A Comparative Analysis of Artificial Intelligence and Manual Methods for Three-Dimensional Anatomical Landmark Identification in Dentofacial Treatment Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
- -
- Adults aged 19 years or older whose jaw bone growth was completed.
- -
- Patients who completed pre-orthodontic treatment and orthognathic surgery at the Hallym University Sacred Heart Hospital in 2016~2022 and who agreed to participate in the study.
2.2. Definition of Landmarks
2.3. Methods
2.4. Statistics
3. Results
3.1. Inter-Class Agreement
3.2. Comparison between AI and Manual Tracing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broadbent, B.H. A new X-ray technique and its application to orthodontia. Angle Orthod. 1931, 1, 45–66. [Google Scholar]
- Albarakati, S.; Kula, K.; Ghoneima, A. The reliability and reproducibility of cephalometric measurements: A comparison of conventional and digital methods. Dentomaxillofac. Radiol. 2012, 41, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, R.; Cosnard, G.; Macq, B.; Mahy, P.; Reychler, H. 3D CT-based cephalometric analysis: 3D cephalometric theoretical concept and software. Neuroradiology 2006, 48, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Nalcaci, R.; Öztürk, F.; Sökücü, O. A comparison of two-dimensional radiography and three-dimensional computed tomography in angular cephalometric measurements. Dentomaxillofac. Radiol. 2010, 39, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Van Vlijmen, O.; Maal, T.; Bergé, S.; Bronkhorst, E.; Katsaros, C.; Kuijpers-Jagtman, A. A comparison between 2D and 3D cephalometry on CBCT scans of human skulls. Int. J. Oral Maxillofac. Surg. 2010, 39, 156–160. [Google Scholar] [CrossRef]
- Nijkamp, P.G.; Habets, L.L.; Aartman, I.H.; Zentner, A. The influence of cephalometrics on orthodontic treatment planning. Eur. J. Orthod. 2008, 30, 630–635. [Google Scholar] [CrossRef]
- Gupta, A.; Kharbanda, O.P.; Sardana, V.; Balachandran, R.; Sardana, H.K. Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Naji, P.; Alsufyani, N.A.; Lagravère, M.O. Reliability of anatomic structures as landmarks in three-dimensional cephalometric analysis using CBCT. Angle Orthod. 2014, 84, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-W.; Park, J.-H.; Moon, J.-H.; Yu, Y.; Kim, H.; Her, S.-B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.-J. Automated identification of cephalometric landmarks: Part 2—Might it be better than human? Angle Orthod. 2020, 90, 69–76. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef]
- Dreyer, K.J.; Geis, J.R. When machines think: Radiology’s next frontier. Radiology 2017, 285, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Sandler, P. Reproducibility of cephalometric measurements. Br. J. Orthod. 1988, 15, 105–110. [Google Scholar] [CrossRef]
- Alessandri-Bonetti, A.; Sangalli, L.; Salerno, M.; Gallenzi, P. Reliability of Artificial Intelligence-Assisted Cephalometric Analysis—A Pilot Study. Biomedinformatics 2023, 3, 44–53. [Google Scholar] [CrossRef]
- Bulatova, G.; Kusnoto, B.; Grace, V.; Tsay, T.P.; Avenetti, D.M.; Sanchez, F.J.C. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod. Craniofac. Res. 2021, 24, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ng, D.W.H.; Park, H.S.; McAlpine, M.C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 2021, 6, 27–47. [Google Scholar] [CrossRef]
