Digital Twins for Healthcare Using Wearables
Abstract
:1. Introduction
Purpose
2. Materials and Methods
3. Healthcare Digital Twin
3.1. Sensing and Data
3.2. Musculoskeletal System
3.3. Circulatory System
3.4. Nervous System
4. Model Generation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Farsi, M.; Daneshkhah, A.; Hosseinian-Far, A.; Jahankhani, H. Internet of Things Digital Twin Technologies and Smart Cities. Available online: http://www.springer.com/series/11636 (accessed on 15 November 2022).
- Volkov, I.; Radchenko, G.; Tchernykh, A. Digital Twins, Internet of Things and Mobile Medicine: A Review of Current Platforms to Support Smart Healthcare. Program. Comput. Softw. 2021, 47, 578–590. [Google Scholar] [CrossRef]
- Viceconti, M.; De Vos, M.; Mellone, S.; Geris, L. Position Paper from the Digital Twins in Healthcare to the Virtual Human Twin: A Moon-Shot Project for Digital Health Research. IEEE J. Biomed. Health Inform. 2024, 28, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Arslan, T.; Ratnarajah, T. Digital Twin Perspective of Fourth Industrial and Healthcare Revolution. IEEE Access 2022, 10, 25732–25754. [Google Scholar] [CrossRef]
- Neghab, H.K.; Jamshidi, M.B.; Neghab, H.K. Digital Twin of a Magnetic Medical Microrobot with Stochastic Model Predictive Controller Boosted by Machine Learning in Cyber-Physical Healthcare Systems. Information 2022, 13, 321. [Google Scholar] [CrossRef]
- Du, Y.; Luo, Y.; Peng, Y.; Chen, Y. Industrial robot digital twin system motion simulation and collision detection. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence, DTPI, Beijing, China, 15 July–15 August 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 196–199. [Google Scholar] [CrossRef]
- Berti, N.; Finco, S.; Guidolin, M.; Battini, D. Towards Human Digital Twins to enhance workers’ safety and production system resilience. IFAC-PapersOnLine 2023, 56, 11062–11067. [Google Scholar] [CrossRef]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging digital twin technology in model-based systems engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, X.; Ni, Z. Digital Twin-based human-machine collaboration and application approach for laser projection aided assembly of complex product. In Proceedings of the 2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2020, Hangzhou, China, 22–23 August 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; Volume 2, pp. 100–103. [Google Scholar] [CrossRef]
- Alazab, M.; Khan, L.U.; Koppu, S.; Ramu, S.P.; Iyapparaja, M.; Boobalan, P.; Baker, T.; Maddikunta, P.K.R.; Gadekallu, T.R.; Aljuhani, A. Digital Twins for Healthcare 4.0—Recent Advances, Architecture, and Open Challenges. IEEE Consum. Electron. Mag. 2023, 12, 29–37. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Huang, T.; Hou, G. Parallel Control Strategy for Flexible Operation of Ultra-supercritical Units Under Digital Twin Theory. In Proceedings of the 2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence, DTPI 2022, Boston, MA, USA, 24–28 October 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, H.; Li, X.; Yang, G.; Zheng, P.; Song, C.; Yuan, Y.; Wuest, T.; Yang, H.; Wang, L. Human Digital Twin in the context of Industry 5.0. Robot. Comput. Integr. Manuf. 2024, 85, 102626. [Google Scholar] [CrossRef]
- Abarnikov, Y.; Kharchenko, V.; Morozova, O. Equipment Monitoring System with use of Digital Twins and Internet of Things: Algorithms, Architecting and Experiments. In Proceedings of the 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2021, Cracow, Poland, 22–25 September 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; Volume 1, pp. 75–80. [Google Scholar] [CrossRef]
- Zheng, M.; Tian, L. Knowledge-based digital twin model evolution management method for mechanical products. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence, DTPI 2021, Beijing, China, 15 July–15 August 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 312–315. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; MacFeely, S. Impactful Digital Twin in the Healthcare Revolution. Big Data Cogn. Comput. 2022, 6, 83. [Google Scholar] [CrossRef]
