The Role of Artificial Intelligence in the Identification and Evaluation of Bone Fractures
Abstract
:1. Introduction
2. Methods
3. Performance Metrics
4. Ankle Fractures
5. Wrist Fractures
6. Hip Fractures
7. Rib Fractures
8. Commercial Availability
9. Discussion
9.1. Limitations
9.2. Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, A.-M.; Bisignano, C.; James, S.L.; Abady, G.G.; Abedi, A.; Abu-Gharbieh, E.; Alhassan, R.K.; Alipour, V.; Arabloo, J.; Asaad, M.; et al. Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021, 2, e580–e592. [Google Scholar] [CrossRef] [PubMed]
- Blume, S.W.; Curtis, J.R. Medical Costs of Osteoporosis in the Elderly Medicare Population. Osteoporos. Int. 2011, 22, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M.; Ortendahl, J.D.; Vanderpuye-Orgle, J.; Grauer, A.; Arellano, J.; Lemay, J.; Harmon, A.L.; Broder, M.S.; Singer, A.J. Healthcare Policy Changes in Osteoporosis Can Improve Outcomes and Reduce Costs in the United States. JBMR Plus 2019, 3, e10192. [Google Scholar] [CrossRef]
- Guly, H. Diagnostic Errors in an Accident and Emergency Department. Emerg. Med. J. 2001, 18, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Cooper, A.; Carson-Stevens, A.; Donaldson, L.; Hibbert, P.; Hughes, T.; Edwards, A. Diagnostic Error in the Emergency Department: Learning from National Patient Safety Incident Report Analysis. BMC Emerg. Med. 2019, 19, 77. [Google Scholar] [CrossRef]
- Brennan, T.A.; Leape, L.L.; Laird, N.M.; Hebert, L.; Localio, A.R.; Lawthers, A.G.; Newhouse, J.P.; Weiler, P.C.; Hiatt, H.H. Incidence of Adverse Events and Negligence in Hospitalized Patients. N. Engl. J. Med. 1991, 324, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; MacKinnon, T. Artificial Intelligence in Fracture Detection: Transfer Learning from Deep Convolutional Neural Networks. Clin. Radiol. 2018, 73, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Dan Lantsman, C.; Barash, Y.; Klang, E.; Guranda, L.; Konen, E.; Tau, N. Trend in Radiologist Workload Compared to Number of Admissions in the Emergency Department. Eur. J. Radiol. 2022, 149, 110195. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, D.J.; Parker, L.; Zoga, A.M.; Levin, D.C. National Trends in the Utilization of Skeletal Radiography From 2003 to 2015. J. Am. Coll. Radiol. 2018, 15, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Hallas, P.; Ellingsen, T. Errors in Fracture Diagnoses in the Emergency Department—Characteristics of Patients and Diurnal Variation. BMC Emerg. Med. 2006, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, R.; Daluiski, A.; Chopra, S.; Lachapelle, A.; Mozer, M.; Sicular, S.; Hanel, D.; Gardner, M.; Gupta, A.; Hotchkiss, R.; et al. Deep Neural Network Improves Fracture Detection by Clinicians. Proc. Natl. Acad. Sci. USA 2018, 115, 11591–11596. [Google Scholar] [CrossRef] [PubMed]
- Hržić, F.; Tschauner, S.; Sorantin, E.; Štajduhar, I. Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach. Mathematics 2022, 10, 2939. [Google Scholar] [CrossRef]
- Hendrix, N.; Scholten, E.; Vernhout, B.; Bruijnen, S.; Maresch, B.; de Jong, M.; Diepstraten, S.; Bollen, S.; Schalekamp, S.; de Rooij, M.; et al. Development and Validation of a Convolutional Neural Network for Automated Detection of Scaphoid Fractures on Conventional Radiographs. Radiol. Artif. Intell. 2021, 3, e200260. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.; Han, S.S.; Lee, J.W.; Oh, K.-S.; Kim, N.R.; Yoon, J.P.; Kim, J.Y.; Moon, S.H.; Kwon, J.; Lee, H.-J.; et al. Automated Detection and Classification of the Proximal Humerus Fracture by Using Deep Learning Algorithm. Acta Orthop. 2018, 89, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Mawatari, T.; Hayashida, Y.; Katsuragawa, S.; Yoshimatsu, Y.; Hamamura, T.; Anai, K.; Ueno, M.; Yamaga, S.; Ueda, I.; Terasawa, T.; et al. The Effect of Deep Convolutional Neural Networks on Radiologists’ Performance in the Detection of Hip Fractures on Digital Pelvic Radiographs. Eur. J. Radiol. 2020, 130, 109188. [Google Scholar] [CrossRef] [PubMed]