- Goh, G.L.; Goh, G.D.; Pan, J.W.; Teng, P.S.P.; Kong, P.W. Automated service height fault detection using computer vision and machine learning for badminton matches. Sensors 2023, 23, 9759. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Tsolakis, A.I.; Elshebiny, T.; Matthaios, S.; Palomo, J.M. Comparing a fully automated cephalometric tracing method to a manual tracing method for orthodontic diagnosis. J. Clin. Med. 2022, 11, 6854. [Google Scholar] [CrossRef]
- Cho, H.J. A three-dimensional cephalometric analysis. J. Clin. Orthod. 2009, 43, 235–252. [Google Scholar] [PubMed]
- Lisboa, C.d.O.; Masterson, D.; MOTTA, A.F.J.; Motta, A.T. Reliability and reproducibility of three-dimensional cephalometric landmarks using CBCT: A systematic review. J. Appl. Oral Sci. 2015, 23, 112–119. [Google Scholar] [CrossRef]
- Cohen, A.; Ip, H.-S.; Linney, A. A preliminary study of computer recognition and identification of skeletal landmarks as a new method of cephalometric analysis. Br. J. Orthod. 1984, 11, 143–154. [Google Scholar] [CrossRef]
- Nguyen, T.; Larrivée, N.; Lee, A.; Bilaniuk, O.; Durand, R. Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J. Can. Dent. Assoc. 2021, 87, 1488–2159. [Google Scholar] [CrossRef]
- Bichu, Y.M.; Hansa, I.; Bichu, A.Y.; Premjani, P.; Flores-Mir, C.; Vaid, N.R. Applications of artificial intelligence and machine learning in orthodontics: A scoping review. Prog. Orthod. 2021, 22, 18. [Google Scholar] [CrossRef]
- Meriç, P.; Naoumova, J. Web-based fully automated cephalometric analysis: Comparisons between app-aided, computerized, and manual tracings. Turk. J. Orthod. 2020, 33, 142. [Google Scholar] [CrossRef] [PubMed]
- Abesi, F.; Jamali, A.S.; Zamani, M. Accuracy of artificial intelligence in the detection and segmentation of oral and maxillofacial structures using cone-beam computed tomography images: A systematic review and meta-analysis. Pol. J. Radiol. 2023, 88, 256. [Google Scholar] [CrossRef] [PubMed]
- Blum, F.M.S.; Möhlhenrich, S.C.; Raith, S.; Pankert, T.; Peters, F.; Wolf, M.; Hölzle, F.; Modabber, A. Evaluation of an artificial intelligence–based algorithm for automated localization of craniofacial landmarks. Clin. Oral Investig. 2023, 27, 2255–2265. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.; Ginneken, B.; Sanchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2018, 45, 2169–2180. [Google Scholar] [CrossRef]
- Altaf, F.; Islam, S.M.; Akhtar, N.; Janjua, N.K. Going deep in medical image analysis: Concepts, methods, challenges, and future directions. IEEE Access 2019, 7, 99540–99572. [Google Scholar] [CrossRef]
- Minnema, J.; Eijnatten, M.; Kouw, W.; Diblen, F.; Mendrik, A.; Wolff, J. CT image segmentation of bone for medical additive manufacturing using a convolutional neural network. Comput. Biol. Med. 2018, 103, 130–139. [Google Scholar] [CrossRef]
- Casalegno, F.; Newton, T.; Daher, R.; Abdelaziz, M.; Lodi-Rizzini, A.; Schurmann, F.; Krejci, I.; Markram, H. Caries detection with near-infrared transillumination using deep learning. J. Dent. Res. 2019, 98, 1227–1233. [Google Scholar] [CrossRef]
- Nguyen, K.C.T.; Duong, D.Q.; Almeida, F.T.; Major, P.W.; Kaipatur, N.R.; Pham, T.T.; Lou, E.H.M.; Noga, M.; Punithakumar, K.; Le, L.H. Alveolar bone segmentation in intraoral ultrasonographs with machine learning. J. Dent. Res. 2020, 99, 1054–1061. [Google Scholar] [CrossRef]