- Preuss, K.; Schulte, S.N.; Rzazonka, L.; Befort, L.; Fresemann, C.; Stark, R.; Russwinkel, N. Towards A Human-Centered Digital Twin. Procedia CIRP 2023, 118, 324–329. [Google Scholar] [CrossRef]
- Das, T.; Wang, Z.; Sun, J. TWIN: Personalized Clinical Trial Digital Twin Generation. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 402–413. [Google Scholar] [CrossRef]
- Yao, J.F.; Yang, Y.; Wang, X.C.; Zhang, X.P. Systematic review of digital twin technology and applications. Vis. Comput. Ind. Biomed. Art 2023, 6, 10. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, J.; Lin, X.; Yang, W. DRL-Driven Digital Twin Function Virtualization for Adaptive Service Response in 6G Networks. IEEE Netw. Lett. 2023, 5, 125–129. [Google Scholar] [CrossRef]
- Cappon, G.; Pellizzari, E.; Cossu, L.; Sparacino, G.; Deodati, A.; Schiaffini, R.; Cianfarani, S.; Facchinetti, A. System Architecture of TWIN: A New Digital Twin-Based Clinical Decision Support System for Type 1 Diabetes Management in Children. In Proceedings of the 2023 IEEE 19th International Conference on Body Sensor Networks, BSN 2023—Proceedings, Boston, MA, USA, 9–11 October 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Mosquera-Lopez, C.; Jacobs, P.G. Digital twins and artificial intelligence in metabolic disease research. Trends Endocrinol. Metab. 2024, 35, 549–557. [Google Scholar] [CrossRef]
- Bruynseels, K.; de Sio, F.S.; van den Hoven, J. Digital Twins in health care: Ethical implications of an emerging engineering paradigm. Front. Genet. 2018, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Cellina, M.; Cè, M.; Alì, M.; Irmici, G.; Ibba, S.; Caloro, E.; Fazzini, D.; Oliva, G.; Papa, S. Digital Twins: The New Frontier for Personalized Medicine? Appl. Sci. 2023, 13, 7940. [Google Scholar] [CrossRef]
- Erol, T.; Mendi, A.F.; Dogan, D. The Digital Twin Revolution in Healthcare. In Proceedings of the 4th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2020—Proceedings, Istanbul, Turkey, 22–24 October 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Machado, T.M.; Berssaneti, F.T. Literature review of digital twin in healthcare. Heliyon 2023, 9, e19390. [Google Scholar] [CrossRef] [PubMed]
- Klimo, M.; Kvassay, M.; Kvassayova, N. Digital Twin and Modelling a 3D Human Body in Healthcare. In Proceedings of the ICETA 2023—21st Year of International Conference on Emerging eLearning Technologies and Applications, Proceedings, Stary Smokovec, Slovakia, 26–27 October 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023; pp. 307–312. [Google Scholar] [CrossRef]
- Wan, Z.; Dong, Y.; Yu, Z.; Lv, H.; Lv, Z. Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion. Front. Neurosci. 2021, 15, 705323. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Pratap Singh, R.; Suman, R. Exploring the revolution in healthcare systems through the applications of digital twin technology. Biomed. Technol. 2023, 4, 28–38. [Google Scholar] [CrossRef]
- Khan, S.; Alzaabi, A.; Ratnarajah, T.; Arslan, T. Novel statistical time series data augmentation and machine learning based classification of unobtrusive respiration data for respiration Digital Twin model. Comput. Biol. Med. 2024, 168, 107825. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, Y.; Yi, C.; Cai, J.; Kang, J.; Niyato, D.; Shen, X. Dynamic Human Digital Twin Deployment at the Edge for Task Execution: A Two-Timescale Accuracy-Aware Online Optimization. IEEE Trans. Mob. Comput. 2024. [Google Scholar] [CrossRef]
- Ou, H.; Yue, P.; Duan, Q.; Mo, S.; Zhao, Z.; Qu, X.; Hu, X. Development of a low-cost and user-friendly system to create personalized human digital twin. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Sydney, Australia, 24–27 July 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Sahal, R.; Alsamhi, S.H.; Brown, K.N. Personal Digital Twin: A Close Look into the Present and a Step towards the Future of Personalised Healthcare Industry. Sensors 2022, 22, 5918. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, B.; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jörnsten, R.; Lee, E.J.; Li, X.; Lilja, S.; et al. Digital twins to personalize medicine. Genome Med. 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Okegbile, S.D.; Cai, J.; Niyato, D.; Yi, C. Human Digital Twin for Personalized Healthcare: Vision, Architecture and Future Directions. IEEE Netw. 2023, 37, 262–269. [Google Scholar] [CrossRef]
