Analysing the Structural Identifiability and Observability of Mechanistic Models of Tumour Growth
Abstract
1. Introduction
Model Name | Acronym | Treatment | Reference |
---|---|---|---|
Exponential | EXP | None | [5] |
Power Law | POW | None | [29] |
Lotka–Volterra | L–V | None | [30] |
Gompertz | GOM | None | [29] |
Logistic | LOG | None | [29] |
Von Bertalanffy | BERT | None | [29] |
Radio Base | RAD | Radiotherapy | [31] |
Carrying Capacity Radio | RCAP | Radiotherapy | [32] |
Radio Necrotic | NECR | Radiotherapy | [33] |
Immuno CAR-T cells CRS | CRS | Immunotherapy | [34] |
Immuno-Hematological CAR-T cells | HCART | Immunotherapy | [35] |
Immuno-Radio | IMRAD | Immunotherapy | [36] |
CML Tumour-Immune Int | LEUK | Immunotherapy | [37] |
Cancer–Immunity Cycle | CYCLE | Chemotherapy | [38] |
Cytostatic and Cytotoxic Effects | CYTO | Chemotherapy | [39] |
Cancer Immune Chemotherapy Vitamins | CICV | Chemotherapy | [40] |
2. Methods
2.1. Modelling Framework
2.2. Structural Identifiability and Observability
2.3. Methodology for Analysing Structural Identifiability and Observability
3. A Catalogue of Models
3.1. Tumour Growth Models Without Therapy
3.1.1. Exponential Model (EXP)
3.1.2. Power Law Model (POW)
3.1.3. Lotka–Volterra Model (L–V)
3.1.4. Gompertz Model (GOM)
3.1.5. Logistic Model (LOG)
3.1.6. Von Bertalanffy Model (BERT)
3.2. Tumour Growth Models with Radiotherapy
3.2.1. Radio Base Model (RAD)
3.2.2. Carrying Capacity Radio Model (RCAP)
3.2.3. Radio Necrotic Model (NECR)
3.3. Tumour Growth Models with Immunotherapy
3.3.1. Immuno CAR-T Cells Cytokine Release Syndrome Model (CRS)
3.3.2. Immuno-Hematological CAR-T Cell Model (HCART)
3.3.3. Immuno-Radio Model (IMRAD)
3.3.4. CML Tumour-Immune Interaction Model (LEUK)
3.4. Tumour Growth Models with Chemotherapy
3.4.1. Cancer–Immunity Cycle Model (CYCLE)
3.4.2. Tumour Evolution with Cytostatic and Cytotoxic Effects (CYTO)
3.4.3. Cancer Growth Model with Chemotherapy and Boosting of the Immune System (CICV)
4. Results and Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ODE | Ordinary Differential Equation |
CAR | Chimeric Antigen Receptor |
CRS | Cytokine Release Syndrome |
TME | Tumour Microenvironment |
DAMP | Damage-Associated Molecular Pattern |
CML | Chronic Myeloid Leukemia |
AI | Artificial Intelligence |
uPA | Urokinase-Type Plasminogen Activator |
PAI-1 | Plasminogen Activator Inhibitor-1 |
VN | Vitronectin |
References
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Anderson, A.R.; Maini, P.K. Mathematical oncology. Bull. Math. Biol. 2018, 80, 945–953. [Google Scholar] [CrossRef]
- Bull, J.A.; Byrne, H.M. The Hallmarks of Mathematical Oncology. Proc. IEEE 2022, 110, 523–540. [Google Scholar] [CrossRef]
- Villaverde, A.F.; Pathirana, D.; Fröhlich, F.; Hasenauer, J.; Banga, J.R. A protocol for dynamic model calibration. Briefings Bioinform. 2022, 23, bbab387. [Google Scholar] [CrossRef] [PubMed]
- Klipp, E.; Herwig, R.; Kowald, A.; Wierling, C.; Lehrach, H. Systems Biology in Practice: Concepts, Implementation and Application; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- DiStefano III, J. Dynamic Systems Biology Modeling and Simulation; Academic Press: New York, NY, USA, 2015. [Google Scholar]
- Villaverde, A.F.; Banga, J.R. Reverse engineering and identification in systems biology: Strategies, perspectives and challenges. J. R. Soc. Interface 2014, 11, 20130505. [Google Scholar] [CrossRef] [PubMed]
