Investigating the Influence of Varying Surface Conditions on Human Postural Control and Sensory Integration Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Balance Measurement
2.3. Support Surfaces
2.4. Experimental Procedure
2.5. Data Analysis
3. Results
3.1. General Characteristics
3.2. COP Displacement
- (1)
- Mediolateral COP X axis displacement
- (2)
- Anteroposterior COP Y axis displacement
- (3)
- COP Velocity during Anteroposterior Perturbations
- (4)
- C90 Area during Anteroposterior Perturbations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lugade, V.; Lin, V.; Chou, L.-S. Center of mass and base of support interaction during gait. Gait Posture 2011, 33, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Abatzides, G.J.; Kitsios, A. The role of rehabilitation in the treatment of balance disorders. J. Back Musculoskelet. Rehabil. 1999, 12, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Kingma, H. Posture, balance and movement: Role of the vestibular system in balance control during stance and movements. Neurophysiol. Clin./Clin. Neurophysiol. 2016, 46, 238. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Horak, F.B. Assessing the influence of sensory interaction on balance: Suggestion from the field. Phys. Ther. 1986, 66, 1548–1550. [Google Scholar] [CrossRef]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Palm, H.-G.; Strobel, J.; Achatz, G.; von Luebken, F.; Friemert, B. The role and interaction of visual and auditory afferents in postural stability. Gait Posture 2009, 30, 328–333. [Google Scholar] [CrossRef]
- Mademli, L.; Mavridi, D.; Bohm, S.; Patikas, D.A.; Santuz, A.; Arampatzis, A. Standing on unstable surface challenges postural control of tracking tasks and modulates neuromuscular adjustments specific to task complexity. Sci. Rep. 2021, 11, 6122. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Succop, P.; Kincl, L.; Lu, M.L.; Bagchee, A. Postural stability during task performance on elevated and/or inclined surfaces. Occup. Ergon. 2003, 3, 83–97. [Google Scholar] [CrossRef]
- Williams, D.B., III; Murray, N.G.; Powell, D.W. Athletes who train on unstable compared to stable surfaces exhibit unique postural control strategies in response to balance perturbations. J. Sport Health Sci. 2016, 5, 70–76. [Google Scholar] [CrossRef]
- Wall, C., III; Kentala, E. Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits. J. Vestib. Res. 2005, 15, 313–325. [Google Scholar] [CrossRef]
- Steindl, R.; Kunz, K.; Schrott-Fischer, A.; Scholtz, A. Effect of age and sex on maturation of sensory systems and balance control. Dev. Med. Child Neurol. 2006, 48, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.; Almeida, G. The effect of galvanic vestibular stimulation on postural response of Down syndrome individuals on the seesaw. Res. Dev. Disabil. 2011, 32, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.-C.; Dichgans, J. On the role of vestibular, visual and somatosensory information for dynamic postural control in humans. Prog. Brain Res. 1988, 76, 253–262. [Google Scholar] [PubMed]
- Bieć, E.; Zima, J.; Wojtowicz, D.; Wojciechowska-Maszkowska, B.; Kręcisz, K.; Kuczyński, M. Postural stability in young adults with Down syndrome in challenging conditions. PLoS ONE 2014, 9, e94247. [Google Scholar] [CrossRef] [PubMed]
- Laessoe, U.; Voigt, M. Anticipatory postural control strategies related to predictive perturbations. Gait Posture 2008, 28, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Benaim, C.; Pérennou, D.A.; Villy, J.; Rousseaux, M.; Pelissier, J.Y. Validation of a standardized assessment of postural control in stroke patients: The Postural Assessment Scale for Stroke Patients (PASS). Stroke 1999, 30, 1862–1868. [Google Scholar] [CrossRef]
- Bouisset, S.; Zattara, M. Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement. J. Biomech. 1987, 20, 735–742. [Google Scholar] [CrossRef]
- Mok, N.W.; Brauer, S.G.; Hodges, P.W. Hip strategy for balance control in quiet standing is reduced in people with low back pain. Spine 2004, 29, E107–E112. [Google Scholar] [CrossRef]
- Le Bozec, S.; Bouisset, S.; Ribreau, C. Postural control in isometric ramp pushes: The role of Consecutive Postural Adjustments (CPAs). Neurosci. Lett. 2008, 448, 250–254. [Google Scholar] [CrossRef]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Uetake, T.; Tanaka, H.; Shindo, M.; Okada, M. Two new methods applicable to center of pressure swing analysis. Anthropol. Sci. 2004, 112, 187–193. [Google Scholar] [CrossRef]
- Zang, Y.; Gu, B.; Qian, Q.; Wang, Y. Objective measurement of the balance dysfunction in attention deficit hyperactivity disorder children. Chin. J. Clin. Rehabil. 2002, 6, 1372–1374. [Google Scholar]
- Preuss, R.; Fung, J. A simple method to estimate force plate inertial components in a moving surface. J. Biomech. 2004, 37, 1177–1180. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Number of Participants | 30 (20 males, 10 females) |
Age (years) | 24.10 ± 1.84 |
Height (cm) | 169.30 ± 6.55 |
Body mass (kg) | 63.15 ± 8.82 |
Variables | Condition | Mean ± SD | F | p-Value | Effect Size |
---|---|---|---|---|---|
COP velocity (mm/s) | Flat | 28.47 ± 4.50 | 89.177 | <0.001 * | 2.89 |
Ramp | 27.48 ± 4.38 | ||||
Balance pad | 49.76 ± 9.38 | ||||
Balance pad on the ramp | 49.03 ± 8.55 | ||||
COP area (mm2) | Flat | 1104.07 ± 330.22 | 52.659 | <0.001 * | 2.15 |
Ramp | 1100.20 ± 500.79 | ||||
Balance pad | 2232.97 ± 778.91 | ||||
Balance pad on the ramp | 2202.30 ± 578.87 | ||||
COP ML (mm) | Flat | 27.03 ± 7.23 | 38.272 | <0.001 * | 1.96 |
Ramp | 27.38 ± 8.43 | ||||
Balance pad | 42.10 ± 11.61 | ||||
Balance pad on the ramp | 44.03 ± 10.22 | ||||
COP AP (mm) | Flat | 28.47 ± 4.50 | 89.177 | <0.001 * | 2.89 |
Ramp | 27.48 ± 4.38 | ||||
Balance pad | 49.76 ± 9.38 | ||||
Balance pad on the ramp | 49.03 ± 8.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-Y.; Yeo, S.-S.; Kang, T.-W.; Koo, D.-K. Investigating the Influence of Varying Surface Conditions on Human Postural Control and Sensory Integration Strategies. Bioengineering 2024, 11, 618. https://doi.org/10.3390/bioengineering11060618
Park S-Y, Yeo S-S, Kang T-W, Koo D-K. Investigating the Influence of Varying Surface Conditions on Human Postural Control and Sensory Integration Strategies. Bioengineering. 2024; 11(6):618. https://doi.org/10.3390/bioengineering11060618
Chicago/Turabian StylePark, Seo-Yoon, Sang-Seok Yeo, Tae-Woo Kang, and Dong-Kyun Koo. 2024. "Investigating the Influence of Varying Surface Conditions on Human Postural Control and Sensory Integration Strategies" Bioengineering 11, no. 6: 618. https://doi.org/10.3390/bioengineering11060618
APA StylePark, S. -Y., Yeo, S. -S., Kang, T. -W., & Koo, D. -K. (2024). Investigating the Influence of Varying Surface Conditions on Human Postural Control and Sensory Integration Strategies. Bioengineering, 11(6), 618. https://doi.org/10.3390/bioengineering11060618