Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Experimental Protocol
2.2. Motion Capture Systems and Laboratory Configuration
2.3. Markerless Model Development
2.4. System Calibration Procedure
2.5. Data Collecting and Processing
2.6. Statistical Analysis
3. Results
3.1. Joint Centers and Toe Placements
3.2. Joint Vector Angles
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Marker Name | Definition | Position on Participant/Skiing Equipment |
---|---|---|
OFFSET | Right back | Anywhere over the right scapula |
LSHO | Left shoulder | On the acromioclavicular joint |
LSHF | Left shoulder front | Humerus lesser tubercle |
LSHB | Left shoulder back | Same position as LSHF on the posterior side |
LUPA | Left upper arm | On the upper lateral 1/3 surface of the left arm (placed asymmetrically with RUPA) |
LELB | Left elbow | On the lateral epicondyle |
LELBM | Left elbow medial | On the medial epicondyle |
LFRM | Left forearm | On the lower lateral 1/3 surface of the left forearm (placed asymmetrically with RFRM) |
LWRA | Left wrist marker A | At the thumb side of a bar attached to a wristband on the posterior of the left wrist, as close to the wrist joint center as possible. Loose markers can be used, but for better tracking of the axial rotations, a bar is recommended. |
LWRB | Left wrist marker B | At the little finger side of a bar attached to a wristband on the posterior of the left wrist, as close to the wrist joint center as possible. Loose markers can be used, but for better tracking of the axial rotations, a bar is recommended. |
RSHO | Right shoulder | On the acromioclavicular joint |
RSHF | Right shoulder front | Humerus lesser tubercle |
RSHB | Right shoulder back | Same position as RSHF on the posterior side |
RUPA | Right upper arm | On the lower lateral 1/3 surface of the right arm (placed asymmetrically with LUPA) |
RELB | Right elbow | On the lateral epicondyle approximating the elbow joint axis |
RELB | Right elbow | On the lateral epicondyle |
RFRM | Right forearm | On the lower lateral 1/3 surface of the right forearm (placed asymmetrically with LFRM) |
RWRA | Right wrist marker A | At the thumb side of a bar attached symmetrically with a wristband on the posterior of the right wrist, as close to the wrist joint center as possible |
RWRB | Right wrist marker B | At the little finger side of a bar attached symmetrically with a wristband on the posterior of the right wrist, as close to the wrist joint center as possible |
RPSI | Right PSIS | Right posterior superior iliac spine (immediately below the sacroiliac joints, at the point where the spine joins the pelvis) |
RASI | Right ASIS | Right anterior superior iliac spine |
LPSI | Left PSIS | Left posterior superior iliac spine (immediately below the sacroiliac joints, at the point where the spine joins the pelvis) |
LASI | Left ASIS | Left anterior superior iliac spine |
LTHI | Left thigh | Over the lower lateral 1/3 surface of the left thigh |
LKNE | Left knee | On the flexion–extension axis of the left knee |
LTIB | Left tibia | Over the lower 1/3 surface of the left shank |
LANK | Left ankle | On the lateral malleolus along an imaginary line that passes through the transmalleolar axis |
LHEE | Left heel | On the calcaneus at the same height above the plantar surface of the foot as the toe marker |
LTOE | Left toe | Over the second metatarsal head, on the mid-foot side of the equinus break between forefoot and mid-foot |
RTHI | Right thigh | Over the upper lateral 1/3 surface of the right thigh |
RKNE | Right knee | On the flexion–extension axis of the right knee. |
RTIB | Right tibia | Over the upper 1/3 surface of the right shank |
RANK | Right ankle | On the lateral malleolus along an imaginary line that passes through the transmalleolar axis |
RHEE | Right heel | On the calcaneus at the same height above the plantar surface of the foot as the toe marker |
RTOE | Right toe | Over the second metatarsal head, on the mid-foot side of the equinus break between forefoot and mid-foot |
LKNEM | Left knee medial | Left medial femur condyles |
RKNEM | Right knee medial | Right medial femur condyles |
LANKM | Left ankle medial | Left medial malleolus |
RANKM | Right ankle medial | Right medial malleolus |
LSKI1 | Left Ski 1 | On the front side of the binding of the left roller ski, on the left edge, on the front side of LSKI2 |
LSKI2 | Left Ski 2 | On the front side of the binding of the left roller ski, on the left edge, on the back side of LSKI1 |
LSKI3 | Left Ski 3 | On the front side of the binding of the left roller ski, on the right edge, placed asymmetrically with LSKI1 |
RSKI1 | Right Ski 1 | On the front side of the binding of the right roller ski, on the right edge, on the front side of RSKI2 |
RSKI2 | Right Ski 2 | On the front side of the binding of the right roller ski, on the right edge, on the back side of RSKI1 |
RSKI3 | Right Ski 3 | On the front side of the binding of the right roller ski, on the left edge, placed asymmetrically with RSKI1 |
