Integrating OpenPose and SVM for Quantitative Postural Analysis in Young Adults: A Temporal-Spatial Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Ethics
2.2. Flow of Research
2.3. Participants
2.4. Experimental Design
2.5. Measurement of Joint Nodes through OpenPose-Based Deep Learning
2.6. Definition of the Control and Experimental Groups
2.7. Creating Temporal and Spatial Regression Models
2.8. Statistical Analysis and Performance Index
3. Results
4. Discussion
4.1. The Role of Dynamic Joint Nodes Plots (DJNP)
4.2. The Role of Temporal and Spatial Regression in Enhancing SVM Classification Accuracy
- (I)
- Temporal Features: These involve the timing and duration of specific gait phases, such as stride time and the time between strides, which are indicative of gait rhythm and speed.
- (II)
- Spatial Features: These encompass the distances and angles between joints during motion, providing insights into gait symmetry and balance.
- (1)
- Decision Trees: Useful for their simplicity and interpretability. However, they often suffer from overfitting when dealing with complex or noisy data, as is typical in gait analysis.
- (2)
- Random Forests: An ensemble method that addresses some of the overfitting issues of decision trees and provides better accuracy. Nonetheless, it can be computationally intensive, especially with large datasets.
- (3)
- Neural Networks: Particularly deep learning models, which are highly effective for large-scale and complex data sets. While powerful, they require substantial data for training to perform optimally and can be opaque in terms of interpretability.
4.3. Comparison with Existing Research on Walking Pattern Analysis
4.4. Literatures for Health Issues and Postural Control during Walking
4.5. Considerations and Limitations of Video-Based Gait Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadamus, A.; Błażkiewicz, M.; Kowalska, A.J.; Wydra, K.T.; Grabowicz, M.; Łukowicz, M.; Białoszewski, D.; Marczyński, W. Nonlinear and Linear Measures in the Differentiation of Postural Control in Patients after Total Hip or Knee Replacement and Healthy Controls. Diagnostics 2022, 12, 1595. [Google Scholar] [CrossRef]
- Sabashi, K.; Ishida, T.; Matsumoto, H.; Mikami, K.; Chiba, T.; Yamanaka, M.; Aoki, Y.; Tohyama, H. Dynamic postural control correlates with activities of daily living and quality of life in patients with knee osteoarthritis. BMC Musculoskelet. Disord. 2021, 22, 287. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Chen, T.-B.; Wang, C.-Y.; Hsu, S.-Y.; Liu, C.-H. Detection of Postural Control in Young and Elderly Adults Using Deep and Machine Learning Methods with Joint–Node Plots. Sensors 2021, 21, 3212. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Lee, P.; Chen, Y.-L.; Yen, C.-W.; Yu, C.-W. Study of Postural Stability Features by Using Kinect Depth Sensors to Assess Body Joint Coordination Patterns. Sensors 2020, 20, 1291. [Google Scholar] [CrossRef] [PubMed]
- Azhand, A.; Rabe, S.; Müller, S.; Sattler, L.; Heimann-Steinert, A. Algorithm based on one monocular video delivers highly valid and reliable gait parameters. Sci. Rep. 2021, 11, 14065. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, A.S.; Yunas, S.U.; Ozanyan, K.B. Deep Learning for Monitoring of Human Gait: A Review. IEEE Sens. J. 2019, 19, 9575–9591. [Google Scholar] [CrossRef]
- Kidziński, Ł.; Yang, B.; Hicks, J.L.; Rajagopal, A.; Delp, S.L.; Schwartz, M.H. Deep neural networks enable quantitative movement analysis using single-camera videos. Nat. Commun. 2020, 11, 4054. [Google Scholar] [CrossRef]
- Sikandar, T.; Rabbi, M.F.; Ghazali, K.H.; Altwijri, O.; Alqahtani, M.; Almijalli, M.; Altayyar, S.; Ahamed, N.U. Using a Deep Learning Method and Data from Two-Dimensional (2D) Marker-Less Video-Based Images for Walking Speed Classification. Sensors 2021, 21, 2836. [Google Scholar] [CrossRef]