- Rowan, N.J. Digital technologies to unlock safe and sustainable opportunities for medical device and healthcare sectors with a focus on the combined use of digital twin and extended reality applications: A review. Sci. Total Environ. 2024, 926, 171672. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.E.; Spatz, E. A unified view of a human digital twin. Hum. Intell. Syst. Integr. 2022, 4, 23–33. [Google Scholar] [CrossRef]
- Tang, C.; Yi, W.; Occhipinti, E.; Dai, Y.; Gao, S.; Occhipinti, L.G. Human Body Digital Twin: A Master Plan. arXiv 2023, arXiv:2307.09225. [Google Scholar]
- Shengli, W. Is Human Digital Twin possible? Comput. Methods Programs Biomed. Update 2021, 1, 100014. [Google Scholar] [CrossRef]
- Saariluoma, P.; Myllylä, M.; Karvonen, A. Human digital twins in interaction design—From abstract to concrete. In Proceedings of the ACM International Conference Proceeding Series, 2023, Corfu, Greece, 5–7 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 259–264. [Google Scholar] [CrossRef]
- Naudet, Y.; Stahl, C.; Gallais, M. Preliminary Systemic Model of (Human) Digital Twin. In Proceedings of the ACM International Conference Proceeding Series, 2023, Corfu, Greece, 5–7 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 562–567. [Google Scholar] [CrossRef]
- Kim, M.; Kim, T.; Lee, K.T. Digital Human Interaction Based on Mono Camera for Digital Twin. In Proceedings of the International Conference on ICT Convergence, Jeju Island, Republic of Korea, 11–13 October 2023; IEEE Computer Society: Washington, DC, USA, 2023; pp. 641–643. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, J.; Gao, S. Advanced Electronics and Artificial Intelligence: Must-Have Technologies Toward Human Body Digital Twins. Adv. Intell. Syst. 2022, 4, 2100263. [Google Scholar] [CrossRef]
- Van Den Brand, M.; Cleophas, L.; Gunasekaran, R.; Haverkort, B.; Negrin, D.A.M.; Muctadir, H.M. Models Meet Data: Challenges to Create Virtual Entities for Digital Twins. In Proceedings of the Companion Proceedings—24th International Conference on Model-Driven Engineering Languages and Systems, MODELS-C 2021, Fukuoka, Japan, 10–15 October 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 225–228. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Rajagopal, S.; Prieto-Simón, B.; Pogue, B.W. Recent advances in smart wearable sensors for continuous human health monitoring. Talanta 2024, 272, 125817. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, L.; Ali, A.; Nugent, C.; Ian, C.; Li, R.; Gao, D.; Wang, H.; Wang, Y.; Ning, H. Human Digital Twin: A Survey. arXiv 2022, arXiv:2212.05937. [Google Scholar]
- Wagholikar, S.; Wagholikar, O. Application of Wearables in Healthcare Management: Recent Trends and Futuristic Approach. In Proceedings of the 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development, OTCON 2022, Raigarh, Chhattisgarh, India, 8–10 February 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Elayan, H.; Aloqaily, M.; Guizani, M. Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. IEEE Internet Things J. 2021, 8, 16749–16757. [Google Scholar] [CrossRef]
- Lauer-Schmaltz, M.W.; Kerim, I.; Hansen, J.P.; Gulyás, G.M.; Andersen, H.B. Human Digital Twin-based interactive dashboards for informal caregivers of stroke patients. In Proceedings of the ACM International Conference Proceeding Series, 2023, Corfu, Greece, 5–7 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 215–221. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Gliozzo, J.; Petrini, A.; Valtolina, S. Human Digital Twin for Fitness Management. IEEE Access 2020, 8, 26637–26664. [Google Scholar] [CrossRef]
- Yu, H.; Huang, Z.; Liu, Q.; Carlucho, I.; Erden, M.S. Replication of Impedance Identification Experiments on a Reinforcement-Learning-Controlled Digital Twin of Human Elbows. arXiv 2024, arXiv:2402.02904. [Google Scholar]