- Urakawa, T.; Tanaka, Y.; Goto, S.; Matsuzawa, H.; Watanabe, K.; Endo, N. Detecting Intertrochanteric Hip Fractures with Orthopedist-Level Accuracy Using a Deep Convolutional Neural Network. Skelet. Radiol. 2019, 48, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Olczak, J.; Fahlberg, N.; Maki, A.; Razavian, A.S.; Jilert, A.; Stark, A.; Sköldenberg, O.; Gordon, M. Artificial Intelligence for Analyzing Orthopedic Trauma Radiographs. Acta Orthop. 2017, 88, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Cheung, Y.Y.; Hassanpour, S. Deep Neural Networks for Automatic Detection of Osteoporotic Vertebral Fractures on CT Scans. Comput. Biol. Med. 2018, 98, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca, L.L.; Nunes, I.G.; Nogueira, R.R.; Martins, G.E.V.; Mesencio, A.C.; Kobata, S.I. Reproducibility of the Lauge-Hansen, Danis-Weber, and AO Classifications for Ankle Fractures. Rev. Bras. Ortop. 2017, 53, 101–106. [Google Scholar] [CrossRef]
- Budny, A.M.; Young, B.A. Analysis of Radiographic Classifications for Rotational Ankle Fractures. Clin. Podiatr. Med. Surg. 2008, 25, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Yip, G.; Hay, D.; Stringfellow, T.; Ahluwalia, A.; Ahluwalia, R. Assessment and Management of Adult Ankle Fractures: Understanding the Evidence. Br. J. Hosp. Med. 2021, 82, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moonen, P.-J.; Mercelina, L.; Boer, W.; Fret, T. Diagnostic Error in the Emergency Department: Follow up of Patients with Minor Trauma in the Outpatient Clinic. Scand. J. Trauma. Resusc. Emerg. Med. 2017, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Huysse, W.; Burssens, A.; Peiffer, M.; Cornelis, B.; Stufkens, S.A.S.; Kerkhoffs, G.M.M.J.; Buedts, K.; Audenaert, E.A. Morphometric Analysis of the Incisura Fibularis in Patients with Unstable High Ankle Sprains. Skelet. Radiol. 2021, 50, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Valderrabano, V.; Horisberger, M.; Russell, I.; Dougall, H.; Hintermann, B. Etiology of Ankle Osteoarthritis. Clin. Orthop. Relat. Res. 2009, 467, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Delco, M.L.; Kennedy, J.G.; Bonassar, L.J.; Fortier, L.A. Post-Traumatic Osteoarthritis of the Ankle: A Distinct Clinical Entity Requiring New Research Approaches. J. Orthop. Res. 2017, 35, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Ashkani-Esfahani, S.; Mojahed Yazdi, R.; Bhimani, R.; Kerkhoffs, G.M.; Maas, M.; DiGiovanni, C.W.; Lubberts, B.; Guss, D. Detection of Ankle Fractures Using Deep Learning Algorithms. Foot Ankle Surg. 2022, 28, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Gale, W.; Oakden-Rayner, L.; Carneiro, G.; Bradley, A.P.; Palmer, L.J. Detecting Hip Fractures with Radiologist-Level Performance Using Deep Neural Networks 2017. arXiv 2017, arXiv:1711.06504. [Google Scholar]
- Cao, Y.; Wang, H.; Moradi, M.; Prasanna, P.; Syeda-Mahmood, T.F. Fracture Detection in X-Ray Images through Stacked Random Forests Feature Fusion. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn, NY, USA, 16–19 April 2015; pp. 801–805. [Google Scholar]
- Kitamura, G.; Chung, C.Y.; Moore, B.E. Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble Implemented with a Small Sample, De Novo Training, and Multiview Incorporation. J. Digit. Imaging 2019, 32, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Hedström, E.M.; Svensson, O.; Bergström, U.; Michno, P. Epidemiology of Fractures in Children and Adolescents. Acta Orthop. 2010, 81, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Rhemrev, S.J.; Ootes, D.; Beeres, F.J.; Meylaerts, S.A.; Schipper, I.B. Current Methods of Diagnosis and Treatment of Scaphoid Fractures. Int. J. Emerg. Med. 2011, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, S.P.; Adams, J.E. Scaphoid Fractures and Nonunions: Diagnosis and Treatment. J. Orthop. Sci. 2006, 11, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Roolker, W.; Maas, M.; Broekhuizen, A.H. Diagnosis and Treatment of Scaphoid Fractures, Can Non-Union Be Prevented? Arch. Orth. Traum. Surg. 1999, 119, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Prosser, G.H.; Isbister, E.S. The Presentation of Scaphoid Non-Union. Injury 2003, 34, 65–67. [Google Scholar] [CrossRef] [PubMed]