- Keadle, S.K.; Eglowski, S.; Ylarregui, K.; Strath, S.J.; Martinez, J.; Dekhtyar, A.; Kagan, V. Using Computer Vision to Annotate Video-Recoded Direct Observation of Physical Behavior. Sensors 2024, 24, 2359. [Google Scholar] [CrossRef] [PubMed]
- Peres, A.B.; Sancassani, A.; Castro, E.A.; Almeida, T.A.F.; Massini, D.A.; Macedo, A.G.; Espada, M.C.; Hernández-Beltrán, V.; Gamonales, J.M.; Pessôa Filho, D.M. Comparing Video Analysis to Computerized Detection of Limb Position for the Diagnosis of Movement Control during Back Squat Exercise with Overload. Sensors 2024, 24, 1910. [Google Scholar] [CrossRef]
- Hagihara, H.; Ienaga, N.; Enomoto, D.; Takahata, S.; Ishihara, H.; Noda, H.; Tsuda, K.; Terayama, K. Computer vision-based approach for quantifying occupational therapists’ qualitative evaluations of postural control. Occup. Ther. Int. 2020, 2020, 8542191. [Google Scholar] [CrossRef]
- Lee, P.; Chen, T.-B.; Liu, C.-H.; Wang, C.-Y.; Huang, G.-H.; Lu, N.-H. Identifying the Posture of Young Adults in Walking Videos by Using a Fusion Artificial Intelligent Method. Biosensors 2022, 12, 295. [Google Scholar] [CrossRef] [PubMed]
- Borzì, L.; Olmo, G.; Artusi, C.A.; Fabbri, M.; Rizzone, M.G.; Romagnolo, A.; Zibetti, M.; Lopiano, L. A new index to assess turning quality and postural stability in patients with Parkinson’s disease. Biomed. Signal Process. Control 2020, 62, 102059. [Google Scholar] [CrossRef]
- Borzì, L.; Fornara, S.; Amato, F.; Olmo, G.; Artusi, C.A.; Lopiano, L. Smartphone-Based Evaluation of Postural Stability in Parkinson’s Disease Patients During Quiet Stance. Electronics 2020, 9, 919. [Google Scholar] [CrossRef]
- Chu, Z.; Wang, W.; Wang, D. Improved SVM algorithm for upper limb rehabilitation mechanical arm Study on the Prediction of Track Tracking Control. J. Phys. Conf. Ser. 2020, 1486, 072003. [Google Scholar] [CrossRef]
- Tay, C.Z.; Lim, K.H.; Phang, J.T.S. Markerless gait estimation and tracking for postural assessment. Multimed. Tools Appl. 2022, 81, 12777–12794. [Google Scholar] [CrossRef]
- Pradhan, A.; Chester, V.; Padhiar, K. Classification of Autism and Control Gait in Children Using Multisegment Foot Kinematic Features. Bioengineering 2022, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.; Aggarwal, R.; Vitekar, S.S.; Katao, S.; Boruah, L.; Ito, S.; Kanagaraj, S. Framework for early detection and classification of balance pathologies using posturography and anthropometric variables. Clin. Biomech. 2024, 113, 106214. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.; Morris, R.; LaPointe, L.L.; Stierwalt, J.A.G. Spatial-Temporal Parameters of Gait Associated with Alzheimer Disease: A Longitudinal Analysis. J. Geriatr. Psychiatry Neurol. 2021, 34, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Finco, M.G.; Moudy, S.C.; Patterson, R.M. Normalized Kinematic Walking Symmetry Data for Individuals Who Use Lower-Limb Prostheses: Considerations for Clinical Practice and Future Research. J. Prosthet. Orthot. 2023, 35, e1–e17. [Google Scholar] [CrossRef] [PubMed]
- Ienaga, N.; Takahata, S.; Terayama, K.; Enomoto, D.; Ishihara, H.; Noda, H.; Hagihara, H. Development and Verification of Postural Control Assessment Using Deep-Learning-Based Pose Estimators: Towards Clinical Applications. Occup. Ther. Int. 2022, 2022, 6952999. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Karimi, H.A. Weighted machine learning for spatial-temporal data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3066–3082. [Google Scholar] [CrossRef]
