Smartphone-Based Artificial Intelligence for the Detection and Diagnosis of Pediatric Diseases: A Comprehensive Review
Abstract
:1. Introduction
2. Ear Disorders
2.1. Acute Otitis Media and Otitis Media with Effusion
2.2. Hearing Impairment
3. Obesity
4. Eye Diseases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allaert, F.A.; Legrand, L.; Abdoul Carime, N.; Quantin, C. Will applications on smartphones allow a generalization of telemedicine? BMC Med. Inform. Decis. Mak. 2020, 20, 30. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Neuta, I.; Neumann, F.; Brightmeyer, J.; Ba Tis, T.; Madaboosi, N.; Wei, Q.; Ozcan, A.; Nilsson, M. Smartphone-based clinical diagnostics: Towards democratization of evidence-based health care. J. Intern. Med. 2019, 285, 19–39. [Google Scholar] [CrossRef]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 8459–8486. [Google Scholar] [CrossRef]
- Cavalcanti, T.C.; Lew, H.M.; Lee, K.; Lee, S.Y.; Park, M.K.; Hwang, J.Y. Intelligent smartphone-based multimode imaging otoscope for the mobile diagnosis of otitis media. Biomed. Opt. Express 2021, 12, 7765–7779. [Google Scholar] [CrossRef] [PubMed]
- Morse, S.S.; Murugiah, M.K.; Soh, Y.C.; Wong, T.W.; Ming, L.C. Mobile Health Applications for Pediatric Care: Review and Comparison. Ther. Innov. Regul. Sci. 2018, 52, 383–391. [Google Scholar] [CrossRef]
- Zuhal, H. The Advantages and Disadvantages of the mHealth Applications and the Intention to Use among Smartphone Users. Int. J. Mech. Eng. Technol. 2018, 9, 943–947. [Google Scholar]
- Lee, S.; Suh, J.; Choi, Y. Review of smartphone applications for geoscience: Current status, limitations, and future perspectives. Earth Sci. Inform. 2018, 11, 463–486. [Google Scholar] [CrossRef]
- McCaig, L.F.; Nawar, E.W. National hospital ambulatory medical care survey: 2004 emergency department summary. Adv. Data 2006, 372, 1–29. [Google Scholar]
- Ahmed, S.; Shapiro, N.L.; Bhattacharyya, N. Incremental health care utilization and costs for acute otitis media in children. Laryngoscope 2014, 124, 301–305. [Google Scholar] [CrossRef]
- Principi, N.; Marchisio, P.; Esposito, S. Otitis media with effusion: Benefits and harms of strategies in use for treatment and prevention. Expert Rev. Anti Infect. Ther. 2016, 14, 415–423. [Google Scholar] [CrossRef]
- Lieberthal, A.S.; Carroll, A.E.; Chonmaitree, T.; Ganiats, T.G.; Hoberman, A.; Jackson, M.A.; Joffe, M.D.; Miller, D.T.; Rosenfeld, R.M.; Sevilla, X.D.; et al. The diagnosis and management of acute otitis media. Pediatrics 2013, 131, e964–e999. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R.M.; Shin, J.J.; Schwartz, S.R.; Coggins, R.; Gagnon, L.; Hackell, J.M.; Hoelting, D.; Hunter, L.L.; Kummer, A.W.; Payne, S.C.; et al. Clinical Practice Guideline: Otitis Media with Effusion (Update). Otolaryngol. Head Neck Surg. 2016, 154 (Suppl. S1), S1–S41. [Google Scholar] [CrossRef] [PubMed]
- Marchisio, P.G.; Pipol, C.; Land, M.; Consonni, D.; Mansi, N.; Di Mauro, G.; Salvatici, E.; Di Pietro, P.; Esposito, S.; Felisati, G.; et al. Cerumen: A fundamental but neglected problem by pediatricians. Int. J. Pediatr. Otorhinolaryngol. 2016, 87, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Karma, P.H.; Penttilä, M.A.; Sipilä, M.M.; Kataja, M.J. Otoscopic diagnosis of middle ear effusion in acute and non-acute otitis media. I. The value of different otoscopic findings. Int. J. Pediatr. Otorhinolaryngol. 1989, 17, 37–49. [Google Scholar] [CrossRef]
