Advancing Ocular Imaging: A Hybrid Attention Mechanism-Based U-Net Model for Precise Segmentation of Sub-Retinal Layers in OCT Images
Abstract
:1. Introduction
- Key Contributions:
- Dual Attention U-Net Architecture: This study introduces an innovative U-Net model with five encoder and decoder layers, incorporating Edge and Spatial Attention Modules. This dual attention mechanism enhances the model’s ability to capture distinct features crucial for precise OCT image segmentation.
- Efficient Skip Connection Handling: A departure from traditional practices, our approach strategically replaces max-pooled pixels in skip connections, preserving essential residual features. This optimisation reduces computational redundancy, decreases training duration, and enhances overall model efficiency.
- Strategic Attention Mechanism Integration: Our model strategically employs Edge Attention and Spatial Attention blocks to tailor attention mechanisms to hierarchical feature distribution. This enhances adaptability, allowing the model to focus on edge information in shallower layers and spatial intricacies in deeper layers for improved sub-retinal layer segmentation.
2. Related Works
3. Materials and Methods
3.1. Dataset
3.2. Pre-Processing
3.3. Network Overview
3.3.1. Edge Attention Block
3.3.2. Spatial Attention
4. Experimental Setup
4.1. Network Implementation
4.2. Performance Measures
5. Results and Discussion
5.1. Ablation Study
5.2. Assessment of the Hybrid-U-Net Model by Comparison with Existing State-of-the-Art Models
5.3. Evaluating Model Performance Using Different Measures
5.4. Discussion and Future Scope
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Measure | Value | Full Name |
---|---|---|
ACC Macro | 0.98 | Accuracy Macro |
ARI | 0.97 | Adjusted Rand Index |
AUNP | 0.97 | Area Under the Receiver Operating Characteristic Curve for No Prevalence |
AUNU | 0.89 | Area Under the Receiver Operating Characteristic Curve for No Uncertainty |
Bangdiwala B | 0.98 | Bangdiwala’s B statistic |
Bennett S | 0.97 | Bennett S score |
CBA | 0.76 | Confusion Angle |
CSI | 0.67 | Critical Success Index |
Chi-Squared DF | 48 | Chi-Squared Degrees of Freedom |
Conditional Entropy | 0.15 | |
Cramer V | 0.83 | |
Cross Entropy | 1.69 | |
F1 Macro | 0.81 | F1 Score Macro |
F1 Micro | 0.98 | F1 Score Micro |
FNR Macro | 0.22 | False Negative Rate Macro |
FNR Micro | 0.023 | False Negative Rate Micro |
FPR Macro | 0.00366 | False Positive Rate Macro |
FPR Micro | 0.00363 | False Positive Rate Micro |
Gwet AC1 | 0.96 | |
Hamming Loss | 0.025 | |
Joint Entropy | 1.83 | |
KL Divergence | 0.00518 | Kullback–Leibler Divergence |
Kappa | 0.95 | Cohen’s Kappa |
Kappa No Prevalence | 0.94 | Cohen’s Kappa No Prevalence |
Kappa Standard Error | 8 × 10−5 | Cohen’s Kappa Standard Error |
Kappa Unbiased | 0.95 | Cohen’s Kappa Unbiased |
Krippendorff Alpha | 0.95 | |
Lambda A | 0.94 | |
Lambda B | 0.94 | |
Mutual Information | 1.53 | |
NIR | 0.55 | Negative Predictive Value (NIR) |
Overall ACC | 0.97 | Overall Accuracy |
Overall CEN | 0.037 | Overall Cross Entropy |
Overall J | 0.71 | Overall Jaccard Index |
Overall MCC | 0.95 | Overall MCC: Overall Matthews Correlation Coefficient |
Overall MCEN | 0.061 | Overall MCEN: Overall Mean Cross Entropy |
Overall RACC | 0.39 | Overall RACC: Overall Relative Accuracy |
Overall RACCU | 0.39 | Overall RACCU: Overall Unweighted Relative Accuracy |