- Enderling, H.; Wolkenhauer, O. Are all models wrong? Comput. Syst. Oncol. 2021, 1, e1008. [Google Scholar] [CrossRef]
- Yankeelov, T.E.; Quaranta, V.; Evans, K.J.; Rericha, E.C. Toward a science of tumor forecasting for clinical oncology. Cancer Res. 2015, 75, 918–923. [Google Scholar] [CrossRef]
- Gerlee, P. The model muddle: In search of tumor growth laws. Cancer Res. 2013, 73, 2407–2411. [Google Scholar] [CrossRef]
- Jarrett, A.M.; Lima, E.A.; Hormuth, D.A.; McKenna, M.T.; Feng, X.; Ekrut, D.A.; Resende, A.C.M.; Brock, A.; Yankeelov, T.E. Mathematical models of tumor cell proliferation: A review of the literature. Expert Rev. Anticancer Ther. 2018, 18, 1271–1286. [Google Scholar] [CrossRef]
- Yin, A.; Moes, D.J.A.; van Hasselt, J.G.; Swen, J.J.; Guchelaar, H.J. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacometrics Syst. Pharmacol. 2019, 8, 720–737. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, G.; Ahmed, S.R.; Hormuth II, D.A.; Vaughn, B.; Kalpathy-Cramer, J.; Solorio, L.; Yankeelov, T.E.; Gomez, H. Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data. Annu. Rev. Biomed. Eng. 2024, 26. [Google Scholar] [CrossRef]
- Rodriguez-Brenes, I.A.; Komarova, N.L.; Wodarz, D. Tumor growth dynamics: Insights into evolutionary processes. Trends Ecol. Evol. 2013, 28, 597–604. [Google Scholar] [CrossRef]
- Sarapata, E.A.; De Pillis, L. A comparison and catalog of intrinsic tumor growth models. Bull. Math. Biol. 2014, 76, 2010–2024. [Google Scholar] [CrossRef] [PubMed]
- Swan, G.W. Role of optimal control theory in cancer chemotherapy. Math. Biosci. 1990, 101, 237–284. [Google Scholar] [CrossRef]
- Colli, P.; Gomez, H.; Lorenzo, G.; Marinoschi, G.; Reali, A.; Rocca, E. Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth. Math. Model. Methods Appl. Sci. 2021, 31, 1419–1468. [Google Scholar] [CrossRef]
- Castiglione, F.; Piccoli, B. Cancer immunotherapy, mathematical modeling and optimal control. J. Theor. Biol. 2007, 247, 723–732. [Google Scholar] [CrossRef]
- Jarrett, A.M.; Faghihi, D.; Hormuth, D.A.; Lima, E.A.; Virostko, J.; Biros, G.; Patt, D.; Yankeelov, T.E. Optimal control theory for personalized therapeutic regimens in oncology: Background, history, challenges, and opportunities. J. Clin. Med. 2020, 9, 1314. [Google Scholar] [CrossRef] [PubMed]
- Wieland, F.G.; Hauber, A.L.; Rosenblatt, M.; Tönsing, C.; Timmer, J. On structural and practical identifiability. Curr. Opin. Syst. Biol. 2021, 25, 60–69. [Google Scholar] [CrossRef]
- Fröhlich, F.; Kessler, T.; Weindl, D.; Shadrin, A.; Schmiester, L.; Hache, H.; Muradyan, A.; Schütte, M.; Lim, J.H.; Heinig, M.; et al. Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model. Cell Syst. 2018, 7, 567–579. [Google Scholar] [CrossRef]
- Lorenzo, G.; Jarrett, A.M.; Meyer, C.T.; DiCarlo, J.C.; Virostko, J.; Quaranta, V.; Tyson, D.R.; Yankeelov, T.E. A global sensitivity analysis of a mechanistic model of neoadjuvant chemotherapy for triple negative breast cancer constrained by in vitro and in vivo imaging data. Eng. Comput. 2024, 40, 1469–1499. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.J.; Maclaren, O.J. Profile-Wise Analysis: A profile likelihood-based workflow for identifiability analysis, estimation, and prediction with mechanistic mathematical models. PLoS Comput. Biol. 2023, 19, e1011515. [Google Scholar] [CrossRef] [PubMed]