- Pichichero, M.E.; Poole, M.D. Assessing Diagnostic Accuracy and Tympanocentesis Skills in the Management of Otitis Media. Arch. Pediatr. Adolesc. Med. 2001, 155, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E. Otitis media. Pediatr. Clin. N. Am. 2013, 60, 391–407. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Bianchini, S.; Argentiero, A.; Gobbi, R.; Vicini, C.; Principi, N. New Approaches and Technologies to Improve Accuracy of Acute Otitis Media Diagnosis. Diagnostics 2021, 11, 2392. [Google Scholar] [CrossRef] [PubMed]
- Koivunen, P.; Alho, O.P.; Uhari, M.; Niemelä, M.; Luotonen, J. Minitympanometry in detecting middle ear fluid. J. Pediatr. 1997, 131, 419–422. [Google Scholar] [PubMed]
- Babb, M.J.; Hilsinger, J.R.L.; Korol, H.W.; Wilcox, R.D. Modern Acoustic Reflectometry: Accuracy in Diagnosing Otitis Media with Effusion. Ear Nose Throat J. 2004, 83, 622–624. [Google Scholar] [CrossRef]
- Laine, M.K.; Tähtinen, P.A.; Helenius, K.K.; Luoto, R.; Ruohola, A. Acoustic eflectometry in Discrimination of Otoscopic Diagnoses in Young Ambulatory Children. Pediatr. Infect. Dis. J. 2012, 31, 1007–1011. [Google Scholar] [CrossRef]
- Pichichero, M.E.; Wrigh, T. The use of tympanocentesis in the diagnosis and management of acute otitis media. Curr. Infect. Dis. Rep. 2006, 8, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E. Acute otitis media: Part II. Treatment in an era of increasing antibiotic resistance. Am. Fam. Physician 2000, 61, 2410–2416. [Google Scholar] [PubMed]
- Paul, C.R.; Joyce, A.D.H.; Dallaghan, G.L.B.; Keeley, M.G.; Lehmann, C.; Schmidt, S.M.; Simonsen, K.A.; Christy, C. Teaching pediatric otoscopy skills to the medical student in the clinical setting: Preceptor perspectives and practice. BMC Med. Educ. 2020, 20, 429. [Google Scholar] [CrossRef] [PubMed]
- Mousseau, S.; Lapointe, A.; Gravel, J. Diagnosing acute otitis media using a smartphone otoscope; a randomized controlled trial. Am. J. Emerg. Med. 2018, 36, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.R.; Gaylor, K.A.; Pilgrim, A.J. Comparison of traditional otoscope to iPhone otoscope in the pediatric ED. Am. J. Emerg. Med. 2015, 33, 1089–1092. [Google Scholar] [CrossRef]
- Moshtaghi, O.; Sahyouni, R.; Haidar, Y.M.; Huang, M.; Moshtaghi, A.; Ghavami, Y.; Lin, H.W.; Djalilian, H.R. Smartphone-enabled otoscopy in neurotology/otology. Otolaryngol. Head Neck Surg. 2017, 156, 554–558. [Google Scholar] [CrossRef]
- Chan, K.N.; Silverstein, A.; Bryan, L.N.; McCracken, C.E.; Little, W.K.; Shane, A.L. Comparison of a Smartphone Otoscope and Conventional Otoscope in the Diagnosis and Management of Acute Otitis Media. Clin. Pediatr. 2019, 58, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, K.M.; McCracken, G.C.; Beniflah, J.; Little, W.K.; Fletcher, D.A.; Lam, W.A.; Shane, A.L. Assessment of a Smartphone Otoscope Device for the Diagnosis and Management of Otitis Media. Clin. Pediatr. 2016, 55, 800–810. [Google Scholar] [CrossRef]
- Soares, C.; Clifton, W.; Freeman, W.D. Use of Handheld Video Otoscopy for the Diagnosis of Acute Otitis Media: Technical Note. Cureus 2019, 11, e5547. [Google Scholar] [CrossRef]
- Chang, K.M.; Surapaneni, S.S.; Shaikh, N.; Marston, A.P.; Vecchiotti, M.A.; Rangarajan, N.; Hill, C.A.; Scott, A.R. Pediatric tympanostomy tube assessment via deep learning. Am. J. Otolaryngol. 2024, 45, 104334. [Google Scholar] [CrossRef]
- Alenezi, E.M.; Jajko, K.; Reid, A.; Locatelli-Smith, A.; McMahen, C.S.; Tao, K.F.; Marsh, J.; Bright, T.; Richmond, P.C.; Eikelboom, R.H.; et al. Clinician-rated quality of video otoscopy recordings and still images for the asynchronous assessment of middle-ear disease. J. Telemed. Telecare 2021, 135, 435–443. [Google Scholar] [CrossRef]
