Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas
Abstract
:1. Introduction
2. Active Electrode and EEG System Design
2.1. Structure Design of Active Claw-Shaped Dry Electrode
2.2. Model of Skin–Electrode Interface
2.3. EEG System
3. Experiments
3.1. Contact Resistance
3.2. Active Electrode Circuit Performance
3.3. Signal-to-Noise Ratio
3.4. EEG Signal Collection
3.5. Eyes Open-Closed and SSVEP Paradigms
3.6. Anti-Interference Performance Evaluation
3.7. EEG System Prototype and Commercial Device Comparison Paradigm
4. Results and Discussions
4.1. Contact Resistance
4.2. Active Electrode Circuit Performance
4.3. Eyes Open-Closed and SSVEP Paradigms
4.4. Anti-Interference Performance Evaluation
4.5. EEG System Prototype and Commercial Device Comparison Paradigm
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casson, A.J. Wearable EEG and beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Han, C.H.; Im, C.H. Design of Wearable EEG Devices Specialized for Passive Brain-Computer Interface Applications. Sensors 2020, 20, 4572. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Jia, H.; Zhang, Z.; Feng, F.; Tan, Y.; Dai, Y.; Cichocki, A.; Yang, Z.; Caiafa, C.F.; Sun, Z.; et al. On the robustness of EEG tensor completion methods. Sci. China-Technol. Sci. 2021, 64, 1828–1842. [Google Scholar] [CrossRef]
- Lopez-Gordo, M.A.; Sanchez-Morillo, D.; Valle, F.P. Dry EEG Electrodes. Sensors 2014, 14, 12847–12870. [Google Scholar] [CrossRef] [PubMed]
- Hinrichs, H.; Scholz, M.; Baum, A.K.; Kam, J.W.Y.; Knight, R.T.; Heinze, H.J. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci. Rep. 2020, 10, 5218. [Google Scholar] [CrossRef] [PubMed]
- Grozea, C.; Voinescu, C.D.; Fazli, S. Bristle-sensors—Low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 2011, 8, 025008. [Google Scholar] [CrossRef]
- Chen, Y.-H.; De Beeck, M.O.; Vanderheyden, L.; Carrette, E.; Mihajlović, V.; Vanstreels, K.; Grundlehner, B.; Gadeyne, S.; Boon, P.; Van Hoof, C. Soft, Comfortable Polymer Dry Electrodes for High Quality ECG and EEG Recording. Sensors 2014, 14, 23758–23780. [Google Scholar] [CrossRef]
- Lee, J.S.; Han, C.M.; Kim, J.H.; Park, K.S. Reverse-curve-arch-shaped dry EEG electrode for increased skin–electrode contact area on hairy scalps. Electron. Lett. 2015, 51, 1643–1645. [Google Scholar] [CrossRef]
- Stauffer, F.; Thielen, M.; Sauter, C.; Chardonnens, S.; Bachmann, S.; Tybrandt, K.; Peters, C.; Hierold, C.; Vörös, J. Skin Conformal Polymer Electrodes for Clinical ECG and EEG Recordings. Adv. Healthc. Mater. 2018, 7, 1700994. [Google Scholar] [CrossRef]
- Li, G.-L.; Wu, J.-T.; Xia, Y.-H.; He, Q.-G.; Jin, H.-G. Review of semi-dry electrodes for EEG recording. J. Neural Eng. 2020, 17, 051004. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Z.; Wang, Z.; Yu, H. Miura-ori structured flexible microneedle array electrode for biosignal recording. Microsyst. Nanoeng. 2021, 7, 53. [Google Scholar] [CrossRef]
- Heijs, J.J.A.; Havelaar, R.J.; Fiedler, P.; van Wezel, R.J.A.; Heida, T. Validation of Soft Multipin Dry EEG Electrodes. Sensors 2021, 21, 6827. [Google Scholar] [CrossRef]
- Wang, R.X.; Jiang, X.M.; Wang, W.; Li, Z.H. A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators B-Chem. 2017, 244, 750–758. [Google Scholar] [CrossRef]