- Wang, H.; Minnema, J.; Batenburg, K.J.; Forouzanfar, T.; Hu, F.J.; Wu, G. Multiclass CBCT image segmentation for orthodontics with deep learning. J. Dent. Res. 2021, 100, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Abesi, F.; Hozuri, M.; Zamani, M. Performance of artificial intelligence using cone-beam computed tomography for segmentation of oral and maxillofacial structures: A systematic review and meta-analysis. J. Clin. Exp. Dent. 2023, 15, 954. [Google Scholar] [CrossRef] [PubMed]
- Arık, S.Ö.; Ibragimov, B.; Xing, L. Fully automated quantitative cephalometry using convolutional neural networks. J. Med. Imaging 2017, 4, 014501. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Sotsuka, Y.; Kawai, K.; Ishise, H.; Kakibuchi, M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J. Craniofac. Surg. 2019, 30, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Hwang, H.-W.; Moon, J.-H.; Yu, Y.; Kim, H.; Her, S.-B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.-J. Automated identification of cephalometric landmarks: Part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019, 89, 903–909. [Google Scholar] [CrossRef]
- Swennen, G.R.; Schutyser, F.A.; Hausamen, J.-E. Three-Dimensional Cephalometry: A Color Atlas and Manual; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Katina, S.; McNeil, K.; Ayoub, A.; Guilfoyle, B.; Khambay, B.; Siebert, P.; Sukno, F.; Rojas, M.; Vittert, L.; Waddington, J. The definitions of three-dimensional landmarks on the human face: An interdisciplinary view. J. Anat. 2016, 228, 355–365. [Google Scholar] [CrossRef]
Landmark | Definition |
---|---|
Nasion (N) | V notch of frontal |
Oribtale | most inferior point of the orbital contour |
Porion | most superior point of the external auditory meatus |
ANS | the most anterior point of the premaxillary bone in the sagittal plane |
PNS | the most posterior point of the palatine bone in the sagittal plane |
Ant. Zygoma | the point on the zygomatic bone lateral to the deepest concavity of anterior concavity |
Zygion | the most lateral point of the zygomatic arch, a point determined from the submental vertex view |
A point (A) | the deepest point between ANS and the upper incisal alveolus |
B point (B) | the deepest point between the pogonion and lower incisal alveolus |
Gnathion (Gn) | the middle point between the most anterior (Pogonion) and most inferior point of the chin (Menton) |
Pogonion (Pog) | most anterior point of the symphysis |
Menton (Me) | the most inferior point on the symphyseal outline |
Gonion (Go) | the point in the inferoposterior outline of the right mandible at which the surface turns from the inferior border into the posterior border |
AI/Manual (95% CI) | Different Manual Groups (95% CI) | |
---|---|---|
X-axis | 0.817 (0.760~0.866) | 0.821 (0.757~0.873) |
Y-axis | 0.925 (0.901~0.945) | 0.924 (0.897~0.946) |
Z-axis | 0.956 (0.942~0.968) | 0.956 (0.940~0.969) |
AI–Human I | AI–Human II | AI–Human III | AI–Human IV | |
---|---|---|---|---|
ANS | 0.44 | 0.71 | 0.41 | 1.10 |
PNS | 0.23 | 1.14 | 0.84 | 1.14 |
A | 0.18 * | 0.66 | 1.35 | 1.15 |
Rt. Ant. Zygoma | 0.73 | 1.68 | 1.96 ** | 1.91 |
Lt. Ant. Zygoma | 0.91 | 1.11 | 1.84 | 1.01 |
Rt. Zygion | 0.24 | 1.46 | 1.59 | 1.61 |
Lt. Zygion | 0.37 | 1.13 | 1.13 | 1.16 |
B | 0.32 | 1.37 | 1.12 | 1.67 |
Pog | 0.31 | 1.52 | 1.21 | 1.71 |