- Banga, J.R.; Balsa-Canto, E. Parameter estimation and optimal experimental design. Essays Biochem. 2008, 45, 195–210. [Google Scholar] [CrossRef]
- Liepe, J.; Kirk, P.; Filippi, S.; Toni, T.; Barnes, C.P.; Stumpf, M.P. A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nat. Protoc. 2014, 9, 439–456. [Google Scholar] [CrossRef]
- Phan, T.; Bennett, J.; Patten, T. Practical understanding of cancer model identifiability in clinical applications. Life 2023, 13, 410. [Google Scholar] [CrossRef]
- Gunnarsson, E.B.; Kim, S.; Choi, B.; Schmid, J.K.; Kaura, K.; Lenz, H.; Mumenthaler, S.M.; Foo, J. Understanding patient-derived tumor organoid growth through an integrated imaging and mathematical modeling framework. PLoS Comput. Biol. 2024, 20, e1012256. [Google Scholar] [CrossRef]
- Paczkowski, M.; Kretzschmar, W.W.; Markelc, B.; Liu, S.K.; Kunz-Schughart, L.A.; Harris, A.L.; Partridge, M.; Byrne, H.M.; Kannan, P. Reciprocal interactions between tumour cell populations enhance growth and reduce radiation sensitivity in prostate cancer. Commun. Biol. 2021, 4, 6. [Google Scholar] [CrossRef]
- Castorina, P.; Deisboeck, T.S.; Gabriele, P.; Guiot, C. Growth laws in cancer: Implications for radiotherapy. Radiat. Res. 2007, 168, 349–356. [Google Scholar] [CrossRef]
- Prokopiou, S.; Moros, E.G.; Poleszczuk, J.; Caudell, J.; Torres-Roca, J.F.; Latifi, K.; Lee, J.K.; Myerson, R.; Harrison, L.B.; Enderling, H. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation. Radiat. Oncol. 2015, 10, 159. [Google Scholar] [CrossRef] [PubMed]
- Lewin, T.D.; Maini, P.K.; Moros, E.G.; Caudell, J.; Enderling, H.; Byrne, H.M. Using mathematical modelling to identify data requirements for increased prediction accuracy in radiotherapy. arXiv 2022, arXiv:2201.02101. [Google Scholar]
- Santurio, D.S.; Barros, L.R.; Glauche, I.; Fassoni, A.C. Mathematical modeling unveils the timeline of CAR-T cell therapy and macrophage-mediated cytokine release syndrome. PLoS Comput. Biol. 2025, 21, e1012908. [Google Scholar] [CrossRef]
- Barros, L.R.; Paixão, E.A.; Valli, A.M.; Naozuka, G.T.; Fassoni, A.C.; Almeida, R.C. CART math—A Mathematical Model of CAR-T Immunotherapy in Preclinical Studies of Hematological Cancers. Cancers 2021, 13, 2941. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Crespo, I.; Gómez-Caamaño, A.; López Pouso, O.; Fenwick, J.D.; Pardo-Montero, J. A Biomathematical Model of Tumor Response to Radioimmunotherapy with αPDL1 and αCTLA4. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 808–821. [Google Scholar] [CrossRef] [PubMed]
- Fassoni, A.C.; Yong, A.; Clark, R.E.; Roeder, I.; Glauche, I. Predicting treatment-free remission outcomes in Chronic Myeloid Leukemia patients using an integrated model of tumor-immune dynamics. bioRxiv 2024. [Google Scholar] [CrossRef]
- Mahmoodifar, S.; Newton, P.K. Gaming the cancer-immunity cycle by synchronizing the dose schedules. bioRxiv 2024. [Google Scholar] [CrossRef]
- Nieto, C.M.; Pimentel, O.M.; Lora-Clavijo, F.D. Novel second-order model for tumor evolution: Description of cytostatic and cytotoxic effects. arXiv 2024, arXiv:2407.05143. [Google Scholar] [CrossRef]
- Jawad, S.; Winter, M.; Rahman, Z.A.S.; Al-Yasir, Y.I.; Zeb, A. Dynamical behavior of a cancer growth model with chemotherapy and boosting of the immune system. Mathematics 2023, 11, 406. [Google Scholar] [CrossRef]
- Villaverde, A.F. Observability and structural identifiability of nonlinear biological systems. Complexity 2019, 2019, 8497093. [Google Scholar] [CrossRef]