- Li, J.S.; Ma, Y.D.; Huang, D.; Wang, Z.Y.; Zhang, Z.T.; Ren, Y.J.; Hong, M.Y.; Chen, Y.F.; Li, T.Y.; Shi, X.Y.; et al. High-Performance Flexible Microneedle Array as a Low-Impedance Surface Biopotential Dry Electrode for Wearable Electrophysiological Recording and Polysomnography. Nano-Micro Lett. 2022, 14, 132. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Chen, Z.P.; Wang, H.J.; Dou, Z.L.; Liu, B.; Jiang, L.L. Fabrication of Bendable Microneedle-Array Electrode by Magnetorheological Drawing Lithography for Electroencephalogram Recording. IEEE Trans. Instrum. Meas. 2020, 69, 8328–8334. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, B.S.; Pan, J.S. Novel Noncontact Dry Electrode With Adaptive Mechanical Design for Measuring EEG in a Hairy Site. IEEE Trans. Instrum. Meas. 2015, 64, 3361–3368. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, L.T.; Zhang, Z.L.; Yang, H.; Zhang, Y.; Wu, J.L. The Feature, Performance, and Prospect of Advanced Electrodes for Electroencephalogram. Biosensors 2023, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Nakatani, S.; Nishida, S.I.; Taketoshi, D.; Araki, N. 3D Printable Dry EEG Electrodes with Coiled-Spring Prongs. Sensors 2020, 20, 4733. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Casson, A.J. 3D-printed, directly conductive and flexible electrodes for personalized electroencephalography. Sens. Actuators A-Phys. 2023, 349, 114062. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Wu, C.-Y.; Wong, A.M.-K.; Lin, B.-S. Novel Active Comb-Shaped Dry Electrode for EEG Measurement in Hairy Site. IEEE Trans. Biomed. Eng. 2015, 62, 256–263. [Google Scholar] [CrossRef]
- Mathewson, K.E.; Harrison, T.J.L.; Kizuk, S.A.D. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology 2017, 54, 74–82. [Google Scholar] [CrossRef]
- Lee, S.; Shin, Y.; Kumar, A.; Kim, K.; Lee, H.-N. Two-Wired Active Spring-Loaded Dry Electrodes for EEG Measurements. Sensors 2019, 19, 4572. [Google Scholar] [CrossRef]
- Habibzadeh Tonekabony Shad, E.; Molinas, M.; Ytterdal, T. Impedance and Noise of Passive and Active Dry EEG Electrodes: A Review. IEEE Sens. J. 2020, 20, 14565–14577. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lin, Y.P. Movement Artifact Suppression in Wearable Low-Density and Dry EEG Recordings Using Active Electrodes and Artifact Subspace Reconstruction. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 3844–3853. [Google Scholar] [CrossRef]
- Ding, C.; Wang, J.; Yuan, W.; Zhou, X.; Lin, Y.; Zhu, G.; Li, J.; Zhong, T.; Su, W.; Cui, Z. Durability Study of Thermal Transfer Printed Textile Electrodes for Wearable Electronic Applications. ACS Appl. Mater. Interfaces 2022, 14, 29144–29155. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, X.; Lu, Q.; Wang, J.; Ding, C.; Liu, F.; Kong, D.; Yuan, W.; Su, W.; Cui, Z. Thermally Laminated Lighting Textile for Wearable Displays with High Durability. ACS Appl. Mater. Interfaces 2023, 15, 5931–5941. [Google Scholar] [CrossRef]
- Li, G.L.; Wu, J.T.; Xia, Y.H.; Wu, Y.Y.; Tian, Y.L.; Liu, J.; Chen, D.C.; He, Q.G. Towards emerging EEG applications: A novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites. J. Neural Eng. 2020, 17, 026001. [Google Scholar] [CrossRef]
- Yuan, H.W.; Li, Y.; Yang, J.J.; Li, H.J.; Yang, Q.Y.; Guo, C.P.; Zhu, S.M.; Shu, X.K. State of the Art of Non-Invasive Electrode Materials for Brain-Computer Interface. Micromachines 2021, 12, 1521. [Google Scholar] [CrossRef] [PubMed]
- di Fronso, S.; Fiedler, P.; Tamburro, G.; Haueisen, J.; Bertollo, M.; Comani, S. Dry EEG in Sports Sciences: A Fast and Reliable Tool to Assess Individual Alpha Peak Frequency Changes Induced by Physical Effort. Front. Neurosci. 2019, 13, 982. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Jiang, B.; Liang, S.; Zhang, J.; Suo, D.; Wu, J.; Chen, D.; Pei, G.; Yan, T. Claw-shaped flexible and low-impedance conductive polymer electrodes for EEG recordings: Anemone dry electrode. Sci. China-Technol. Sci. 2023, 66, 255–266. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Zhang, L.; Sun, Q.; Lin, X.T.; Li, C.S. A novel command generation method for SSVEP-based BCI by introducing SSVEP blocking response. Comput. Biol. Med. 2022, 146, 105521. [Google Scholar] [CrossRef]