- Prastuti, M.; Aridinanti, L.; Dwiningtyas, W.P. Spatio-Temporal models with intervention effect for modelling the impact of COVID-19 on the tourism sector in Indonesia. J. Phys. Conf. Ser. 2021, 1821, 012044. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Zhang, Z. Research progress of spatio-temporal interpolation in the field of public health. J. Phys. Conf. Ser. 2021, 1802, 042060. [Google Scholar] [CrossRef]
- Stenum, J.; Rossi, C.; Roemmich, R.T. Two-dimensional video-based analysis of human gait using pose estimation. PLoS Comput. Biol. 2021, 17, e1008935. [Google Scholar] [CrossRef] [PubMed]
- Stenum, J.; Hsu, M.M.; Pantelyat, A.Y.; Roemmich, R.T. Clinical gait analysis using video-based pose estimation: Multiple perspectives, clinical populations, and measuring change. PLoS Digital Health 2024, 3, e0000467. [Google Scholar] [CrossRef] [PubMed]
- Viswakumar, A.; Rajagopalan, V.; Ray, T.; Gottipati, P.; Parimi, C. Development of a robust, simple, and affordable human gait analysis system using bottom-up pose estimation with a smartphone camera. Front. Physiol. 2022, 12, 784865. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, C.; Hu, J.; Sayeed, Z.; Qi, J.; Darwiche, H.F.; Little, B.E.; Lou, S.; Darwish, M.; Foote, C.; et al. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction. Sensors 2022, 22, 7960. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S. Does Spasticity Affect the Postural Stability and Quality of Life of Children with Cerebral Palsy? J. Taibah Univ. Med. Sci. 2021, 16, 761–766. [Google Scholar] [CrossRef]
- Park, E.Y. Path Analysis of Strength, Spasticity, Gross Motor Function, and Health-Related Quality of Life in Children with Spastic Cerebral Palsy. Health Qual. Life Outcomes 2018, 16, 70. [Google Scholar] [CrossRef] [PubMed]
- Roh, H.; Shin, S.; Han, J.; Lim, S. A Deep Learning-Based Medication Behavior Monitoring System. Math. Biosci. Eng. 2021, 18, 1513–1528. [Google Scholar] [CrossRef] [PubMed]
- Manogaran, G.; Shakeel, P.M.; Fouad, H.; Nam, Y.; Baskar, S.; Chilamkurti, N.; Sundarasekar, R. Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System. Sensors 2019, 19, 3030. [Google Scholar] [CrossRef] [PubMed]
- Park, K.W.; Lee, E.J.; Lee, J.S.; Jeong, J.; Choi, N.; Jo, S.; Jung, M.; Do, J.Y.; Kang, D.W.; Lee, J.G.; et al. Machine Learning-Based Automatic Rating for Cardinal Symptoms of Parkinson Disease. Neurology 2021, 96, e1761–e1769. [Google Scholar] [CrossRef] [PubMed]
- Heldman, D.A.; Espay, A.J.; LeWitt, P.A.; Giuffrida, J.P. Clinician versus Machine: Reliability and Responsiveness of Motor Endpoints in Parkinson’s Disease. Park. Relat. Disord. 2014, 20, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.-C.; Ngo, H.-H.; Dow, C.-R.; Lam, K.-H.; Le, H.L. Student Behavior Recognition System for the Classroom Environment Based on Skeleton Pose Estimation and Person Detection. Sensors 2021, 21, 5314. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, S.; Nabavi, H.; Sabo, A.; Arora, T.; Iaboni, A.; Taati, B. Concurrent Validity of Human Pose Tracking in Video for Measuring Gait Parameters in Older Adults: A Preliminary Analysis with Multiple Trackers, Viewing Angles, and Walking Directions. J. Neuroeng. Rehabil. 2021, 18, 139. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Tateuchi, H.; Hashiguchi, T.; Ichihashi, N. Verification of Validity of Gait Analysis Systems During Treadmill Walking and Running Using Human Pose Tracking Algorithm. Gait Posture 2021, 85, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Rapczyński, M.; Werner, P.; Handrich, S.; Al-Hamadi, A. A Baseline for Cross-Database 3D Human Pose Estimation. Sensors 2021, 21, 3769. [Google Scholar] [CrossRef] [PubMed]
- Pagnon, D.; Domalain, M.; Reveret, L. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 1: Robustness. Sensors 2021, 21, 6530. [Google Scholar] [CrossRef]
- Sato, K.; Nagashima, Y.; Mano, T.; Iwata, A.; Toda, T. Quantifying Normal and Parkinsonian Gait Features from Home Movies: Practical Application of a Deep Learning-Based 2D Pose Estimator. PLoS ONE 2019, 14, e0223549. [Google Scholar] [CrossRef] [PubMed]