- De Zwart, A.D.; Beeres, F.J.P.; Rhemrev, S.J.; Bartlema, K.; Schipper, I.B. Comparison of MRI, CT and Bone Scintigraphy for Suspected Scaphoid Fractures. Eur. J. Trauma. Emerg. Surg. 2016, 42, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Buul, M.T.; van Beek, E.; Broekhuizen, A.H.; Bakker, A.J.; Bos, K.E.; van Royen, E. Radiography and Scintigraphy of Suspected Scaphoid Fracture. A Long-Term Study in 160 Patients. J. Bone Jt. Surg. Br. Vol. 1993, 75-B, 61–65. [Google Scholar] [CrossRef]
- Gibney, B.; Smith, M.; Moughty, A.; Kavanagh, E.C.; Hynes, D.; MacMahon, P.J. Incorporating Cone-Beam CT Into the Diagnostic Algorithm for Suspected Radiocarpal Fractures: A New Standard of Care? Am. J. Roentgenol. 2019, 213, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Langerhuizen, D.W.G.; Bulstra, A.E.J.; Janssen, S.J.; Ring, D.; Kerkhoffs, G.M.M.J.; Jaarsma, R.L.; Doornberg, J.N. Is Deep Learning on Par with Human Observers for Detection of Radiographically Visible and Occult Fractures of the Scaphoid? Clin. Orthop. Relat. Res. 2020, 478, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, N.; Hendrix, W.; van Dijke, K.; Maresch, B.; Maas, M.; Bollen, S.; Scholtens, A.; de Jonge, M.; Ong, L.-L.S.; van Ginneken, B.; et al. Musculoskeletal Radiologist-Level Performance by Using Deep Learning for Detection of Scaphoid Fractures on Conventional Multi-View Radiographs of Hand and Wrist. Eur. Radiol. 2023, 33, 1575–1588. [Google Scholar] [CrossRef] [PubMed]
- Hardalaç, F.; Uysal, F.; Peker, O.; Çiçeklidağ, M.; Tolunay, T.; Tokgöz, N.; Kutbay, U.; Demirciler, B.; Mert, F. Fracture Detection in Wrist X-Ray Images Using Deep Learning-Based Object Detection Models. Sensors 2022, 22, 1285. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. ISBN 978-3-319-10601-4. [Google Scholar]
- Wang, J.; Zhang, W.; Cao, Y.; Chen, K.; Pang, J.; Gong, T.; Shi, J.; Loy, C.C.; Lin, D. Side-Aware Boundary Localization for More Precise Object Detection. In Computer Vision—ECCV 20142020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12349, pp. 403–419. ISBN 978-3-030-58547-1. [Google Scholar]
- Xu, J.; Pan, Y.; Pan, X.; Hoi, S.; Yi, Z.; Xu, Z. RegNet: Self-Regulated Network for Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 9562–9567. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, H.S. Probabilistic Anchor Assignment with IoU Prediction for Object Detection. In Computer Vision—ECCV ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12370, pp. 355–371. ISBN 978-3-030-58594-5. [Google Scholar]
- Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra R-CNN: Towards Balanced Learning for Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 821–830. [Google Scholar]
- Zhu, C.; He, Y.; Savvides, M. Feature Selective Anchor-Free Module for Single-Shot Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 840–849. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chang, H.; Ma, B.; Wang, N.; Chen, X. Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12360, pp. 260–275. ISBN 978-3-030-58554-9. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection 2020. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Zhong, S.; Li, K.; Feng, R. Deep Convolutional Hamming Ranking Network for Large Scale Image Retrieval. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 1018–1023. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2261–2269. [Google Scholar]
- Kanis, J.A.; Odén, A.; McCloskey, E.V.; Johansson, H.; Wahl, D.A.; Cooper, C. on behalf of the IOF Working Group on Epidemiology and Quality of Life. A Systematic Review of Hip Fracture Incidence and Probability of Fracture Worldwide. Osteoporos. Int. 2012, 23, 2239–2256. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.D.; Miller, R.R. Falls: Epidemiology, Pathophysiology, and Relationship to Fracture. Curr. Osteoporos. Rep. 2008, 6, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, P.F.; Gould, E.S.; Lyden, J.P.; Asnis, S.E. Diagnosis of Occult Fractures about the Hip. Magnetic Resonance Imaging Compared with Bone-Scanning. JBJS 1993, 75, 395. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.; Clement, R.G.E.; Perks, F.; White, T.O. Imaging of Occult Hip Fractures: CT or MRI? Injury 2016, 47, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Lex, J.R.; Di Michele, J.; Koucheki, R.; Pincus, D.; Whyne, C.; Ravi, B. Artificial Intelligence for Hip Fracture Detection and Outcome Prediction: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2023, 6, e233391. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, G. Deep Learning Evaluation of Pelvic Radiographs for Position, Hardware Presence, and Fracture Detection. Eur. J. Radiol. 2020, 130, 109139. [Google Scholar] [CrossRef] [PubMed]