PPV Macro | 0.86 | PPV Macro: Positive Predictive Value Macro |
PPV Micro | 0.97 | PPV Micro: Positive Predictive Value Micro |
Pearson C | 0.96 | Pearson C: Pearson Correlation Coefficient |
Phi-Squared | 4.63 | Phi-Squared: Phi-Squared |
RCI | 0.90 | RCI: Rogers Tanimoto Coefficient |
SOA1 (Landis and Koch) | Almost Perfect | Strength of Agreement 1 (Landis and Koch) |
SOA2 (Fleiss) | Excellent | |
SOA3 (Altman) | Very Good | |
SOA4 (Cicchetti) | Excellent | |
SOA5 (Cramer) | Very Strong | |
SOA6 (Matthews) | Very Strong | |
Scott PI | 0.95 | |
Standard Error | 5 × 10−5 | |
TNR Macro | 0.99 | True Negative Rate Macro |
TNR Micro | 0.99 | True Negative Rate Micro |
TPR Macro | 0.79 | True Positive Rate Macro |
TPR Micro | 0.97 | True Positive Rate Micro |
Class | Above ILM | ILM-IPL/INL | IPL/INL-RPE | RPE-BM | Under BM |
---|---|---|---|---|---|
ACC (Accuracy) | 0.99287 | 0.98946 | 0.985 | 0.98622 | 0.98362 |
AGF (Adjusted F-score) | 0.99631 | 0.92087 | 0.9657 | 0.89807 | 0.98048 |
AGM (Adjusted geometric mean) | 0.9929 | 0.953 | 0.9797 | 0.94625 | 0.98548 |
AM (Difference between automatic and manual classification) | 75295 | −108039 | 94754 | −4484 | −56344 |
AUC (Area under the ROC curve) | 0.99484 | 0.91322 | 0.97288 | 0.90012 | 0.9941 |
AUCI (AUC value interpretation) | Excellent | Excellent | Excellent | Excellent | Excellent |
AUPR (Area under the PR curve) | 0.9879 | 0.90971 | 0.91041 | 0.818 | 0.99423 |
BB (Braun-Blanquet similarity) | 0.97631 | 0.82683 | 0.86228 | 0.80194 | 0.98961 |
BCD (Bray–Curtis dissimilarity) | 0.00342 | 0.00491 | 0.0043 | 0.0002 | 0.00256 |
BM (Informedness or bookmaker informedness) | 0.98968 | 0.82645 | 0.94575 | 0.80023 | 0.9882 |
CEN (Confusion entropy) | 0.02496 | 0.107 | 0.13045 | 0.25073 | 0.01327 |
DP (Discriminant power) | 2.92196 | 2.25676 | 1.7927 | 1.86075 | 2.6621 |
DPI (Discriminant power interpretation) | Fair | Fair | Limited | Limited | Fair |
ERR (Error rate) | 0.00713 | 0.01054 | 0.015 | 0.00378 | 0.00638 |
F0.5 (F0.5 score) | 0.98086 | 0.95433 | 0.87996 | 0.82744 | 0.99699 |
F1 (F1 score—harmonic mean of precision and sensitivity) | 0.98777 | 0.90216 | 0.90787 | 0.81769 | 0.99421 |
F2 (F2 score) | 0.99477 | 0.8554 | 0.93761 | 0.80816 | 0.99145 |
FDR (False discovery rate) | 0.02369 | 0.0074 | 0.13772 | 0.16593 | 0.00115 |
FNR (Miss rate or false negative rate) | 0.00051 | 0.17317 | 0.04146 | 0.19806 | 0.01039 |
FOR (False omission rate) | 0.00021 | 0.0107 | 0.0035 | 0.00212 | 0.01273 |
FP (False positive/type 1 error/false alarm) | 76899 | 3990 | 129945 | 18567 | 6943 |
FPR (Fall-out or false positive rate) | 0.00981 | 0.00039 | 0.01279 | 0.0017 | 0.00141 |
G (G-measure geometric mean of precision and sensitivity) | 0.98784 | 0.90593 | 0.90914 | 0.81785 | 0.99422 |
GI (Gini index) | 0.98968 | 0.82645 | 0.94575 | 0.80023 | 0.9882 |
GM (G-mean geometric mean of specificity and sensitivity) | 0.99483 | 0.90913 | 0.97277 | 0.89475 | 0.99409 |
HD (Hamming distance) | 78503 | 116019 | 165136 | 41618 | 70230 |
IBA (Index of balanced accuracy) | 0.9989 | 0.68371 | 0.91915 | 0.64337 | 0.97935 |
ICSI (Individual classification success index) | 0.97581 | 0.81943 | 0.82083 | 0.63601 | 0.98846 |
IS (Information score) | 1.7611 | 4.07832 | 3.48345 | 6.30205 | 0.85181 |
J (Jaccard index) | 0.97583 | 0.82177 | 0.83128 | 0.6916 | 0.98849 |
MCC (Matthews correlation coefficient) | 0.98287 | 0.90083 | 0.90122 | 0.81594 | 0.98716 |