- Rupprechter, S.; Morinan, G.; Peng, Y.; Foltynie, T.; Sibley, K.; Weil, R.S.; Leyland, L.-A.; Baig, F.; Morgante, F.; Gilron, R.; et al. A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease. Sensors 2021, 21, 5437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, Y.; Wu, P.; Chen, D. Application of Skeleton Data and Long Short-Term Memory in Action Recognition of Children with Autism Spectrum Disorder. Sensors 2021, 21, 411. [Google Scholar] [CrossRef]
- Takeda, I.; Yamada, A.; Onodera, H. Artificial Intelligence-Assisted Motion Capture for Medical Applications: A Comparative Study Between Markerless and Passive Marker Motion Capture. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Orendurff, M.S.; Hunt, G.; Gao, F.; LeCursi, N.; Lincoln, L.S.; Foreman, K.B. The Effects of an Articulated Ankle-Foot Orthosis with Resistance-Adjustable Joints on Lower Limb Joint Kinematics and Kinetics during Gait in Individuals Post-Stroke. Clin. Biomech. 2018, 59, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Mentiplay, B.F.; Hough, E.; Pua, Y.H. Three-Dimensional Cameras and Skeleton Pose Tracking for Physical Function Assessment: A Review of Uses, Validity, Current Developments and Kinect Alternatives. Gait Posture 2019, 68, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.A.; Owolabi, V.; Gebel, A.; Brahms, C.M.; Granacher, U.; Arnrich, B. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study. Sensors 2020, 20, 5104. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, C.; Cimolin, V.; Vismara, L.; Votta, V.; Amprimo, G.; Cremascoli, R.; Galli, M.; Nerino, R.; Mauro, A.; Priano, L. Monitoring of Gait Parameters in Post-Stroke Individuals: A Feasibility Study Using RGB-D Sensors. Sensors 2021, 21, 5945. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Yang, Q.; Huang, Z. A Two-Stage Fall Recognition Algorithm Based on Human Posture Features. Sensors 2020, 20, 6966. [Google Scholar] [CrossRef] [PubMed]
Feature | Group | N | Mean | STD | Kruskal–Wallis Test |
---|---|---|---|---|---|
TAR | Strait | 85 | 0.952 | 0.147 | <0.01 |
Skew to Left | 36 | 1.121 | 0.196 | ||
Skew to Right | 89 | 0.847 | 0.175 | ||
BAR | Strait | 85 | 0.965 | 0.122 | <0.01 |
Skew to Left | 36 | 1.057 | 0.105 | ||
Skew to Right | 89 | 0.918 | 0.101 | ||
Velocity (m/s) | Strait | 85 | 0.676 | 0.072 | 0.882 |
Skew to Left | 36 | 0.684 | 0.085 | ||
Skew to Right | 89 | 0.694 | 0.079 |
Group | TAR | BAR |
---|---|---|
Skew to Left | <0.867 | <0.929 |
Strait | 0.867–1.041 | 0.929–1.049 |
Skew to Right | >1.041 | >1.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.; Chen, T.-B.; Lin, H.-Y.; Yeh, L.-R.; Liu, C.-H.; Chen, Y.-L. Integrating OpenPose and SVM for Quantitative Postural Analysis in Young Adults: A Temporal-Spatial Approach. Bioengineering 2024, 11, 548. https://doi.org/10.3390/bioengineering11060548
Lee P, Chen T-B, Lin H-Y, Yeh L-R, Liu C-H, Chen Y-L. Integrating OpenPose and SVM for Quantitative Postural Analysis in Young Adults: A Temporal-Spatial Approach. Bioengineering. 2024; 11(6):548. https://doi.org/10.3390/bioengineering11060548
Chicago/Turabian StyleLee, Posen, Tai-Been Chen, Hung-Yu Lin, Li-Ren Yeh, Chin-Hsuan Liu, and Yen-Lin Chen. 2024. "Integrating OpenPose and SVM for Quantitative Postural Analysis in Young Adults: A Temporal-Spatial Approach" Bioengineering 11, no. 6: 548. https://doi.org/10.3390/bioengineering11060548
APA StyleLee, P., Chen, T. -B., Lin, H. -Y., Yeh, L. -R., Liu, C. -H., & Chen, Y. -L. (2024). Integrating OpenPose and SVM for Quantitative Postural Analysis in Young Adults: A Temporal-Spatial Approach. Bioengineering, 11(6), 548. https://doi.org/10.3390/bioengineering11060548