- Mandavia, R.; Lapa, T.; Smith, M.; Bhutta, M. A cross-sectional evaluation of the validity of a smartphone otoscopy device in screening for ear disease in Nepal. Clin. Otolaryngol. 2018, 43, 31–38. [Google Scholar] [CrossRef]
- Don, D.M.; Koempel, J.A.; Fisher, L.M.; Wee, C.P.; Osterbauer, B. Prospective evaluation of a smartphone otoscope for home tympanostomy tube surveillance: A pilot study. Ann. Otol. Rhinol. Laryngol. 2005, 69, 361–366. [Google Scholar] [CrossRef]
- Re Myburgh, H.C.; van Zijl, W.H.; Swanepoel, D.; Hellstrom, S.; Laurent, C. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis. EBioMedicine 2016, 5, 156–160. [Google Scholar] [CrossRef]
- Tran, T.T.; Fang, T.Y.; Pham, V.T.; Lin, C.; Wang, P.C.; Lo, M.T. Development of an Automatic Diagnostic Algorithm for Pediatric Otitis Media. Otol. Neurotol. 2018, 39, 1060–1065. [Google Scholar] [CrossRef]
- Kuruvilla, A.; Shaikh, N.; Hoberman, A.; Kovacevic, J. Automated diagnosis of otitis media: Vocabulary and grammar. Int. J. Biomed. Imaging 2013, 2013, 327515. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chu, Y.-C.; Huang, C.-Y.; Lee, Y.-T.; Lee, W.-Y.; Hsu, C.-Y.; Yang, A.C.; Liao, W.-H.; Cheng, Y.-F. Smartphone-based artificial intelligence using a transfer learning algorithm for the detection and diagnosis of middle ear diseases: A retrospective deep learning study. EClinicalMedicine 2022, 51, 101543. [Google Scholar] [CrossRef]
- Livingstone, D.; Chau, J. Otoscopic diagnosis using computer vision: An automated machine learning approach. Laryngoscope 2020, 30, 1408–1413. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, Z.; Li, L.; Pan, H.; Chen, G.; Fu, Y.; Qiu, Q. Deep Learning for Classification of Pediatric Otitis Media. Laryngoscope 2021, 131, E2344–E2351. [Google Scholar] [CrossRef]
- Habib, A.R.; Kajbafzadeh, M.; Hasan, Z.; Wong, E.; Gunasekera, H.; Perry, C.; Sacks, R.; Kumar, A.; Singh, N. Artificial intelligence to classify ear disease from otoscopy: A systematic review and meta-analysis. Clin. Otolaryngol. 2022, 47, 401–413. [Google Scholar] [CrossRef]
- Shah, M.U.; Sohal, M.; Valdez, T.A.; Grindle, C.R. iPhone otoscopes: Currently available, but reliable for tele-otoscopy in the hands of parents? Int. J. Pediatr. Otorhinolaryngol. 2018, 106, 59–63. [Google Scholar] [CrossRef]
- Chan, J.; Raju, S.; Nandakumar, R.; Bly, R.; Gollakota, S. Detecting middle ear fluid using smartphones. Sci. Transl. Med. 2019, 11, eaav1102. [Google Scholar] [CrossRef]
- Jin, F.Q.; Huang, O.; Kleindienst Robler, S.; Morton, S.; Platt, A.; Egger, J.R.; Emmett, S.D.; Palmeri, M.L. A Hybrid Deep Learning Approach to Identify Preventable Childhood Hearing Loss. Ear Hear. 2023, 44, 1262–1270. [Google Scholar] [CrossRef]
- Carew, P.; Shepherd, D.A.; Smith, L.; Soh, Q.R.; Sung, V. Language and health-related quality of life outcomes of children early-detected with unilateral and mild bilateral hearing loss. Front. Pediatr. 2023, 11, 1210282. [Google Scholar] [CrossRef]
- Nikolopoulos, T.P. Neonatal hearing screening: What we have achieved and what needs to be improved. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 635–637. [Google Scholar] [CrossRef]
- Kenna, M.A. Acquired Hearing Loss in Children. Otolaryngol. Clin. N. Am. 2015, 48, 933–953. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Data and Statistics About Hearing Loss in Children. Available online: https://www.cdc.gov/ncbddd/hearingloss/data.html (accessed on 3 November 2023).