- Lam, N.N.; Docherty, P.D.; Murray, R. Practical identifiability of parametrised models: A review of benefits and limitations of various approaches. Math. Comput. Simul. 2022, 199, 202–216. [Google Scholar] [CrossRef]
- Villaverde, A.F.; Raimúndez, E.; Hasenauer, J.; Banga, J.R. Assessment of prediction uncertainty quantification methods in systems biology. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 1725–1736. [Google Scholar] [CrossRef]
- Barreiro, X.R.; Villaverde, A.F. On the origins and rarity of locally but not globally identifiable parameters in biological modeling. IEEE Access 2023, 11, 65457–65467. [Google Scholar] [CrossRef]
- Hermann, R.; Krener, A. Nonlinear controllability and observability. IEEE Trans. Autom. Control 1977, 22, 728–740. [Google Scholar] [CrossRef]
- Tunali, E.; Tarn, T.J. New results for identifiability of nonlinear systems. IEEE Trans. Autom. Control 1987, 32, 146–154. [Google Scholar] [CrossRef]
- Díaz-Seoane, S.; Rey Barreiro, X.; Villaverde, A.F. STRIKE-GOLDD 4.0: User-friendly, efficient analysis of structural identifiability and observability. Bioinformatics 2023, 39, btac748. [Google Scholar] [CrossRef] [PubMed]
- Stigter, J.; Joubert, D. Computing Measures of Identifiability, Observability, and Controllability for a Dynamic System Model with the StrucID App. IFAC-PapersOnline 2021, 54, 138–143. [Google Scholar] [CrossRef]
- Rehemtulla, A.; Stegman, L.D.; Cardozo, S.J.; Gupta, S.; Hall, D.E.; Contag, C.H.; Ross, B.D. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2000, 2, 491–495. [Google Scholar] [CrossRef]
- Stiehl, T.; Marciniak-Czochra, A. Mathematical Modeling of Leukemogenesis and Cancer Stem CellDynamics. Math. Model. Nat. Phenom. 2012, 7, 166–202. [Google Scholar] [CrossRef]
- Glauche, I.; Moore, K.; Thielecke, L.; Horn, K.; Loeffler, M.; Roeder, I. Stem cell proliferation and quiescence—two sides of the same coin. PLoS Comput. Biol. 2009, 5, e1000447. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Arulraj, T.; Ippolito, A.; Popel, A.S. From virtual patients to digital twins in immuno-oncology: Lessons learned from mechanistic quantitative systems pharmacology modeling. npj Digit. Med. 2024, 7, 189. [Google Scholar] [CrossRef]
- Katsoulakis, E.; Wang, Q.; Wu, H.; Shahriyari, L.; Fletcher, R.; Liu, J.; Achenie, L.; Liu, H.; Jackson, P.; Xiao, Y.; et al. Digital twins for health: A scoping review. npj Digit. Med. 2024, 7, 77. [Google Scholar] [CrossRef]
- Asghar, U.S.; Chung, C. Application of digital twins for personalized oncology. Nat. Rev. Cancer 2025. [Google Scholar] [CrossRef] [PubMed]
- Swierniak, A.; Kimmel, M.; Smieja, J. Mathematical modeling as a tool for planning anticancer therapy. Eur. J. Pharmacol. 2009, 625, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, B.; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jörnsten, R.; Lee, E.J.; Li, X.; Lilja, S.; et al. Digital twins to personalize medicine. Genome Med. 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Metzcar, J.; Jutzeler, C.R.; Macklin, P.; Köhn-Luque, A.; Brüningk, S.C. A review of mechanistic learning in mathematical oncology. Front. Immunol. 2024, 15, 1363144. [Google Scholar] [CrossRef]
- Biswas, N.; Chakrabarti, S. Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer. Front. Oncol. 2020, 10, 588221. [Google Scholar] [CrossRef]