Gn | 0.53 | 1.11 | 0.86 | 0.73 |
Me | 0.56 | 1.05 | 0.94 | 0.76 |
Rt. Go | 0.52 | 0.26 | 0.52 | 0.79 |
Lt. Go | 0.56 | 1.08 | 0.73 | 1.02 |
AI–Human I | AI–Human II | AI–Human III | AI–Human IV | |
---|---|---|---|---|
ANS | 0.36 | 0.31 | 0.11 | 1.11 |
PNS | 0.61 | 1.56 | 1.64 | 0.63 |
A | 0.43 | 1.11 | 1.05 | 0.27 |
Rt. Ant. Zygoma | 0.93 | 1.77 | 2.83 ** | 2.37 |
Lt. Ant. Zygoma | 0.94 | 1.21 | 2.33 | 2.81 |
Rt. Zygion | 1.07 | 1.19 | 2.83 ** | 1.68 |
Lt. Zygion | 1.09 | 1.39 | 1.46 | 1.92 |
B | 0.34 | 0.11 * | 1.47 | 1.51 |
Pog | 0.12 | 0.48 | 0.70 | 0.77 |
Gn | 0.47 | 0.63 | 0.61 | 0.92 |
Me | 0.46 | 0.59 | 0.48 | 0.82 |
Rt. Go | 1.59 | 0.85 | 0.63 | 0.93 |
Lt. Go | 0.68 | 1.29 | 1.43 | 1.17 |
AI–Human I | AI–Human II | AI–Human III | AI–Human IV | |
---|---|---|---|---|
ANS | 0.31 | 1.53 | 1.12 | 1.18 |
PNS | 0.43 | 0.90 | 0.81 | 1.61 |
A | 0.81 | 0.88 | 1.64 | 0.96 |
Rt. Ant. Zygoma | 0.78 | 1.09 | 0.61 | 1.47 |
Lt. Ant. Zygoma | 1.09 | 1.51 | 1.08 | 1.54 |
Rt. Zygion | 0.47 | 1.04 | 1.11 | 1.15 |
Lt. Zygion | 0.46 | 1.30 | 1.56 | 1.23 |
B | 0.88 | 1.47 | 1.51 | 1.10 |
Pog | 0.89 | 1.19 | 1.33 | 1.18 |
Gn | 1.41 | 1.22 | 1.89 ** | 1.87 |
Me | 0.21 | 0.19 * | 0.71 | 0.93 |
Rt. Go | 0.69 | 1.86 | 1.44 | 0.92 |
Lt. Go | 0.86 | 1.69 | 0.93 | 1.34 |
AI | Human I | Human II | Human III | Human IV | ||
---|---|---|---|---|---|---|
Landmark | Mean (SD) | p-Value | ||||
ANS | −0.24 (1.42) | −0.22 (1.29) | −0.62 (1.93) | −0.62 (1.91) | −0.14 (1.58) | 0.741 |
PNS | −0.42 (2.03) | −0.36 (1.96) | −0.51 (2.01) | −0.51 (2.24) | −0.23 (1.99) | 0.931 |
A | −0.26 (1.34) | −0.13 (1.26) | −0.36 (2.31) | −0.26 (1.91) | 0.18 (1.62) | 0.924 |
Rt. Ant. Zygoma | −54.54 (3.81) | −54.61 (4.09) | −53.44 (4.21) | −51.42 (4.63) | −52.93 (3.85) | 0.049 ** |
Lt. Ant. Zygoma | 53.51 (3.05) | 54.19 (3.37) | 52.23 (3.29) | 50.13 (3.62) | 53.27 (2.99) | 0.000 ** |
Rt. Zygion | −67.59 (4.22) | −67.12 (4.31) | −67.49 (4.16) | −67.51 (4.83) | −67.31 (4.31) | 1.000 |
Lt. Zygion | 66.36 (3.65) | 66.27 (3.83) | 66.52 (3.59) | 66.36 (3.71) | 66.33 (3.72) | 0.998 |
B | 0.14 (2.12) | 0.23 (2.11) | −0.28 (2.39) | −0.21 (2.32) | 0.26 (1.99) | 0.937 |
Gn | 0.51 (2.33) | 0.51 (2.23) | 0.21 (2.77) | 0.11 (2.48) | 0.31 (2.36) | 0.976 |
Pog | 0.21 (2.36) | 0.19 (2.14) | −0.22 (2.61) | −0.09 (2.55) | 0.37 (2.22) | 0.954 |
Me | 0.41 (2.23) | 0.39 (2.21) | −0.19 (2.43) | 0.15 (2.39) | 0.49 (2.31) | 0.947 |
Rt. Go | −49.26 (4.68) | −48.90 (4.81) | −48.66 (3.69) | −49.23 (4.64) | −49.52 (4.91) | 0.971 |
Lt. Go | 49.04 (4.29) | 49.43 (4.28) | 48.49 (4.35) | 48.94 (4.21) | 49.33 (4.23) | 0.953 |
AI | Human I | Human II | Human III | Human IV | ||
---|---|---|---|---|---|---|
Landmark | Mean (SD) | p-Value | ||||
ANS | −4.51 (2.93) | −4.65 (2.91) | −4.51 (3.08) | −4.12 (3.01) | −4.44 (2.73) | 0.957 |
PNS | 45.73 (4.71) | 46.21 (4.91) | 46.19 (4.61) | 44.26 (11.91) | 46.07 (4.81) | 0.794 |
A | −1.15 (3.01) | −0.72 (3.23) | −0.54 (3.51) | −0.54 (3.11) | −0.92 (3.31) | 0.973 |
Rt. Ant. Zygoma | 22.77 (4.92) | 23.43 (4.53) | 21.97 (4.68) | 18.19 (5.68) | 21.75 (3.98) | 0.001 ** |
Lt. Ant. Zygoma | 23.16 (4.41) | 24.03 (4.29) | 22.11 (4.78) | 18.27 (5.51) | 22.93 (3.94) | 0.001 ** |
Rt. Zygion | 55.84 (5.72) | 56.53 (5.62) | 56.68 (5.32) | 53.59 (13.47) | 55.85 (5.91) | 0.721 |
Lt. Zygion | 56.11 (5.98) | 57.12 (5.89) | 57.33 (5.91) | 54.24 (13.49) | 56.56 (6.42) | 0.662 |