- Croft, R.J.; Chandler, J.S.; Burgess, A.P.; Barry, R.J.; Williams, J.D.; Clarke, A.R. Acute mobile phone operation affects neural function in humans. Clin. Neurophysiol. 2002, 113, 1623–1632. [Google Scholar] [CrossRef]
- Aliyev, F.; Turkoglu, C.; Celiker, C.; Uzunhasan, I. Electromagnetic interference with electrocardiogram recording of exercise test equipment. Turk Kardiyol. Dern. Ars. Turk Kardiyol. Derneginin Yayin Organidir 2010, 38, 352–354. [Google Scholar]
- Zandi, A.S.; Dumont, G.A.; Yedlin, M.J.; Lapeyrie, P.; Sudre, C.; Gaffet, S. Scalp EEG Acquisition in a Low-Noise Environment: A Quantitative Assessment. Ieee Trans. Biomed. Eng. 2011, 58, 11. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.J.; Zhang, H.; Huang, J.J.; Zhou, H.Y.; Yang, J.; Zhong, N. Single-Channel EEG-Based Machine Learning Method for Prescreening Major Depressive Disorder. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1579–1603. [Google Scholar] [CrossRef]
- Neghabi, M.; Marateb, H.R.; Mahnam, A. Comparing Steady-State Visually Evoked Potentials Frequency Estimation Methods in Brain-Computer Interface With the Minimum Number of EEG Channels. Basic Clin. Neurosci. 2019, 10, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Q.; Pathak, S.; Englebienne, G.; Seifert, C. Channel Contribution in Deep Learning Based Automatic Sleep Scoring-How Many Channels Do We Need? IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 494–505. [Google Scholar] [CrossRef]
- Vorderwuelbecke, B.J.; Baroumand, A.G.; Spinelli, L.; Seeck, M.; van Mierlo, P.; Vulliemoz, S. Automated interictal source localisation based on high-density EEG. Seizure-Eur. J. Epilepsy 2021, 92, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Stoyell, S.M.; Wilmskoetter, J.; Dobrota, M.-A.; Chinappen, D.M.; Bonilha, L.; Mintz, M.; Brinkmann, B.H.; Herman, S.T.; Peters, J.M.; Vulliemoz, S.; et al. High-Density EEG in Current Clinical Practice and Opportunities for the Future. J. Clin. Neurophysiol. 2021, 38, 112–123. [Google Scholar] [CrossRef]
Frequency | SNR | |
---|---|---|
Raw Signal | Active Electrode Circuit | |
10 Hz | 9.13 dB | 10.42 dB |
30 Hz | 11.89 dB | 14.48 dB |
50 Hz | 7.56 dB | 7.45 dB |
100 Hz | 11.01 dB | 10.44 dB |
Experiment | Electrodes | ||
---|---|---|---|
Passive | Active | Wet | |
Eyes open-closed | 2.96 dB | 7.46 dB | 10.58 dB |
SSVEP | 2.30 dB | 5.78 dB | 10.14 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ding, Y.; Yuan, W.; Chen, H.; Chen, W.; Chen, C. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas. Bioengineering 2024, 11, 276. https://doi.org/10.3390/bioengineering11030276
Wang Z, Ding Y, Yuan W, Chen H, Chen W, Chen C. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas. Bioengineering. 2024; 11(3):276. https://doi.org/10.3390/bioengineering11030276
Chicago/Turabian StyleWang, Zaihao, Yuhao Ding, Wei Yuan, Hongyu Chen, Wei Chen, and Chen Chen. 2024. "Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas" Bioengineering 11, no. 3: 276. https://doi.org/10.3390/bioengineering11030276
APA StyleWang, Z., Ding, Y., Yuan, W., Chen, H., Chen, W., & Chen, C. (2024). Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas. Bioengineering, 11(3), 276. https://doi.org/10.3390/bioengineering11030276