.; Bhat, A.K.; Venugopal, A. Clinical and Ultrasonic Evaluation of the Thumb: Comparison of Young Adults with and Without Thumb Pain with Text Messaging. J. Manip. Physiol. Ther. 2018, 41, 199–207. [Google Scholar] [CrossRef]
- İnal, E.E.; Demİrcİ, k.; Çetİntürk, A.; Akgönül, M.; Savaş, S. Effects of smartphone overuse on hand function, pinch strength, and the median nerve. Muscle Nerve 2015, 52, 183–188. [Google Scholar] [CrossRef]
- Ko, P.-H.; Hwang, Y.-H.; Liang, H.-W. Influence of smartphone use styles on typing performance and biomechanical exposure. Ergonomics 2016, 59, 821–828. [Google Scholar] [CrossRef]
- Sampath, A.; Kulkarni, A.; Revadi, G.; Patel, M.; Rathinam, B.A. Assessment of the Effect of Smartphone Usage on the Range of Motion and Fatigability of the Joints and Muscles of the Thumb Among Users: A Cross-Sectional Study in Central India. Cureus 2022, 14, e23199. [Google Scholar] [CrossRef]
- Gustafsson, E.; Johnson, P.W.; Hagberg, M. Thumb postures and physical loads during mobile phone use—A comparison of young adults with and without musculoskeletal symptoms. J. Electromyogr. Kinesiol. 2010, 20, 127–135. [Google Scholar] [CrossRef]
- Asakawa, D.S.; Dennerlein, J.T.; Jindrich, D.L. Index finger and thumb kinematics and performance measurements for common touchscreen gestures. Appl. Ergon. 2017, 58, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Young, J.G.; Trudeau, M.B.; Odell, D.; Marinelli, K.; Dennerlein, J.T. Wrist and shoulder posture and muscle activity during touch-screen tablet use: Effects of usage configuration, tablet type, and interacting hand. Work J. Prev. Assess. Rehabil. 2013, 45, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Kietrys, D.M.; Gerg, M.J.; Dropkin, J.; Gold, J.E. Mobile input device type, texting style and screen size influence upper extremity and trapezius muscle activity, and cervical posture while texting. Appl. Ergon. 2015, 50, 98–104. [Google Scholar] [CrossRef]
- Labeeb, A.; Serag, D.M.; Latif, A.A.R.A.; Fotoh, D.S. Clinical, electrophysiological, and ultrasound evaluation for early detection of musculoskeletal hand disorders and nerve entrapment in mobile phone users. Rev. Colomb. Reumatol. Engl. Ed. 2021, 28, 267–275. [Google Scholar] [CrossRef]
| Study # | Authors, Year [Reference] | Sample Size | Mean or Median Age a | Sex | Laterality Studied | Type of Handheld Device b | Time Exposed with Handheld Device | Metric |
|---|---|---|---|---|---|---|---|---|
| 1 | Xiong et al., 2016 [6] | 48 c | youth: 23.6 y/ elderly: 67.5 y | youth: 12 M, 12 F/ elderly: 12 M, 12 F | U | Smartphone: iPhone 4 and Galaxy S4 | NS | Kinematic |
| 2 | Chang et al., 2017 [7] | 50 d | pI: 24.2 y/ pII: 23.6 y | pI: 10 M/ pII: 21 M, 19 F | B | Touchscreen device: MiMo UM-720S | pI: 3.9 y/ pII: 4.2 y | Muscle, Kinematic |
| 3 | Kim et al., 2019 [8] | 26 e | e: 24.4 y/ Co: 25.1 y | e: 9 M, 10 F/ Co: 7 M | U | Smartphone: Model NS | NS | Joint |
| 4 | Chany et al., 2007 [9] | 10 | 25 y | 5 M, 5 F | U | Small cellular clamshell phone: LG VX440 Traditional office phone: Panasonic KX-T3165 | NS | Muscle |
| 5 | Yao et al., 2012 [10] | 25 | 29.8 y | 14 M, 11 F | U | Smartphone: Palm Treo | NS | Kinematic |
| 6 | Gustafsson et al., 2012 [11] | 56 | 19–25 y | N/A | U | Electrogoniometer: Biometrics SG 110 Surface electromyograph: MuscleTester ME 3000P8 | NS | Muscle, Kinematic |
| 7 | Gold et al., 2012 [12] | 859 f | 18–early 20 y | 335 M, 524 F | U | Cellphones, Smartphones: Model NS | NS | Kinematic |
| 8 | Woo et al., 2016 [13] | 30 | 21.3 y | 15 M, 15 F | U | Simulated cell phone usage | NS | Nerve |
| 9 | Trudeau et al., 2012 [14] | 10 | 27 y | 5 M, 5 F | U | Smartphone: iPhone 3 | NS | Kinematic |