- David, I.; Galasso, J.; Syriani, E. Inference of Simulation Models in Digital Twins by Reinforcement Learning. In Proceedings of the Companion Proceedings—24th International Conference on Model-Driven Engineering Languages and Systems, MODELS-C 2021, Fukuoka, Japan, 10–15 October 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 221–224. [Google Scholar] [CrossRef]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shi, Y.; Yi, C.; Du, H.; Kang, J.; Niyato, D. Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey. arXiv 2024, arXiv:2401.13699. [Google Scholar]
- Sultanpure, K.A.; Bagade, J.; Bangare, S.L.; Bangare, M.L.; Bamane, K.D.; Patankar, A.J. Internet of things and deep learning based digital twins for diagnosis of brain tumor by analyzing MRI images. Meas. Sens. 2024, 33, 101220. [Google Scholar] [CrossRef]
- Zheng, H. A wireless human pose detection method based on digital twin and inertial sensor. In Proceedings of the 2021 3rd International Academic Exchange Conference on Science and Technology Innovation, IAECST 2021, Guangzhou, China, 10–12 December 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 24–28. [Google Scholar] [CrossRef]
- Noei, V.; Lakany, H. Analysis of movement of an elbow joint with a wearable robotic exoskeleton Using OpenSim software. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Glasgow, Scotland, UK, 11–15 July 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022; Volume 2022, pp. 4342–4345. [Google Scholar] [CrossRef]
- Yu, F.; Chen, Z.; Jiang, M.; Tian, Z.; Peng, T.; Hu, X. Smart Clothing System With Multiple Sensors Based on Digital Twin Technology. IEEE Internet Things J. 2023, 10, 6377–6387. [Google Scholar] [CrossRef]
- George, A.; Bharat, C.R.; Singh, T.; Sahil, C.S. Digital Twin of a Musculoskeletal System. In Proceedings of the 2023 International Conference on Artificial Intelligence and Applications, ICAIA 2023 and Alliance Technology Conference, ATCON-1 2023—Proceeding, Bangalore, India, 21–22 April 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, C.L. Highly flexible, stretchable, durable conductive electrode for human-body-attachable wearable sensor application. Polym. Test. 2023, 122, 108018. [Google Scholar] [CrossRef]
- Murcia, N.; Mohafid, A.; Cardin, O. Non-intrusive musculoskeletal disorders risk assessment towards an integration in human operators’ Digital Twins. IFAC-PapersOnLine 2023, 56, 5667–5672. [Google Scholar] [CrossRef]
- Chen, J.; Yi, C.; Du, H.; Niyato, D.; Kang, J.; Cai, J.; Shen, X. A Revolution of Personalized Healthcare: Enabling Human Digital Twin with Mobile AIGC. arXiv 2023, arXiv:2307.12115. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pang, Z.; Deen, M.J. A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Diao, J.; Wang, D.; Jian, Z.; Wang, Y.; Jiang, Z. Digital-Twin-Based Patient Evaluation during Stroke Rehabilitation. In Proceedings of the ICCPS 2023—Proceedings of the 2023 ACM/IEEE 14th International Conference on Cyber-Physical Systems with CPS-IoT Week 2023, San Antonio, TX, USA, 9–12 May 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 22–33. [Google Scholar] [CrossRef]
- Lu, W.; Zeng, L.; Du, X.; Zhang, W.; Xiang, S.; Wang, H.; Wang, J.; Ji, M.; Hou, Y.; Wang, M.; et al. Digital Twin Brain: A simulation and assimilation platform for whole human brain. arXiv 2023, arXiv:2308.01241. [Google Scholar]
- Flanagan, K.; Saikia, M.J.; Saggio, G.; Flanagan, K.; Saikia, M.J. Consumer-Grade Electroencephalogram and Functional Near-Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing. Sensors 2023, 23, 8482. [Google Scholar] [CrossRef] [PubMed]
- Ferdousi, R.; Hossain, M.A.; El Saddik, A. IoT-enabled model for Digital Twin of Mental Stress (DTMS). In Proceedings of the 2021 IEEE Globecom Workshops, GC Wkshps 2021—Proceedings, Madrid, Spain, 7–11 December 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- De Oliveira, C.D.; Khanshan, A.; Van Gorp, P. Exploring the Feasibility of Data-Driven Emotion Modeling for Human Digital Twins. In Proceedings of the ACM International Conference Proceeding Series, 2023, Corfu, Greece, 5–7 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 568–573. [Google Scholar] [CrossRef]
- Vildjiounaite, E.; Kallio, J.; Kantorovitch, J.; Kinnula, A.; Ferreira, S.; Rodrigues, M.A.; Rocha, N. Challenges of learning human digital twin: Case study of mental wellbeing: Using sensor data and machine learning to create HDT. In Proceedings of the ACM International Conference Proceeding Series, 2023, Corfu, Greece, 5–7 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 574–583. [Google Scholar] [CrossRef]