- World Health Organization. Launch of HEARING Screening: Considerations for Recommendations. Available online: https://www.who.int/news-room/events/detail/2021/09/15/default-calendar/launch-of-hearing-screening-considerations-for-recommendations (accessed on 3 November 2023).
- Jayawardena, A.; Waller, B.; Edwards, B.; Larsen-Reindorf, R.; Anomah, J.E.; Frimpong, B.; Gina, A.; Netterville, J.; Saunders, J.; Basura, G.J. Portable audiometric screening platforms used in low-resource settings: A review. J. Laryngol. Otol. 2019, 133, 74–79. [Google Scholar] [CrossRef]
- Swanepoel, D.; Clark, J.L. Hearing healthcare in remote or resource-constrained environments. J. Laryngol. Otol. 2019, 133, 11–17. [Google Scholar] [CrossRef]
- Swanepoel, D.W.; Sousa, K.C.; Smits, C.; Moore, D.R. Mobile applications to detect hearing impairment: Opportunities and challenges. Bull. World Health Organ. 2019, 97, 717–718. [Google Scholar] [CrossRef]
- Ratanjee-Vanmali, H.; Swanepoel, D.W.; Laplante-Lévesque, A. Patient uptake, experience, and satisfaction using web-based and face-to-face hearing health services: Process evaluation study. J. Med. Internet Res. 2020, 22, e15875. [Google Scholar] [CrossRef]
- Sousa, K.C.; Swanepoel, D.W.; Moore, D.R.; Smits, C. A smartphone national hearing test: Performance and characteristics of users. Am. J. Audiol. 2018, 27, 448–454. [Google Scholar] [CrossRef]
- Melo, I.M.M.; Silva, A.R.X.; Camargo, R.; Cavalcanti, H.G.; Ferrari, D.V.; Taveira, K.V.M.; Balen, S.A. Accuracy of smartphone-based hearing screening tests: A systematic review. Codas 2022, 34, e20200380. [Google Scholar] [CrossRef]
- Mahomed-Asmail, F.; Swanepoel, D.W.; Eikelboom, R.H.; Myburgh, H.C.; Hall, J., 3rd. Clinical Validity of hearScreen™ Smartphone Hearing Screening for School Children. Ear Hear. 2016, 37, e11–e17. [Google Scholar] [CrossRef]
- Dawood, N.; Mahomed Asmail, F.; Louw, C.; Swanepoel, W. Mhealth hearing screening for children by non-specialist health workers in communities. Int. J. Audiol. 2021, 60 (Suppl. S1), S23–S29. [Google Scholar] [CrossRef]
- Saera. Portable Electric Device based Hearing Test (uHear) Validation in Children Population in Quiet Environments. UAE: Single Center, Clinical Comparative Study. Available online: https://www.saera.eu/en/2023/05/08/portable-electric-device-based-hearing-test-uhear-validation-in-children-population/ (accessed on 3 November 2023).
- Manayan, R.C.; Ladd-Luthringshauser, O.H.; Packer, A.; Tribulski, K.; Winans, A.; Vecchiotti, M.A.; Scott, A.R. Ambient noise limits efficacy of smartphone-based screening for hearing loss in children at risk. Am. J. Otolaryngol. 2022, 43, 103223. [Google Scholar] [CrossRef]
- Bowers, P.; Graydon, K.; Rance, G. Evaluation of a game-based hearing screening program for identifying hearing loss in primary school-aged children. Int. J. Audiol. 2023, 62, 512–520. [Google Scholar] [CrossRef]
- Law, C.P.; Wong, L.L.N.; Chung, K. Comparison of Conventional Audiometry with a Game-Based Audiometric Application for Screening the Hearing Thresholds of Children and Adults. Preprint from Research Square, 21 April 2023. Available online: https://europepmc.org/article/ppr/ppr648846 (accessed on 3 November 2023).