MCCI (Matthews correlation coefficient interpretation) | Very Strong | Very Strong | Very Strong | Strong | Very Strong |
MCEN (Modified confusion entropy) | 0.04307 | 0.15441 | 0.20022 | 0.36271 | 0.02338 |
MK (Markedness) | 0.97611 | 0.9819 | 0.85879 | 0.83196 | 0.98612 |
N (Condition negative) | 7838776 | 10363105 | 10161226 | 10893666 | 4916500 |
NLR (Negative likelihood ratio) | 0.00051 | 0.17323 | 0.042 | 0.1984 | 0.0104 |
NLRI (Negative likelihood ratio interpretation) | Good | Fair | Good | Fair | Good |
NPV (Negative predictive value) | 0.99979 | 0.9893 | 0.9965 | 0.99788 | 0.98727 |
OC (Overlap coefficient) | 0.99949 | 0.9926 | 0.95854 | 0.83407 | 0.99885 |
OOC (Otsuka-Ochiai coefficient) | 0.98784 | 0.90593 | 0.90914 | 0.81785 | 0.99422 |
OP (Optimized precision) | 0.98819 | 0.89486 | 0.97027 | 0.88715 | 0.98911 |
PPV (Precision or positive predictive value) | 0.97631 | 0.9926 | 0.86228 | 0.83407 | 0.99885 |
PRE (Prevalence) | 0.28803 | 0.05876 | 0.0771 | 0.01057 | 0.55345 |
Q (Yule Q—coefficient of colligation) | 0.99999 | 0.99984 | 0.99888 | 0.99916 | 0.99997 |
QI (Yule Q interpretation) | Strong | Strong | Strong | Strong | Strong |
RACC (Random accuracy) | 0.08493 | 0.00288 | 0.00661 | 0.00011 | 0.30348 |
RACCU (Random accuracy unbiased) | 0.08495 | 0.0029 | 0.00663 | 0.00011 | 0.30348 |
TN (True negative/correct rejection) | 7761877 | 10359115 | 10031281 | 10875099 | 4909557 |
TNR (Specificity or true negative rate) | 0.99019 | 0.99961 | 0.98721 | 0.9983 | 0.99859 |
TON (Test outcome negative) | 7763481 | 10471144 | 10066472 | 10898150 | 4972844 |
TOP (Test outcome positive) | 3246567 | 538904 | 943576 | 111898 | 6037204 |
TP (True positive/hit) | 3169668 | 534914 | 813631 | 93331 | 6030261 |
TPR (Sensitivity, recall, hit rate, or true positive rate) | 0.99949 | 0.82683 | 0.95854 | 0.80194 | 0.98961 |
Y (Youden index) | 0.98968 | 0.82645 | 0.94575 | 0.80023 | 0.9882 |
References
- Hee, M.R. Optical Coherence Tomography of the Human Retina. Arch. Ophthalmol. 1995, 113, 325. [Google Scholar] [CrossRef]
- Karn, P.K.; Abdulla, W.H. On Machine Learning in Clinical Interpretation of Retinal Diseases Using OCT Images. Bioengineering 2023, 10, 407. [Google Scholar] [CrossRef]
- Sakthi Sree Devi, M.; Ramkumar, S.; Vinuraj Kumar, S.; Sasi, G. Detection of Diabetic Retinopathy Using OCT Image. Mater. Today Proc. 2021, 47, 185–190. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, M.; Ali, S.S.; Mahmoud, A.H.; Shalaby, A.M.; El-Baz, A. Accurate Detection of Non-Proliferative Diabetic Retinopathy in Optical Coherence Tomography Images Using Convolutional Neural Networks. IEEE Access 2020, 8, 34387–34397. [Google Scholar] [CrossRef]
- Rajagopalan, N.; Narasimhan, V.; Kunnavakkam Vinjimoor, S.; Aiyer, J. Deep CNN Framework for Retinal Disease Diagnosis Using Optical Coherence Tomography Images. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 7569–7580. [Google Scholar] [CrossRef]
- Dong, Y.N.; Liang, G.S. Research and Discussion on Image Recognition and Classification Algorithm Based on Deep Learning. In Proceedings of the 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 8–10 November 2019; pp. 274–278. [Google Scholar] [CrossRef]