- Bozkaya, E. A Digital Twin Framework for Edge Server Placement in Mobile Edge Computing. In Proceedings of the 4th International Informatics and Software Engineering Conference—Symposium Program, IISEC 2023, Ankara, Turkey, 21–22 December 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Xiang, H.; Wu, K.; Chen, J.; Yi, C.; Cai, J.; Niyato, D.; Shen, X. Edge Computing Empowered Tactile Internet for Human Digital Twin: Visions and Case Study. arXiv 2023, arXiv:2304.07454. [Google Scholar]
- Ahmed, I.; Ahmad, M.; Jeon, G. Integrating Digital Twins and Deep Learning for Medical Image Analysis in the era of COVID-19. Virtual Real. Intell. Hardw. 2022, 4, 292–305. [Google Scholar] [CrossRef]
- Kaashki, N.N.; Royen, R.; Dai, X.; Hu, P.; Munteanu, A. A Deep-Learning-Based Approach to Automatically Measuring Foots From a 3D Scan. In Proceedings of the IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE 2022, Gold Coast, Australia, 18–20 December 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Atashipour, S.R.; Baqersad, J. Mechanical characterization of human skin—A non-invasive digital twin approach using vibration-response integrated with numerical methods. Med. Eng. Phys. 2023, 121, 104058. [Google Scholar] [CrossRef]
- Xu, Q.; Kowalski, J. myCMIE: My cancer molecular information exchange. iScience 2023, 26, 107324. [Google Scholar] [CrossRef]
- Hamlabadi, K.G.; Vahdati, M.; Saghiri, A.M.; Forestiero, A. Digital Twins in cancer: State-of-the-art and open research. In Proceedings of the 2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2021, Washington, DC, USA, 16–17 December 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 199–204. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, C.; Yang, H.; Li, M.; Lu, L. The Data Domain Construction of Digital Twin Network. In Proceedings of the 2023 IEEE 3rd International Conference on Digital Twins and Parallel Intelligence, DTPI 2023, Orlando, FL, USA, 7–9 November 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Mahoro, D.F.; Ledoux, T.; Hassan, T.; Coupaye, T. Articulating Data and Control Planes for the Composition and Synchronization of Digital Twins. In Proceedings of the Midd4DT 2023—Proceedings of the 1st International Workshop on Middleware for Digital Twin, Part of: MIDDLEWARE 2023, Bologna Italy, 11–15 December 2023; Association for Computing Machinery, Inc.: New York, NY, USA, 2023; pp. 13–18. [Google Scholar] [CrossRef]
- Pascual, H.; Masip-Bruin, X.; Alonso, A.; Cerdá, J. A Systematic Review on Human Modeling: Digging into Human Digital Twin Implementations. arXiv 2023, arXiv:2302.03593. [Google Scholar]
- Demir, O.; Uslan, I.; Buyuk, M.; Salamci, M.U. Development and validation of a digital twin of the human lower jaw under impact loading by using non-linear finite element analyses. J. Mech. Behav. Biomed. Mater. 2023, 148, 106207. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, J.; Deng, Y.; Wang, C.; Snoussi, H.; Tao, F. Digital twin for human-machine interaction with convolutional neural network. Int. J. Comput. Integr. Manuf. 2021, 34, 888–897. [Google Scholar] [CrossRef]
- Wang, F.; Du, H. Quadrotor digital twin platform based on Unity. In Proceedings of the IEEE International Conference on Industrial Technology, Shanghai, China, 22–25 August 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022; Volume 2022. [Google Scholar] [CrossRef]
- Sengan, S.; Kumar, K.; Subramaniyaswamy, V.; Ravi, L. Cost-effective and efficient 3D human model creation and re-identification application for human digital twins. Multimed. Tools Appl. 2022, 81, 26839–26856. [Google Scholar] [CrossRef]
- Favela, L.H.; Amon, M.J. The ethics of human digital twins: Counterfeit people, personhood, and the right to privacy. In Proceedings of the 2023 IEEE 3rd International Conference on Digital Twins and Parallel Intelligence, DTPI 2023, Orlando, FL, USA, 7–9 November 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Manocha, A.; Afaq, Y.; Bhatia, M. Digital Twin-assisted Blockchain-inspired irregular event analysis for eldercare. Knowl. Based Syst. 2023, 260, 110138. [Google Scholar] [CrossRef]