- Sintef. Game-Based Hearing Screening Tool for Children. Available online: https://www.sintef.no/en/publications/publication/2054371/ (accessed on 3 November 2023).
- Petraroli, M.; Castellone, E.; Patianna, V.; Esposito, S. Gut Microbiota and Obesity in Adults and Children: The State of the Art. Front. Pediatr. 2021, 9, 657020. [Google Scholar] [CrossRef]
- Capra, M.E.; Stanyevic, B.; Giudice, A.; Monopoli, D.; Decarolis, N.M.; Esposito, S.; Biasucci, G. The Effects of COVID-19 Pandemic and Lockdown on Pediatric Nutritional and Metabolic Diseases: A Narrative Review. Nutrients 2022, 15, 88. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 3 November 2023).
- Lister, N.B.; Baur, L.A.; Felix, J.F.; Hill, A.J.; Marcus, C.; Reinehr, T.; Summerbell, C.; Wabitsch, M. Child and adolescent obesity. Nat. Rev. Dis. Primers 2023, 9, 24. [Google Scholar] [CrossRef]
- World Health Organization. Digital Food Environments: Factsheet. Available online: https://iris.who.int/handle/10665/342072 (accessed on 3 November 2023).
- Kristensen, P.L.; Korsholm, L.; Møller, N.C.; Wedderkopp, N.; Andersen, L.B.; Froberg, K. Sources of variation in habitual physical activity of children and adolescents: The European youth heart study. Scand. J. Med. Sci. Sports 2008, 18, 298–308. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030, More Active People for a Healthier World. Available online: https://www.who.int/publications/i/item/9789241514187 (accessed on 3 November 2023).
- Centers for Disease Control an Prevention. Overweight and Obesity. Available online: https://www.cdc.gov/obesity/strategies/index.html (accessed on 3 November 2023).
- Wang, Y.; Cai, L.; Wu, Y.; Wilson, R.F.; Weston, C.; Fawole, O.; Bleich, S.N.; Cheskin, L.J.; Showell, N.N.; Lau, B.D.; et al. What childhood obesity prevention programmes work? A systematic review and meta-analysis. Obes. Rev. 2015, 16, 547–565. [Google Scholar] [CrossRef]
- Srivastava, R.; Kushwaha, S.; Khanna, P.; Gupta, M.; Bharti, B.; Jain, R. Comprehensive overview of smartphone applications delivering child nutrition information. Nutrition 2022, 103–104, 111773. [Google Scholar] [CrossRef]
- Zare, Z.; Hajizadeh, E.; Mahmoodi, M.; Nazari, R.; Shahmoradi, L.; Rezayi, S. Smartphone-based application to control and prevent overweight and obesity in children: Design and evaluation. BMC Med. Inform. Decis. Mak. 2023, 23, 201. [Google Scholar] [CrossRef]
- Alexandrou, C.; Henriksson, H.; Henström, M.; Henriksson, P.; Delisle Nyström, C.; Bendtsen, M.; Löf, M. Effectiveness of a Smartphone App (MINISTOP 2.0) integrated in primary child health care to promote healthy diet and physical activity behaviors and prevent obesity in preschool-aged children: Randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 22. [Google Scholar] [CrossRef]
- Gagnon, M.P.; Ngangue, P.; Payne-Gagnon, J.; Desmartis, M. m-Health adoption by healthcare professionals: A systematic review. J. Am. Med. Inform. Assoc. 2016, 23, 212–220. [Google Scholar] [CrossRef]
- Thomas, K.; Neher, M.; Alexandrou, C.; Müssener, U.; Henriksson, H.; Löf, M. Mobile phone-based lifestyle support for families with young children in primary health care (MINISTOP 2.0): Exploring behavioral change determinants for implementation using the COM-B model. Front. Health Serv. 2022, 2, 951879. [Google Scholar] [CrossRef]
- Nyström, C.D.; Sandin, S.; Henriksson, P.; Henriksson, H.; Trolle-Lagerros, Y.; Larsson, C.; Maddison, R.; Ortega, F.B.; Pomeroy, J.; Ruiz, J.R.; et al. Mobile-based intervention intended to stop obesity in preschool-aged children: The MINISTOP randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 1327–1335. [Google Scholar] [CrossRef]