- Krogue, J.D.; Cheng, K.V.; Hwang, K.M.; Toogood, P.; Meinberg, E.G.; Geiger, E.J.; Zaid, M.; McGill, K.C.; Patel, R.; Sohn, J.H.; et al. Automatic Hip Fracture Identification and Functional Subclassification with Deep Learning 2019. Adiology Artif. Intell. 2020, 2, e190023. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–9. [Google Scholar]
- Cheng, C.-T.; Wang, Y.; Chen, H.-W.; Hsiao, P.-M.; Yeh, C.-N.; Hsieh, C.-H.; Miao, S.; Xiao, J.; Liao, C.-H.; Lu, L. A Scalable Physician-Level Deep Learning Algorithm Detects Universal Trauma on Pelvic Radiographs. Nat. Commun. 2021, 12, 1066. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.W.; Agarwal, N.N. The morbidity and mortality of rib fractures. J. Trauma. Acute Care Surg. 1994, 37, 975. [Google Scholar] [CrossRef] [PubMed]
- Talbot, B.S.; Gange, C.P.; Chaturvedi, A.; Klionsky, N.; Hobbs, S.K.; Chaturvedi, A. Traumatic Rib Injury: Patterns, Imaging Pitfalls, Complications, and Treatment. RadioGraphics 2017, 37, 628–651. [Google Scholar] [CrossRef] [PubMed]
- Barnea, Y.; Kashtan, H.; Skornick, Y.; Werbin, N. Isolated Rib Fractures in Elderly Patients: Mortality and Morbidity. Can. J. Surg. 2002, 45, 43–46. [Google Scholar] [PubMed]
- Traub, M.; Stevenson, M.; McEvoy, S.; Briggs, G.; Lo, S.K.; Leibman, S.; Joseph, T. The Use of Chest Computed Tomography versus Chest X-Ray in Patients with Major Blunt Trauma. Injury 2007, 38, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Banaste, N.; Caurier, B.; Bratan, F.; Bergerot, J.-F.; Thomson, V.; Millet, I. Whole-Body CT in Patients with Multiple Traumas: Factors Leading to Missed Injury. Radiology 2018, 289, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Sung, Y.M.; Kim, M.S. Missed Rib Fractures on Evaluation of Initial Chest CT for Trauma Patients: Pattern Analysis and Diagnostic Value of Coronal Multiplanar Reconstruction Images with Multidetector Row CT. BJR 2012, 85, e845–e850. [Google Scholar] [CrossRef] [PubMed]
- Ringl, H.; Lazar, M.; Töpker, M.; Woitek, R.; Prosch, H.; Asenbaum, U.; Balassy, C.; Toth, D.; Weber, M.; Hajdu, S.; et al. The Ribs Unfolded—A CT Visualization Algorithm for Fast Detection of Rib Fractures: Effect on Sensitivity and Specificity in Trauma Patients. Eur. Radiol. 2015, 25, 1865–1874. [Google Scholar] [CrossRef]
- Jin, L.; Yang, J.; Kuang, K.; Ni, B.; Gao, Y.; Sun, Y.; Gao, P.; Ma, W.; Tan, M.; Kang, H.; et al. Deep-Learning-Assisted Detection and Segmentation of Rib Fractures from CT Scans: Development and Validation of FracNet. EBioMedicine 2020, 62, 103106. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3431–3440. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar]
- Zhang, B.; Jia, C.; Wu, R.; Lv, B.; Li, B.; Li, F.; Du, G.; Sun, Z.; Li, X. Improving Rib Fracture Detection Accuracy and Reading Efficiency with Deep Learning-Based Detection Software: A Clinical Evaluation. Br. J. Radiol. 2021, 94, 20200870. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Guan, X.; Song, X.; Tan, Y.; Wang, C.; Jin, C.; Chen, M.; Wang, H.; Zhang, M. Rib Fracture Detection System Based on Deep Learning. Sci. Rep. 2021, 11, 23513. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement 2018. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Gao, Y.; Liu, H.; Jiang, L.; Yang, C.; Yin, X.; Coatrieux, J.-L.; Chen, Y. CCE-Net: A Rib Fracture Diagnosis Network Based on Contralateral, Contextual, and Edge Enhanced Modules. Biomed. Signal Process. Control 2022, 75, 103620. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Brosch, T.; Saalbach, A. Foveal Fully Convolutional Nets for Multi-Organ Segmentation. In Proceedings of the Medical Imaging 2018: Image Processing; SPIE: Bellingham, WA, USA, 2018; Volume 10574, pp. 198–206. [Google Scholar]
- U.S. Food & Drug Administration. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices (accessed on 18 February 2024).