- Lakhan, A.; Abdul Lateef, A.A.; Abd Ghani, M.K.; Abdulkareem, K.H.; Mohammed, M.A.; Nedoma, J.; Martinek, R.; Garcia-Zapirain, B. Secure-fault-tolerant efficient industrial internet of healthcare things framework based on digital twin federated fog-cloud networks. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 101747. [Google Scholar] [CrossRef]
- Adibi, S.; Rajabifard, A.; Shojaei, D.; Wickramasinghe, N. Enhancing Healthcare through Sensor-Enabled Digital Twins in Smart Environments: A Comprehensive Analysis. Sensors 2024, 24, 2793. (In English) [Google Scholar] [CrossRef] [PubMed]
- Scheuermann, C.; Binderberger, T.; Von Frankenberg, N.; Werner, A. Digital twin: A machine learning approach to predict individual stress levels in extreme environments. In Proceedings of the UbiComp/ISWC 2020 Adjunct—Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, 2020, Virtual Event, Mexico, 12–17 September 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 657–664. [Google Scholar] [CrossRef]
- Attaran, M.; Celik, B.G. Digital Twin: Benefits, use cases, challenges, and opportunities. Decis. Anal. J. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, L.; Wang, Y.; Yang, W.; Jiang, Z.; Wang, B.; Tao, F.; Li, Y. Human-centric collaborative assembly system for large-scale space deployable mechanism driven by Digital Twins and wearable AR devices. J. Manuf. Syst. 2022, 65, 720–742. [Google Scholar] [CrossRef]
- Montini, E.; Bettoni, A.; Ciavotta, M.; Carpanzano, E.; Pedrazzoli, P. A meta-model for modular composition of tailored human digital twins in production. Procedia CIRP 2021, 104, 689–695. [Google Scholar] [CrossRef]
- Löcklin, A.; Jung, T.; Jazdi, N.; Ruppert, T.; Weyrich, M. Architecture of a Human-Digital Twin as Common Interface for Operator 4.0 Applications. Procedia CIRP 2021, 104, 458–463. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, D.G.; Jimenez, J.A.; Lee, S.J.; Kim, J.W. Human-Focused Digital Twin Applications for Occupational Safety and Health in Workplaces: A Brief Survey and Research Directions. Appl. Sci. 2023, 13, 4598. [Google Scholar] [CrossRef]
- Yi, S.; Liu, S.; Xu, X.; Wang, X.V.; Yan, S.; Wang, L. A vision-based human-robot collaborative system for digital twin. Procedia CIRP 2022, 107, 552–557. [Google Scholar] [CrossRef]
- Yao, B.; Yang, B.; Xu, W.; Ji, Z.; Zhou, Z.; Wang, L. Virtual data generation for human intention prediction based on digital modeling of human-robot collaboration. Robot. Comput. Integr. Manuf. 2024, 87, 102714. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, Y.; Tang, D.; Chen, J.; Liu, C. Enabling collaborative assembly between humans and robots using a digital twin system. Robot. Comput. Integr. Manuf. 2024, 86, 102691. [Google Scholar] [CrossRef]
- Baratta, A.; Cimino, A.; Longo, F.; Nicoletti, L. Digital twin for human-robot collaboration enhancement in manufacturing systems: Literature review and direction for future developments. Comput. Ind. Eng. 2024, 187, 109764. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Wang, P.; Law, J.; Calinescu, R.; Mihaylova, L. A deep learning-enhanced Digital Twin framework for improving safety and reliability in human–robot collaborative manufacturing. Robot. Comput. Integr. Manuf. 2024, 85. [Google Scholar] [CrossRef]
- Mo, D.H.; Tien, C.L.; Yeh, Y.L.; Guo, Y.R.; Lin, C.S.; Chen, C.C.; Chang, C.M. Design of Digital-Twin Human-Machine Interface Sensor with Intelligent Finger Gesture Recognition. Sensors 2023, 23, 3509. [Google Scholar] [CrossRef]
- Van Erp, J.B.F. Cyber-Physical Humans at the Intersection of Digital Twins, Immersive Internet and Telepresence. In Proceedings of the Conference Proceedings—IEEE International Conference on Systems, Man and Cybernetics, Honolulu, HI, USA, 1–4 October 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023; pp. 1382–1386. [Google Scholar] [CrossRef]
Field | Content |
---|---|
Database | Google Scholar, IEEE Xplore Digital Library, Materials Science & Engineering Collection, ScienceDirect, ACM Digital Library, PubMed |
Key Terms | “Digital Twin”, “Human Digital Twin”, “Wearable Sensors”, “Digital Modelling”, “Human Digital Modelling”, “Digital Twin Healthcare” |