- Aruljyothi, L.; Janakiraman, A.; Malligarjun, B.; Babu, B.M. Smartphone applications in ophthalmology: A quantitative analysis. Indian J. Ophthalmol. 2021, 69, 548–553. [Google Scholar] [CrossRef]
- Powell, C.; Hatt, S.R. Vision screening for amblyopia in childhood. Cochrane Database Syst. Rev. 2009, 8, CD005020. [Google Scholar] [CrossRef]
- Webber, A.L. The functional impact of amblyopia. Clin. Exp. Optom. 2018, 101, 443–450. [Google Scholar] [CrossRef]
- Birch, E.E.; Kelly, K.R.; Wang, J. Recent advances in screening and treatment for amblyopia. Ophthalmol. Ther. 2021, 10, 815–830. [Google Scholar] [CrossRef]
- Sii, S.; Chean, C.S.; Kuht, H.; Bunce, C.; Thomas, M.G.; Rufai, S.R. Home-based screening tools for amblyopia: A systematic review. Eye 2023, 37, 2649–2658. [Google Scholar] [CrossRef]
- Arnold, R.W.; O’Neil, J.W.; Cooper, K.L.; Silbert, D.I.; Donahue, S.P. Evaluation of a smartphone photoscreening app to detect refractive amblyopia risk factors in children aged 1–6 years. Clin. Ophthalmol. 2018, 12, 1533–1537. [Google Scholar] [CrossRef]
- Arnold, R.W.; Arnold, A.W.; Hunt-Smith, T.T.; Grendahl, R.L.; Winkle, R.K. The positive predictive value of smartphone photoscreening in pediatric practices. J. Pediatr. Ophthalmol. Strabismus 2018, 55, 393–396. [Google Scholar] [CrossRef]
- Peterseim, M.M.; Rhodes, R.S.; Patel, R.N.; Wilson, M.E.; Edmondson, L.E.; Logan, S.A.; Cheeseman, E.W.; Shortridge, E.; Trivedi, R.H. Effectiveness of the GoCheck Kids vision screener in detecting amblyopia risk factors. Am. J. Ophthalmol. 2018, 187, 87–91. [Google Scholar] [CrossRef]
- Walker, M.; Duvall, A.; Daniels, M.; Doan, M.; Edmondson, L.E.; Cheeseman, E.W.; Wilson, M.E.; Trivedi, R.H.; Peterseim, M.M.W. Effectiveness of the iPhone GoCheck Kids smartphone vision screener in detecting amblyopia risk factors. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2020, 24, 16. [Google Scholar] [CrossRef]
- Debert, I.; da Costa, D.R.; Polati, M.; Falabretti, J.G.; Susanna Junior, R. Vision screening using a smartphone platform. Rev. Paul. Pediatr. 2022, 40, e2020021. [Google Scholar] [CrossRef]
- Silverstein, E.; McElhinny, E.R. Traditional and instrument-based vision screening in third-grade students. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2020, 24, 232. [Google Scholar] [CrossRef]
- Alafeef, M.; Fraiwan, M. Smartphone-based respiratory rate estimation using photoplethysmographic imaging and discrete wavelet transform. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 693–703. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principi, N.; Esposito, S. Smartphone-Based Artificial Intelligence for the Detection and Diagnosis of Pediatric Diseases: A Comprehensive Review. Bioengineering 2024, 11, 628. https://doi.org/10.3390/bioengineering11060628
Principi N, Esposito S. Smartphone-Based Artificial Intelligence for the Detection and Diagnosis of Pediatric Diseases: A Comprehensive Review. Bioengineering. 2024; 11(6):628. https://doi.org/10.3390/bioengineering11060628
Chicago/Turabian StylePrincipi, Nicola, and Susanna Esposito. 2024. "Smartphone-Based Artificial Intelligence for the Detection and Diagnosis of Pediatric Diseases: A Comprehensive Review" Bioengineering 11, no. 6: 628. https://doi.org/10.3390/bioengineering11060628
APA StylePrincipi, N., & Esposito, S. (2024). Smartphone-Based Artificial Intelligence for the Detection and Diagnosis of Pediatric Diseases: A Comprehensive Review. Bioengineering, 11(6), 628. https://doi.org/10.3390/bioengineering11060628