- Zang, P.; Hormel, T.T.; Hwang, T.S.; Bailey, S.T.; Huang, D.; Jia, Y. Deep-Learning–Aided Diagnosis of Diabetic Retinopathy, Age-Related Macular Degeneration, and Glaucoma Based on Structural and Angiographic OCT. Ophthalmol. Sci. 2023, 3, 100245. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, Q.; He, X.J.; Li, P.; Fan, W.; Yuan, S.T.; Park, H. Automatic Subretinal Fluid Segmentation of Retinal SD-OCT Images with Neurosensory Retinal Detachment Guided by Enface Fundus Imaging. IEEE Trans. Biomed. Eng. 2018, 65, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.T.; Wijewickrema, S.; O’Leary, S. Identifying Diabetic Retinopathy from OCT Images Using Deep Transfer Learning with Artificial Neural Networks. In Proceedings of the 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), Cordoba, Spain, 5–7 June 2019; Volume 2019, pp. 281–286. [Google Scholar] [CrossRef]
- Garvin, M.K.; Abràmoff, M.D.; Wu, X.; Russell, S.R.; Burns, T.L.; Sonka, M. Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images. IEEE Trans. Med. Imaging 2009, 28, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Teng, Z.; Tang, Q.; Song, J. Detection and Classification of Power Quality Disturbances Using Double Resolution S-Transform and DAG-SVMs. IEEE Trans. Instrum. Meas. 2016, 65, 2302–2312. [Google Scholar] [CrossRef]
- Dufour, P.A.; Ceklic, L.; Abdillahi, H.; Schroder, S.; De Dzanet, S.; Wolf-Schnurrbusch, U.; Kowal, J. Graph-Based Multi-Surface Segmentation of OCT Data Using Trained Hard and Soft Constraints. IEEE Trans. Med. Imaging 2013, 32, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Novosel, J.; Wang, Z.; De Jong, H.; Van Velthoven, M.; Vermeer, K.A.; Vliet, L.J. Van locally-adaptive loosely-coupled level sets for retinal layer and fluid segmentation in subjects with central serous retinopathy. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 702–705. [Google Scholar] [CrossRef]
- Song, Q.; Bai, J.; Garvin, M.K.; Sonka, M.; Buatti, J.M. Optimal Multiple Surface Segmentation With Shape and Context Priors. IEEE Trans. Med. Imaging 2013, 32, 376–386. [Google Scholar] [CrossRef]
- Lang, A.; Carass, A.; Hauser, M.; Sotirchos, E.S.; Calabresi, P.A.; Ying, H.S.; Prince, J.L. Retinal Layer Segmentation of Macular OCT Images Using Boundary Classification. Biomed. Opt. Express 2013, 4, 518–533. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Carass, A.; Solomon, S.D.; Saidha, S.; Calabresi, P.A.; Prince, J.L. Multi-Layer Fast Level Set Segmentation for Macular OCT. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1445–1448. [Google Scholar] [CrossRef]
- Xiang, D.; Tian, H.; Yang, X.; Shi, F.; Zhu, W.; Chen, H.; Chen, X. Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization. IEEE Trans. Image Process. 2018, 27, 5880–5891. [Google Scholar] [CrossRef]
- Lee, S.; Charon, N.; Charlier, B.; Popuri, K.; Lebed, E.; Sarunic, M.V.; Trouvé, A.; Beg, M.F. Atlas-Based Shape Analysis and Classification of Retinal Optical Coherence Tomography Images Using the Functional Shape (Fshape) Framework. Med. Image Anal. 2017, 35, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Shi, F.; Gao, E.; Zhu, W.; Chen, H.; Chen, X. Shared-Hole Graph Search with Adaptive Constraints for 3D Optic Nerve Head Optical Coherence Tomography Image Segmentation. Biomed. Opt. Express 2018, 9, 34–46. [Google Scholar] [CrossRef]
- Fang, L.; Cunefare, D.; Wang, C.; Guymer, R.H.; Li, S.; Farsiu, S. Automatic Segmentation of Nine Retinal Layer Boundaries in OCT Images of Non-Exudative AMD Patients Using Deep Learning and Graph Search. Biomed. Opt. Express 2017, 8, 2732–2744. [Google Scholar] [CrossRef]