B | 3.94 (6.32) | 4.27 (6.41) | 4.35 (5.62) | 4.49 (6.62) | 4.24 (6.03) | 1.000 |
Gn | 2.81 (7.45) | 2.91 (7.58) | 3.14 (7.51) | 3.21 (7.59) | 3.11 (7.33) | 1.000 |
Pog | 4.89 (7.63) | 5.34 (7.61) | 5.31 (7.61) | 5.13 (7.55) | 5.53 (7.72) | 1.000 |
Me | 10.03 (7.52) | 10.12 (7.42) | 10.08 (7.83) | 9.51 (7.71) | 10.6 (1.31) | 0.995 |
Rt. Go | 70.55 (6.81) | 70.64 (6.81) | 71.82 (6.91) | 67.93 (17.42) | 70.2 (1.39) | 0.802 |
Lt. Go | 72.42 (6.05) | 72.73 (5.92) | 72.83 (6.21) | 69.78 (16.99) | 72.3 (1.91) | 0.832 |
AI | Human I | Human II | Human III | Human IV | ||
---|---|---|---|---|---|---|
Landmark | Mean (SD) | p-Value | ||||
ANS | −54.24 (3.72) | −54.12 (3.52) | −54.14 (4.23) | −54.14 (3.31) | −54.4 (3.55) | 0.970 |
PNS | −54.93 (4.81) | −54.58 (4.92) | −54.47 (5.12) | −54.76 (4.64) | −54.83 (5.21) | 0.987 |
A | −60.81 (4.21) | −60.21 (4.12) | −59.51 (4.43) | −60.55 (3.01) | −59.81 (4.03) | 0.844 |
Rt. Ant. Zygoma | −43.65 (4.81) | −43.44 (5.04) | −44.24 (5.03) | −43.82 (4.88) | −44.49 (4.61) | 0.991 |
Lt. Ant. Zygoma | −43.73 (4.92) | −42.91 (5.51) | −44.51 (4.41) | −43.95 (4.91) | −42.86 (4.62) | 0.789 |
Rt. Zygion | −32.74 (3.71) | −32.21 (3.92) | −31.22 (3.91) | −32.61 (3.83) | −32.57 (1.31) | 0.663 |
Lt. Zygion | −32.32 (4.49) | −32.33 (4.51) | −31.21 (4.41) | −32.44 (4.24) | −36.13 (8.33) | 0.912 |
B | −101.21 (7.31) | −101.36 (7.62) | −100.38 (7.83) | −100.93 (7.71) | −101.8 (2.21) | 0.983 |
Gn | −115.29 (8.71) | −115.82 (8.42) | −115.21 (9.21) | −114.99 (8.72 | −115.7 (1.63) | 0.997 |
Pog | −120.42 (8.48) | −120.31 (8.57) | −120.31 (9.32) | −119.91 (8.42) | −120.56 (9.01) | 1.000 |
Me | −122.31 (8.61) | −122.16 (8.41) | −122.25 (9.12) | −122.31 (8.47) | −120.84 (9.23) | 0.998 |
Rt. Go | −93.21 (9.26) | −93.32 (9.42) | −92.84 (9.31) | −93.24 (9.41) | −93.43 (8.87) | 0.997 |
Lt. Go | −91.34 (9.23) | −91.21 (9.55) | −91.71 (9.42) | −90.80 (8.93) | −91.41 (8.73) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.-J.; Byun, S.-H.; Baek, S.-H.; Park, S.-Y.; Yi, S.-M.; Park, I.-Y.; On, S.-W.; Kim, J.-C.; Yang, B.-E. A Comparative Analysis of Artificial Intelligence and Manual Methods for Three-Dimensional Anatomical Landmark Identification in Dentofacial Treatment Planning. Bioengineering 2024, 11, 318. https://doi.org/10.3390/bioengineering11040318
Ahn H-J, Byun S-H, Baek S-H, Park S-Y, Yi S-M, Park I-Y, On S-W, Kim J-C, Yang B-E. A Comparative Analysis of Artificial Intelligence and Manual Methods for Three-Dimensional Anatomical Landmark Identification in Dentofacial Treatment Planning. Bioengineering. 2024; 11(4):318. https://doi.org/10.3390/bioengineering11040318
Chicago/Turabian StyleAhn, Hee-Ju, Soo-Hwan Byun, Sae-Hoon Baek, Sang-Yoon Park, Sang-Min Yi, In-Young Park, Sung-Woon On, Jong-Cheol Kim, and Byoung-Eun Yang. 2024. "A Comparative Analysis of Artificial Intelligence and Manual Methods for Three-Dimensional Anatomical Landmark Identification in Dentofacial Treatment Planning" Bioengineering 11, no. 4: 318. https://doi.org/10.3390/bioengineering11040318
APA StyleAhn, H. -J., Byun, S. -H., Baek, S. -H., Park, S. -Y., Yi, S. -M., Park, I. -Y., On, S. -W., Kim, J. -C., & Yang, B. -E. (2024). A Comparative Analysis of Artificial Intelligence and Manual Methods for Three-Dimensional Anatomical Landmark Identification in Dentofacial Treatment Planning. Bioengineering, 11(4), 318. https://doi.org/10.3390/bioengineering11040318