Year of Publication | 2018–2024 |
Ref | Objective | Wearable Used | Data Collected by Wearable | HDT Function |
---|---|---|---|---|
[8] | To utilize human digital twins to improve safety for workers in manufacturing systems | Inertial (MOCAP System) | Movement and position data from workers | Determine based on inertial data if a disturbance occurred in the workspace |
[33] | To develop an affordable and user-friendly wearable system to produce human digital twins | Inertial (9-axis motion tracking system) | Tracks movement and position | Generates a human digital twin capable of tracking the subject’s movements and produces a 3D virtual model |
[49] | To use ECG data to detect and predict heart conditions as they arise | ECG (through smart watches) | Heart rate to detect abnormalities such as arrhythmia | A digital twin was created based on ECG data that could identify and diagnose heart problems in real time for the patient |
[57] | To generate a human twin that can be used to detect certain poses of the subject | Inertial (9-axis motion tracking system) | Measures orientation to detect certain poses | Generates a 3D model of a human arm based on movement data gathered from an IMU system on the subject’s arm |
[58] | To utilize a wearable robotic exoskeleton to assist patients with arm movements during rehabilitation | EMG sensors within the robotic exoskeleton | Utilizes EMG sensors to measure muscle activity intent | Assists movements of the patient’s arm using a digital twin created from EMG data to detect muscle activation intent |
[59] | To develop a smart clothing system that utilizes a variety of smart sensors to produce a digital twin of the wearer | MAX30102, MAX90614, WTGAHRS2, ATK1218-BD | Measures heart rate, blood oxygen levels, body temperature, movement, and position | Generates a human digital twin based on the wearer’s data collected from the wearable sensors and provides audio feedback and changes the temperature of the clothing |
[44] | Review of novel wearables that have been used to generate digital twins | Various experimental IMU and EMG sensors | Measures movement and muscle activation | Digital twins created were able to measure the locomotion and position of the wearer based on movement from one part of the body |
[51] | Utilizes human digital twins to analyze the fitness parameters of athletes to evaluate and predict performance | Fitbit Charge HR (heart rate sensor) | Measures heart rate data to record exercises and sleep activity | Human digital twins were created based on the athlete’s fitness data gathered from their Fitbit and inputted data through MyFitnessPal to predict exercise outcomes and offer recommendations on improving performance |
[50] | To develop a user-friendly dashboard that can be used by informal caregivers to monitor the progress of stroke rehabilitation | sEMG (surface electromyography) | Measures muscle activation intent in the upper limb | Human digital twins were created based on sEMG that could monitor muscle activity in the upper limb during stroke rehabilitation |
[68] | To develop a digital twin that represents a subject’s stress level primarily based on wearable sensors, phone usage, and social media activity | Smart watch (heart rate sensor and exercise tracker) | Measures heart rate data to form a correlation with phone and social media data to detect anxiety levels | The generated human digital twin could identify mental health conditions as they develop in response to stressors caused by COVID-19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, Z.; Saikia, M.J. Digital Twins for Healthcare Using Wearables. Bioengineering 2024, 11, 606. https://doi.org/10.3390/bioengineering11060606
Johnson Z, Saikia MJ. Digital Twins for Healthcare Using Wearables. Bioengineering. 2024; 11(6):606. https://doi.org/10.3390/bioengineering11060606
Chicago/Turabian StyleJohnson, Zachary, and Manob Jyoti Saikia. 2024. "Digital Twins for Healthcare Using Wearables" Bioengineering 11, no. 6: 606. https://doi.org/10.3390/bioengineering11060606
APA StyleJohnson, Z., & Saikia, M. J. (2024). Digital Twins for Healthcare Using Wearables. Bioengineering, 11(6), 606. https://doi.org/10.3390/bioengineering11060606