- Roy, A.G.; Conjeti, S.; Karri, S.P.K.; Sheet, D.; Katouzian, A.; Wachinger, C.; Navab, N. ReLayNet: Retinal Layer and Fluid Segmentation of Macular Optical Coherence Tomography Using Fully Convolutional Networks. Biomed. Opt. Express 2017, 8, 111–118. [Google Scholar] [CrossRef]
- Wang, B.; Wei, W.; Qiu, S.; Wang, S.; Li, D.; He, H.; Member, S. Boundary Aware U-Net for Retinal Layers Segmentation in Optical Coherence Tomography Images. IEEE J. Biomed. Health Inform. 2021, 25, 3029–3040. [Google Scholar] [CrossRef]
- Apostolopoulos, S.; De Zanet, S.; Ciller, C. Pathological OCT Retinal Layer Segmentation Using Branch Residual U-Shape Networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017. [Google Scholar]
- Li, Q.; Li, S.; He, Z.; Guan, H.; Chen, R.; Xu, Y.; Wang, T.; Qi, S.; Mei, J.; Wang, W. Deepretina: Layer Segmentation of Retina in OCT Images Using Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 61. [Google Scholar] [CrossRef]
- Gopinath, K.; Rangrej, S.B.; Sivaswamy, J. A Deep Learning Framework for Segmentation of Retinal Layers from OCT Images. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; pp. 888–893. [Google Scholar] [CrossRef]
- Hu, K.; Liu, D.; Chen, Z.; Li, X.; Zhang, Y. Embedded Residual Recurrent Network and Graph Search for the Segmentation of Retinal Layer Boundaries in Optical Coherence Tomography. IEEE Trans. Instrum. Meas. 2021, 70, 1–17. [Google Scholar] [CrossRef]
- Xue, S.; Wang, H.; Guo, X. CTS-Net: A Segmentation Network for Glaucoma Optical Coherence Tomography Retinal Layer Images. Bioengineering 2023, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, G.; Zou, B.; Chen, W.; Zhang, T.; Xu, Z.; Cai, K.; Wang, T.; Sun, Y.; Wang, Y.; et al. Segmentation of Low-Light Optical Coherence Tomography Angiography Images under the Constraints of Vascular Network Topology. Sensors 2024, 24, 774. [Google Scholar] [CrossRef]
- Marciniak, T.; Stankiewicz, A.; Zaradzki, P. Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction. Sensors 2023, 23, 1870. [Google Scholar] [CrossRef] [PubMed]
- Viedma, I.A.; Alonso-Caneiro, D.; Read, S.A.; Collins, M.J. OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN. Sensors 2022, 22, 2016. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Gao, K.; Kong, W.; Niu, S.; Li, D.; Chen, Y. Automatic Retinal Layer Segmentation in SD-OCT Images with CSC Guided by Spatial Characteristics. Multimed. Tools Appl. 2020, 79, 4417–4428. [Google Scholar] [CrossRef]
- Bello, I.; Zoph, B.; Le, Q.; Vaswani, A.; Shlens, J. Attention Augmented Convolutional Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3285–3294. [Google Scholar] [CrossRef]
- Dechen, H.; Hualing, L. A Graph-based Edge Attention Gate Medical Image Segmentation Method. IET Image Process. 2023, 17, 2142–2157. [Google Scholar]
- Shen, Y.; Li, J.; Member, S.; Zhu, W.; Yu, K.; Wang, M.; Peng, Y.; Zhou, Y.; Guan, L.; Chen, X.; et al. Graph Attention U-Net for Retinal Layer Surface Detection and Choroid Neovascularization Segmentation in OCT Images. IEEE Trans. Med. Imaging 2023, 42, 3140–3154. [Google Scholar] [CrossRef]
- Melinščak, M. Attention-Based U-Net: Joint Segmentation of Layers and Fluids from Retinal OCT Images. In Proceedings of the 2023 46th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 22–26 May 2023; pp. 391–396. [Google Scholar] [CrossRef]