- U.S. FDA Center for Devices and Radiological Health. Evaluation of Automatic Class III Designation for OsteoDetect: Decision Summary. Available online: https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180005.pdf (accessed on 20 January 2024).
- U.S. FDA Center for Devices and Radiological Health. K193417 FractureDetect (FX) Approval Letter. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193417.pdf (accessed on 27 January 2024).
- U.S. FDA Center for Devices and Radiological Health. K193271 uAI EasyTriage-Rib Approval Letter. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf19/K193271.pdf (accessed on 27 January 2024).
- U.S. FDA Center for Devices and Radiological Health. K202992 BriefCase for RibFx Triage Approval Letter. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf20/K202992.pdf (accessed on 18 February 2024).
- U.S. FDA Center for Devices and Radiological Health. K212365 BoneView Approval Letter. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf21/K212365.pdf (accessed on 27 January 2024).
- Guermazi, A.; Tannoury, C.; Kompel, A.J.; Murakami, A.M.; Ducarouge, A.; Gillibert, A.; Li, X.; Tournier, A.; Lahoud, Y.; Jarraya, M.; et al. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology 2022, 302, 627–636. [Google Scholar] [CrossRef]
- U.S. FDA Center for Devices and Radiological Health. K220164 Rayvolve Approval Letter. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf22/K220164.pdf (accessed on 28 January 2024).
- Oppenheimer, J.; Lüken, S.; Hamm, B.; Niehues, S.M. A Prospective Approach to Integration of AI Fracture Detection Software in Radiographs into Clinical Workflow. Life 2023, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Bousson, V.; Attané, G.; Benoist, N.; Perronne, L.; Diallo, A.; Hadid-Beurrier, L.; Martin, E.; Hamzi, L.; Depil Duval, A.; Revue, E.; et al. Artificial Intelligence for Detecting Acute Fractures in Patients Admitted to an Emergency Department: Real-Life Performance of Three Commercial Algorithms. Acad. Radiol. 2023, 30, 2118–2139. [Google Scholar] [CrossRef]
- Shen, L.; Gao, C.; Hu, S.; Kang, D.; Zhang, Z.; Xia, D.; Xu, Y.; Xiang, S.; Zhu, Q.; Xu, G.; et al. Using Artificial Intelligence to Diagnose Osteoporotic Vertebral Fractures on Plain Radiographs. J. Bone Miner. Res. 2023, 38, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, F.; Xu, J.; Zhao, Q.; Huang, C.; Yu, Y.; Yuan, H. Automated Detection and Classification of Acute Vertebral Body Fractures Using a Convolutional Neural Network on Computed Tomography. Front. Endocrinol. 2023, 14, 1132725. [Google Scholar] [CrossRef] [PubMed]
- Beyaz, S.; Açıcı, K.; Sümer, E. Femoral Neck Fracture Detection in X-Ray Images Using Deep Learning and Genetic Algorithm Approaches. Jt. Dis. Relat. Surg. 2020, 31, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Oakden-Rayner, L.; Gale, W.; Bonham, T.A.; Lungren, M.P.; Carneiro, G.; Bradley, A.P.; Palmer, L.J. Validation and Algorithmic Audit of a Deep Learning System for the Detection of Proximal Femoral Fractures in Patients in the Emergency Department: A Diagnostic Accuracy Study. Lancet Digit. Health 2022, 4, e351–e358. [Google Scholar] [CrossRef] [PubMed]
- Uysal, F.; Hardalaç, F.; Peker, O.; Tolunay, T.; Tokgöz, N. Classification of Shoulder X-Ray Images with Deep Learning Ensemble Models. Appl. Sci. 2021, 11, 2723. [Google Scholar] [CrossRef]
- Magnéli, M.; Ling, P.; Gislén, J.; Fagrell, J.; Demir, Y.; Arverud, E.D.; Hallberg, K.; Salomonsson, B.; Gordon, M. Deep Learning Classification of Shoulder Fractures on Plain Radiographs of the Humerus, Scapula and Clavicle. PLoS ONE 2023, 18, e0289808. [Google Scholar] [CrossRef] [PubMed]
- Rayan, J.C.; Reddy, N.; Kan, J.H.; Zhang, W.; Annapragada, A. Binomial Classification of Pediatric Elbow Fractures Using a Deep Learning Multiview Approach Emulating Radiologist Decision Making. Radiol. Artif. Intell. 2019, 1, e180015. [Google Scholar] [CrossRef]