| 10 | Trudeau et al., 2012 [15] | 20 | 25 y | 15 M, 5 F | U | Small, flip, large cell phone and PDA designs g | NS | Kinematic |
| 11 | Xiong et al., 2014 [16] | 20 | 24.5 y | 10 M, 10 F | U | Smartphone: iPhone 4 | NS | Muscle |
| 12 | Trudeau et al., 2016 [17] | 10 | 27 y | 5 M, 5 F | U | Smartphone: iPhone 3 | NS | Kinematic |
| 13 | Jonsson et al., 2011 [18] | 15 | 22 y | 8 M, 7 F | U | Cell phone: Nokia 3310 | NS | Muscle |
| 14 | Gustafsson et al., 2011 [19] | 60 h | 19–25 y | 17 M, 24 F i | B | Cell phone: Nokia 3310 | NS | Muscle |
| 15 | Pereira et al., 2013 [20] | 30 | 30 y | 15 M, 15 F | U | Touchscreen device: Non-functional tablet models similar to iPad 2, Kindle Fire, and Samsung Galaxy Note. | NS | Muscle, Kinematic |
| 16 | Lee et al., 2016 [21] | 120 j | f: 22.6 y/l: 22.3 y | f: 53 M, 37 F/l: 11 M, 19 F | B | Smartphone: Personal (NS) and Experimental (Pantech, Inc. Vega LTE-A) | At least 3 y | Muscle |
| 17 | Lai et al., 2014 [22] | 31 | 21.7 y | M 20, F 11 | U | Cell phone: Sony Ericsson K750i | NS | Nerve |
| 18 | Gustafsson et al., 2018 [23] | 19 | 30.1 y | 7 M, 12 F | U | Cell phone: Nokia E5 Smartphone: iPhone 3 GS | NS | Kinematic |
| 19 | Coppola et al., 2018 [24] | 16 | 24.5 y | 8 M, 8 F | B | Smartphone: Samsung Galaxy III | NS | Muscle, Kinematic |
| 20 | Eapen et al., 2018 [25] | 234 k | 18–29 y | Ca: 58 M, 59 F/ Co: NS | U | Cell phone: Model NS | Ca: 31 Mo/ Co: 28.9 Mo | Joint |
| 21 | İnal et al., 2015 [26] | 102 l | Non-users: 20.5 y, Low users: 22 y, High users: 20 y | Non-users: 14 M, 22 F/ Low users: 11 M, 23 F/ High users: 5 M, 27 F | U | Cell phone: Model NS | Low users: 24 Mo, High users: 24 Mo | Nerve, Tendon |
| 22 | Ko et al., 2016 [27] | 27 | 28 y | M 15, F 12 | U | Smartphone: Sony Xperia P | NS | Muscle, Kinematic |
| 23 | Sampath et al., 2022 [28] | 137 | 20 y | 66 M, 71 F | U | Smartphone: Model NS | 3 y | Kinematic |
| 24 | Gustafsson et al., 2010 [29] | 56 m | 19–25 y | Co: 8 M, 7 F/ Ca: 17 M, 24 F | U | Cell phone: Nokia 3310 Personal cell/smart phone: Model NS | NS | Muscle |
| 25 | Asakawa et al., 2017 [30] | 18 | 19–42 y | 9 M, 9 F | U | Touchscreen device: Samsung Galaxy Tab 2 | NS | Kinematic |
| 26 | Young et al., 2013 [31] | 15 | 29 y | 7 M, 8 F | U | Touchscreen device: iPad 2 and Motorola Xoom | NS | Muscle, Kinematic |
| 27 | Kietrys et al., 2015 [32] | 20 | 21.2 y | 4 M, 16 F | B | Cell phone: LG 900G Smartphone: iPod Touch, Touchscreen device: Samsung Galaxy Tab GT-P1010 and iPad 2 | NS | Muscle, Kinematic |
| 28 | Labeeb et al., 2021 [33] | 109 n | 23–35 y | e: 37 M, 37 F/ Co: 16 M, 19 F | B | Smartphone: Model NS | e: 61 Mo Co: 16.6 Mo | Nerve |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.J.; Bustos, V.P.; Xu, K.Y.; Nayak, V.V.; Coelho, P.G.; Tadisina, K.K. The Impact of Handheld Device Use on Hand Biomechanics. Bioengineering 2025, 12, 1145. https://doi.org/10.3390/bioengineering12111145
Choi MJ, Bustos VP, Xu KY, Nayak VV, Coelho PG, Tadisina KK. The Impact of Handheld Device Use on Hand Biomechanics. Bioengineering. 2025; 12(11):1145. https://doi.org/10.3390/bioengineering12111145
Chicago/Turabian StyleChoi, Melinda J., Valeria P. Bustos, Kyle Y. Xu, Vasudev Vivekanand Nayak, Paulo G. Coelho, and Kashyap K. Tadisina. 2025. "The Impact of Handheld Device Use on Hand Biomechanics" Bioengineering 12, no. 11: 1145. https://doi.org/10.3390/bioengineering12111145
APA StyleChoi, M. J., Bustos, V. P., Xu, K. Y., Nayak, V. V., Coelho, P. G., & Tadisina, K. K. (2025). The Impact of Handheld Device Use on Hand Biomechanics. Bioengineering, 12(11), 1145. https://doi.org/10.3390/bioengineering12111145