- Rong, G.; Mendez, A.; Assi, E.B.; Zhao, B.; Sawan, M. Artificial intelligence in healthcare: Review and prediction case studies. Engineering 2020, 6, 291–301. [Google Scholar] [CrossRef]
Acronym | Parameters | States | Outputs | Inputs | Equations |
---|---|---|---|---|---|
EXP1 | V | V | – | (5) | |
ine EXP2 | V | V | – | (6) | |
ine EXP3 | V | V | – | (7) | |
ine POW | N | N | – | (8) | |
ine L–V | – | (9) and (10) | |||
ine GOM1 | N | N | – | (11) | |
ine GOM2 | N | N | – | (12) | |
ine LOG | N | N | – | (13) | |
ine BERT | N | N | – | (14) | |
ine RAD1 | V | V | d | (15) | |
ine RAD2 | V | V | d | (16) | |
ine RCAP | V | V | (17) | ||
ine NECR | (18) and (19) | ||||
ine CRS | (20)–(27) | ||||
– | |||||
ine HCART | T | – | (28)–(30) | ||
ine IMRAD | , | (31)–(37) | |||
, | |||||
, | |||||
ine LEUK | (38)–(45) | ||||
ine CYCLE | , , K, a, , , , | , , n, V | , | (46)–(56) | |
ine CYTO | V | V | – | (57) | |
ine CYTO2 | (58) and (59) | ||||
ine CICV | C | (60) and (61) |
Acronym | Known Inputs | Identifiable Parameters | Unidentifiable Parameters | Observable States | Unobservable States | Measured Outputs |
---|---|---|---|---|---|---|
EXP | - | All | - | All | - | V |
ine POW | - | All | - | All | - | N |
ine L–V | - | - | ||||
ine L–V | - | - | ||||
ine L–V | - | All | - | All | - | |
ine GOM | - | All | - | All | - | N |
ine LOG | - | All | - | All | - | N |
ine BERT | - | All | - | All | - | N |
Acronym | Known Inputs | Identifiable Parameters | Unidentifiable Parameters | Observable States | Unobservable States | Measured Outputs |
---|---|---|---|---|---|---|
RAD1 | All | - | V | |||
ine RAD2 | All | - | V | |||
ine RCAP | All | – | All | – | V | |
ine NECR | All | – | All | – | ||
ine NECR | All | – | All | – |
Acronym | Known Inputs | Identifiable Parameters | Unidentifiable Parameters | Observable States | Unobservable States | Measured Outputs |
---|---|---|---|---|---|---|
CRS | – | , , , , , , , , , | , K, A, B C, , , , | – | All | |
HCART | – | , , , , r, b | , , | – | All | T |
IMRAD | , , , | , , p, a, b, , , , , h, s, q, | , | – | All | C, A |
LEUK | – | , , | , , e, f h, , g | T, , E | – | T, , E |
Acronym | Known Inputs | Identifiable Parameters | Unidentifiable Parameters | Observable States | Unobservable States | Measured Outputs |
---|---|---|---|---|---|---|
CYCLE | , | |||||
All | – | V | ||||
ine CYTO2 | All | – | All | – | V | |
ine CICV | All | – | All | – | C | |
ine CICV | – | C | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Vázquez, A.; Villaverde, A.F. Analysing the Structural Identifiability and Observability of Mechanistic Models of Tumour Growth. Bioengineering 2025, 12, 1048. https://doi.org/10.3390/bioengineering12101048
González Vázquez A, Villaverde AF. Analysing the Structural Identifiability and Observability of Mechanistic Models of Tumour Growth. Bioengineering. 2025; 12(10):1048. https://doi.org/10.3390/bioengineering12101048
Chicago/Turabian StyleGonzález Vázquez, Adriana, and Alejandro F. Villaverde. 2025. "Analysing the Structural Identifiability and Observability of Mechanistic Models of Tumour Growth" Bioengineering 12, no. 10: 1048. https://doi.org/10.3390/bioengineering12101048
APA StyleGonzález Vázquez, A., & Villaverde, A. F. (2025). Analysing the Structural Identifiability and Observability of Mechanistic Models of Tumour Growth. Bioengineering, 12(10), 1048. https://doi.org/10.3390/bioengineering12101048