- Luo, J.; Kitamura, G.; Arefan, D.; Doganay, E.; Panigrahy, A.; Wu, S. Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification. Mach. Learn. Med. Imaging 2021, 12966, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Cho, Y.J.; Ha, J.Y.; Lee, Y.Y.; Koh, S.Y.; Seo, J.Y.; Choi, Y.H.; Cheon, J.-E.; Phi, J.H.; Kim, I.; et al. Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs. Korean J. Radiol. 2022, 23, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K.; et al. Deep-Learning-Assisted Diagnosis for Knee Magnetic Resonance Imaging: Development and Retrospective Validation of MRNet. PLoS Med. 2018, 15, e1002699. [Google Scholar] [CrossRef] [PubMed]
- Couteaux, V.; Si-Mohamed, S.; Nempont, O.; Lefevre, T.; Popoff, A.; Pizaine, G.; Villain, N.; Bloch, I.; Cotten, A.; Boussel, L. Automatic Knee Meniscus Tear Detection and Orientation Classification with Mask-RCNN. Diagn. Interv. Imaging 2019, 100, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Roblot, V.; Giret, Y.; Bou Antoun, M.; Morillot, C.; Chassin, X.; Cotten, A.; Zerbib, J.; Fournier, L. Artificial Intelligence to Diagnose Meniscus Tears on MRI. Diagn. Interv. Imaging 2019, 100, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Pedoia, V.; Lee, J.; Norman, B.; Link, T.M.; Majumdar, S. Diagnosing Osteoarthritis from T2 Maps Using Deep Learning: An Analysis of the Entire Osteoarthritis Initiative Baseline Cohort. Osteoarthr. Cartil. 2019, 27, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhou, Z.; Samsonov, A.; Blankenbaker, D.; Larison, W.; Kanarek, A.; Lian, K.; Kambhampati, S.; Kijowski, R. Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection. Radiology 2018, 289, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Antony, J.; McGuinness, K.; O’Connor, N.E.; Moran, K. Quantifying Radiographic Knee Osteoarthritis Severity Using Deep Convolutional Neural Networks. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1195–1200. [Google Scholar]
- Lu, J.-T.; Pedemonte, S.; Bizzo, B.; Doyle, S.; Andriole, K.P.; Michalski, M.H.; Gonzalez, R.G.; Pomerantz, S.R. DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-Level Designation, and Spinal Stenosis Grading Using Deep Learning 2018. In Proceedings of the Machine Learning for Healthcare Conference 2018, Palo Alto, CA, USA, 17–18 August 2018. [Google Scholar]
- Kapinski, N.; Zielinski, J.; Borucki, B.A.; Trzcinski, T.; Ciszkowska-Lyson, B.; Nowinski, K.S. Estimating Achilles Tendon Healing Progress with Convolutional Neural Networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018, Granada, Spain, 16–20 September 2018; Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 949–957. [Google Scholar]
- Trivedi, H.; Mesterhazy, J.; Laguna, B.; Vu, T.; Sohn, J.H. Automatic Determination of the Need for Intravenous Contrast in Musculoskeletal MRI Examinations Using IBM Watson’s Natural Language Processing Algorithm. J. Digit. Imaging 2018, 31, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Hammernik, K.; Klatzer, T.; Kobler, E.; Recht, M.P.; Sodickson, D.K.; Pock, T.; Knoll, F. Learning a Variational Network for Reconstruction of Accelerated MRI Data. Magn. Reson. Med. 2018, 79, 3055–3071. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.S.; Fang, Z.; Kogan, F.; Wood, J.; Stevens, K.J.; Gibbons, E.K.; Lee, J.H.; Gold, G.E.; Hargreaves, B.A. Super-Resolution Musculoskeletal MRI Using Deep Learning. Magn. Reson. Med. 2018, 80, 2139–2154. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, G.; Hua, C.; Feng, M.; Bennamoun, B.; Li, P.; Lu, X.; Song, J.; Shen, P.; Xu, X.; et al. A Systematic Collection of Medical Image Datasets for Deep Learning. ACM Comput. Surv. 2023, 56, 116:1–116:51. [Google Scholar] [CrossRef]
- Langlotz, C.P.; Allen, B.; Erickson, B.J.; Kalpathy-Cramer, J.; Bigelow, K.; Cook, T.S.; Flanders, A.E.; Lungren, M.P.; Mendelson, D.S.; Rudie, J.D.; et al. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 2019, 291, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Willemink, M.J.; Koszek, W.A.; Hardell, C.; Wu, J.; Fleischmann, D.; Harvey, H.; Folio, L.R.; Summers, R.M.; Rubin, D.L.; Lungren, M.P. Preparing Medical Imaging Data for Machine Learning. Radiology 2020, 295, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Han, K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology 2018, 286, 800–809. [Google Scholar] [CrossRef]