- Pappu, G.P. EANet: Multiscale Autoencoder Based Edge Attention Network for Fluid Segmentation from SD-OCT Images. Int. J. Imaging Syst. Technol. 2023, 33, 909–927. [Google Scholar] [CrossRef]
- Melinščak, M.; Radmilov, M.; Vatavuk, Z.; Lončarić, S. AROI: Annotated Retinal OCT Images Database. In Proceedings of the 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27 September–1 October 2021; pp. 371–376. [Google Scholar] [CrossRef]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PyCM: Multiclass Confusion Matrix Library in Python. J. Open Source Softw. 2018, 3, 729. [Google Scholar] [CrossRef]
- Tang, F.; Huang, Q.; Wang, J.; Hou, X.; Su, J. DuAT: Dual-Aggregation Transformer Network for Medical Image Segmentation. arXiv 2022, arXiv:2212.11677. [Google Scholar]
- Qin, X.; Fan, D.-P.; Huang, C.; Diagne, C.; Zhang, Z.; Sant’Anna, A.C.; Suàrez, A.; Jagersand, M.; Shao, L. Boundary-Aware Segmentation Network for Mobile and Web Applications. arXiv 2021, arXiv:2101.04704. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-030-01266-3. [Google Scholar]
- Yang, C.E.; Wang, W.; Wu, C.; Jin, K.A.I.; Yan, Y.A.N.; Ye, J.; Wang, S. Multi-Task Dual Boundary Aware Network for Retinal Layer Segmentation. IEEE Access 2023, 11, 125346–125358. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 9992–10002. [Google Scholar]
Structure A | Structure B | Structure C | Structure D | Proposed | |
---|---|---|---|---|---|
Mean DC | 88.80 | 87.70 | 89.1 | 88.40 | 94.99 |
Mean BIoU | 77.80 | 76.67 | 79.90 | 78.62 | 91.80 |
Training Time | 48.81 min | 58.61 min | 74.36 min | 71.77 min | 44.31 min |
Models | Above ILM | ILM-IPL/INL | IPL/INL-RPE | RPE-BM | Under BM |
---|---|---|---|---|---|
Interobserver [37] | 98.20 | 95.20 | 94.80 | 69.90 | 98.90 |
Intraobserver [37] | 99.80 | 97.30 | 97.00 | 77.80 | 99.80 |
Standard U-net [37] | 99.50 | 95.00 | 92.30 | 66.90 | 98.80 |
U-net-like [37] | 99.50 | 89.90 | 89.00 | 47.60 | 98.80 |
U-net++ [37] | 99.20 | 94.40 | 92.40 | 64.10 | 98.60 |
DuAT [42] | 89.21 | 91.84 | 89.40 | 91.80 | 85.27 |
RelayNet [22] | 82.04 | 78.79 | 76.27 | 77.80 | 74.51 |
BASNet [43] | 86.13 | 77.76 | 64.90 | 76.65 | 68.79 |
Deeplab V3+ [44] | 89.21 | 88.93 | 86.42 | 89.42 | 85.76 |
DBANet [45] | 91.19 | 90.21 | 88.25 | 91.47 | 87.35 |
Swin-Unet [46] | 88.45 | 87.87 | 84.23 | 87.45 | 79.38 |
Proposed model | 99.80 | 97.78 | 98.70 | 78.90 | 99.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karn, P.K.; Abdulla, W.H. Advancing Ocular Imaging: A Hybrid Attention Mechanism-Based U-Net Model for Precise Segmentation of Sub-Retinal Layers in OCT Images. Bioengineering 2024, 11, 240. https://doi.org/10.3390/bioengineering11030240
Karn PK, Abdulla WH. Advancing Ocular Imaging: A Hybrid Attention Mechanism-Based U-Net Model for Precise Segmentation of Sub-Retinal Layers in OCT Images. Bioengineering. 2024; 11(3):240. https://doi.org/10.3390/bioengineering11030240
Chicago/Turabian StyleKarn, Prakash Kumar, and Waleed H. Abdulla. 2024. "Advancing Ocular Imaging: A Hybrid Attention Mechanism-Based U-Net Model for Precise Segmentation of Sub-Retinal Layers in OCT Images" Bioengineering 11, no. 3: 240. https://doi.org/10.3390/bioengineering11030240
APA StyleKarn, P. K., & Abdulla, W. H. (2024). Advancing Ocular Imaging: A Hybrid Attention Mechanism-Based U-Net Model for Precise Segmentation of Sub-Retinal Layers in OCT Images. Bioengineering, 11(3), 240. https://doi.org/10.3390/bioengineering11030240