- Lu, Y.; Fu, J.; Li, X.; Zhou, W.; Liu, S.; Zhang, X.; Wu, W.; Jia, C.; Liu, Y.; Chen, Z. RTN: Reinforced Transformer Network for Coronary CT Angiography Vessel-Level Image Quality Assessment. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2022; Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 644–653. [Google Scholar]
- Oakden-Rayner, L.; Dunnmon, J.; Carneiro, G.; Ré, C. Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging. In Proceedings of the ACM Conference on Health, Inference, and Learning 2020, Toronto, ON, Canada, 2–4 April 2020; pp. 151–159. [Google Scholar] [CrossRef]
- Liu, Z.; Kainth, K.; Zhou, A.; Deyer, T.W.; Fayad, Z.A.; Greenspan, H.; Mei, X. A Review of Self-Supervised, Generative, and Few-Shot Deep Learning Methods for Data-Limited Magnetic Resonance Imaging Segmentation. NMR Biomed. 2024, e5143. [Google Scholar] [CrossRef]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations. In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 12–18 July 2020; Volume 119, pp. 1597–1607. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollar, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 15979–15988. [Google Scholar]
- Liu, Z.; Tieu, A.; Patel, N.; Zhou, A.; Soultanidis, G.; Fayad, Z.A.; Deyer, T.; Mei, X. VISION-MAE: A Foundation Model for Medical Image Segmentation and Classification 2024. arXiv 2024, arXiv:2402.01034. [Google Scholar]
- Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang, B. Segment Anything in Medical Images. Nat. Commun. 2024, 15, 654. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Liu, Z.; Tieu, A.; Patel, N.; Sun, S.; Yang, A.; Choi, P.; Fauveau, V.; Soultanidis, G.; Huang, M.; et al. MRAnnotator: A Multi-Anatomy Deep Learning Model for MRI Segmentation 2024. arXiv 2024, arXiv:2402.01031. [Google Scholar]
- Christensen, M.; Vukadinovic, M.; Yuan, N.; Ouyang, D. Multimodal Foundation Models for Echocardiogram Interpretation 2023. arXiv 2023, arXiv:2308.15670. [Google Scholar]
- Zhou, Y.; Chia, M.A.; Wagner, S.K.; Ayhan, M.S.; Williamson, D.J.; Struyven, R.R.; Liu, T.; Xu, M.; Lozano, M.G.; Woodward-Court, P.; et al. A Foundation Model for Generalizable Disease Detection from Retinal Images. Nature 2023, 622, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Topol, E.J. Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists. JAMA 2016, 316, 2353–2354. [Google Scholar] [CrossRef] [PubMed]
Lead Author | Year | Imaging Modality | Total Number of Images * | Models Used | Model Tasks | Performance Metrics |
---|---|---|---|---|---|---|
Ashkani-Esfahani | 2022 | X-ray | 6300 | InceptionV3 Resnet-50 | Fracture detection | InceptionV3: sensitivity 99%, specificity 99%, PPV 99%, NPV 99%, accuracy 99%, F1 score 99%, AUC 99% Resnet-50: sensitivity 98%, specificity 94%, PPV 95%, NPV 97%, accuracy 96%, F1 score 96%, AUC 98%. |
Kitamura | 2019 | X-ray | 1681 | InceptionV3 Resnet-101 Xception | Fracture detection | Accuracy 81%, sensitivity 80%, specificity 83%, PPV 82%, NPV 81% |
Lead Author | Year | Imaging Modality | Region | Total Number of Images | Models Used | Model Tasks | Performance Metrics |
---|---|---|---|---|---|---|---|
Langerhuizen | 2020 | X-ray | Scaphoid | 300 | Pre-trained CNN (Visual Geometry Group) [59] | Fracture detection | AUC 0.77, accuracy 72%, sensitivity 84%, specificity 60% |
Hendrix | 2021 | X-ray | Scaphoid | 4229 | DenseNet-121 [60] | Fracture detection, scaphoid segmentation | AUC 0.87, sensitivity 78%, specificity 84%, PPV 83%, Dice score 97.4% |
Hendrix | 2023 | X-ray | Scaphoid | 19,111 | InceptionV3 | Fracture detection and localization, scaphoid localization, laterality classification | AUC 0.88, sensitivity 72%, specificity 93%, PPV 81% |
Hardalaç | 2022 | X-ray | Radius, Ulna (Pediatric) | 542 | SABL, RegNet, RetinaNet, PAA, Libra R-CNN, FSAF, Faster R-CNN, Dynamic R-CNN, DCN | Fracture detection and localization | AP50 0.864 |
Hržić | 2022 | X-ray | Wrist (Pediatric) | 19,700 | YOLOv4 | Fracture detection, enumeration, and localization | AUC 0.965, accuracy 95%, sensitivity 95%, PPV 96%, F1 score 0.95 Fracture enumeration: Accuracy 86% Fracture localization: Accuracy 90% |
Lead Author | Year | Imaging Modality | Region | Total Number of Images | Models Used | Model Tasks | Performance Metrics |
---|---|---|---|---|---|---|---|
Lex | 2023 | X-ray | Femoral Neck Intertrochanteric Subtrocanteric | 754,537 1 | Various models, including: AlexNet [68], GoogLeNet [69], ResNet-50, DenseNet-121, ResNet-18, PelviXNet [70], Faster RCNN | Fracture detection, outcome prediction | Diagnosis: odds ratio 0.79, sensitivity 89.3%, specificity 87.5%, F1 score 0.90 Postop mortality: AUC 0.84 |
Kitamura | 2020 | X-ray | Pelvic Acetabular Hip | 14,374 | DenseNet-121 | Fracture detection, hardware detection, imaging position | Proximal femoral: AUC 0.95 Acetabular: AUC 0.85 Anterior pelvic: AUC 0.77 Posterior pelvic: AUC 0.70 Radiograph position: AUC 0.99 Hardware presence: AUC 1.00 |
Mawatari | 2020 | X-ray | Proximal Femoral | 352 | GoogLeNet | Fracture detection | AUC 0.905 |
Lead Author | Year | Imaging Modality | Total Number of Images 1 | Models Used | Model Tasks | Performance Metrics |
---|---|---|---|---|---|---|
Jin | 2020 | CT | 900 | FracNet | Fracture detection and segmentation | Sensitivity 93%, Dice score 71.5% |
Zhang | 2021 | CT | 198 | Foveal Network [87] Faster R-CNN | Rib segmentation, fracture detection | Sensitivity 79.4% |
Yao | 2021 | CT | 1707 | U-Net 3D DenseNet | Bone segmentation, fracture detection | Sensitivity 91%, PPV 87%, NPV 97%, F1 score 0.890 |
Gao | 2022 | X-ray | 1639 | CCE-Net | Fracture detection and localization | Sensitivity 93%, AP50 0.911 |
Product (Company) | Approval Year | Imaging Modality | Region | Functionality | Performance Metrics |
---|---|---|---|---|---|
OsteoDetect (Imagen Technologies) | 2018 | X-ray | Distal radius | Fracture detection and localization | AUC 0.97, sensitivity 92%, specificity 90% |
FractureDetect (Imagen Technologies) | 2020 | X-ray | Ankle, clavicle, elbow, femur, forearm, hip, humerus, knee, pelvis, shoulder, tibia, fibula, wrist | Fracture detection and localization | AUC 0.98, sensitivity 95%, specificity 89% |
uAI EasyTriage-Rib (Shanghai United Imaging Alliance) | 2021 | CT | Ribs | Notification if ≥3 fractures | AUC 0.94, sensitivity 93%, specificity 85% |
BriefCase (RibFx) (Aidoc Medical) | 2021 | CT | Ribs | Notification if ≥3 fractures | AUC 0.98, sensitivity 97%, specificity 90% |
BoneView (Gleamer) | 2022 | X-ray | Ankle, foot, knee, tibia, fibula, wrist, hand, elbow, forearm, humerus, shoulder, clavicle, pelvis, hip, femur, ribs, thoracic spine, lumbosacral spine | Fracture detection and localization | AUC 0.93, sensitivity 93%, specificity 93% |
Rayvolve (AZmed) | 2022 | X-ray | Ankle, clavicle, elbow, forearm, hip, humerus, knee, pelvis, shoulder, tibia, fibula, wrist, hand, foot | Fracture detection and localization | AUC 0.99, sensitivity 99%, specificity 89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tieu, A.; Kroen, E.; Kadish, Y.; Liu, Z.; Patel, N.; Zhou, A.; Yilmaz, A.; Lee, S.; Deyer, T. The Role of Artificial Intelligence in the Identification and Evaluation of Bone Fractures. Bioengineering 2024, 11, 338. https://doi.org/10.3390/bioengineering11040338
Tieu A, Kroen E, Kadish Y, Liu Z, Patel N, Zhou A, Yilmaz A, Lee S, Deyer T. The Role of Artificial Intelligence in the Identification and Evaluation of Bone Fractures. Bioengineering. 2024; 11(4):338. https://doi.org/10.3390/bioengineering11040338
Chicago/Turabian StyleTieu, Andrew, Ezriel Kroen, Yonaton Kadish, Zelong Liu, Nikhil Patel, Alexander Zhou, Alara Yilmaz, Stephanie Lee, and Timothy Deyer. 2024. "The Role of Artificial Intelligence in the Identification and Evaluation of Bone Fractures" Bioengineering 11, no. 4: 338. https://doi.org/10.3390/bioengineering11040338
APA StyleTieu, A., Kroen, E., Kadish, Y., Liu, Z., Patel, N., Zhou, A., Yilmaz, A., Lee, S., & Deyer, T. (2024). The Role of Artificial Intelligence in the Identification and Evaluation of Bone Fractures. Bioengineering, 11(4), 338. https://doi.org/10.3390/bioengineering11040338