LPOLE1 | Left Pole 1 | At the top of the left pole, below the handle of the pole |
LPOLE2 | Left Pole 2 | In the middle of the left pole, below LPOLE1 |
LPOLE3 | Left Pole 3 | At the bottom of the left pole, below LPOLE2 |
RPOLE1 | Right Pole 1 | At the top of the right pole, below the handle of the pole |
RPOLE2 | Right Pole 2 | In the middle of the right pole, below RPOLE1 |
RPOLE3 | Right Pole 3 | At the bottom of the left pole, below RPOLE2 |
References
- Miranda, D.L.; Rainbow, M.J.; Crisco, J.J.; Fleming, B.C. Kinematic Differences between Optical Motion Capture and Biplanar Videoradiography during a Jump–Cut Maneuver. J. Biomech. 2013, 46, 567–573. [Google Scholar] [CrossRef]
- Kessler, S.E.; Rainbow, M.J.; Lichtwark, G.A.; Cresswell, A.G.; D’andrea, S.E.; Konow, N.; Kelly, L.A. A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics. Front. Bioeng. Biotechnol. 2019, 7, 474006. [Google Scholar] [CrossRef]
- Tsai, T.-Y.; Lu, T.-W.; Kuo, M.-Y.; Lin, C.-C. Effects of Soft Tissue Artifacts on the Calculated Kinematics and Kinetics of the Knee during Stair-Ascent. J. Biomech. 2011, 44, 1182–1188. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, C.; Yang, T.; Zhu, S.; Shah, M.; Wu, W.; Shen, J.; Kehtarnavaz, N.; Zheng, C.; Wu, W.; et al. Deep Learning-Based Human Pose Estimation: A Survey. J. ACM 2023, 56, 1–37. [Google Scholar] [CrossRef]
- Wang, J.; Tan, S.; Zhen, X.; Xu, S.; Zheng, F.; He, Z.; Shao, L. Deep 3D Human Pose Estimation: A Review. Comput. Vis. Image Underst. 2021, 210, 103225. [Google Scholar] [CrossRef]
- Desmarais, Y.; Mottet, D.; Slangen, P.; Montesinos, P. A Review of 3D Human Pose Estimation Algorithms for Markerless Motion Capture. Comput. Vis. Image Underst. 2021, 212, 103275. [Google Scholar] [CrossRef]
- Mündermann, L.; Corazza, S.; Andriacchi, T.P. The Evolution of Methods for the Capture of Human Movement Leading to Markerless Motion Capture for Biomechanical Applications. J. Neuroeng. Rehabil. 2006, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sport. Med. Open 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern. Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless Pose Estimation of User-Defined Body Parts with Deep Learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Cronin, N.J. Using Deep Neural Networks for Kinematic Analysis: Challenges and Opportunities. J. Biomech. 2021, 123, 110460. [Google Scholar] [CrossRef] [PubMed]
- Cronin, N.J.; Rantalainen, T.; Ahtiainen, J.P.; Hynynen, E.; Waller, B. Markerless 2D Kinematic Analysis of Underwater Running: A Deep Learning Approach. J. Biomech. 2019, 87, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Vonstad, E.K.; Su, X.; Vereijken, B.; Bach, K.; Nilsen, J.H. Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training. Sensors 2020, 20, 6940. [Google Scholar] [CrossRef] [PubMed]
- Slowik, J.S.; McCutcheon, T.W.; Lerch, B.G.; Fleisig, G.S. Comparison of a Single-View Image-Based System to a Multi-Camera Marker-Based System for Human Static Pose Estimation. J. Biomech. 2023, 159, 111746. [Google Scholar] [CrossRef] [PubMed]
- Kidziński, Ł.; Yang, B.; Hicks, J.L.; Rajagopal, A.; Delp, S.L.; Schwartz, M.H. Deep Neural Networks Enable Quantitative Movement Analysis Using Single-Camera Videos. Nat. Commun. 2020, 11, 4054. [Google Scholar] [CrossRef]
- Nakano, N.; Sakura, T.; Ueda, K.; Omura, L.; Kimura, A.; Iino, Y.; Fukashiro, S.; Yoshioka, S. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras. Front. Sport Act. Living 2020, 2, 538330. [Google Scholar] [CrossRef] [PubMed]
- Needham, L.; Evans, M.; Cosker, D.P.; Wade, L.; McGuigan, P.M.; Bilzon, J.L.; Colyer, S.L. The Accuracy of Several Pose Estimation Methods for 3D Joint Centre Localisation. Sci. Rep. 2021, 11, 20673. [Google Scholar] [CrossRef]
- Ripic, Z.; Nienhuis, M.; Signorile, J.F.; Best, T.M.; Jacobs, K.A.; Eltoukhy, M. A Comparison of Three-Dimensional Kinematics between Markerless and Marker-Based Motion Capture in Overground Gait. J. Biomech. 2023, 159, 111793. [Google Scholar] [CrossRef]
- Needham, L.; Evans, M.; Wade, L.; Cosker, D.P.; McGuigan, M.P.; Bilzon, J.L.; Colyer, S.L. The Development and Evaluation of a Fully Automated Markerless Motion Capture Workflow. J. Biomech. 2022, 144, 111338. [Google Scholar] [CrossRef]
- Ripic, Z.; Theodorakos, I.; Andersen, M.S.; Signorile, J.F.; Best, T.M.; Jacobs, K.A.; Eltoukhy, M. Prediction of Gait Kinetics Using Markerless-Driven Musculoskeletal Modeling. J. Biomech. 2023, 157, 111712. [Google Scholar] [CrossRef]
- Strutzenberger, G.; Kanko, R.; Selbie, S.; Schwameder, H.; Deluzio, K. Assessment of Kinematic CMJ Data using a Deep Learning Algorithm-Based Markerless Motion Capture System. ISBS Proc. Arch. 2021, 39, 61. [Google Scholar]
- Kanko, R.M.; Laende, E.K.; Davis, E.M.; Selbie, W.S.; Deluzio, K.J. Concurrent Assessment of Gait Kinematics Using Marker-Based and Markerless Motion Capture. J. Biomech. 2021, 127, 110665. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.L.; Isakov, P.; Rethlefsen, S.A. Comparison of Kinematics between Theia Markerless and Conventional Marker-Based Gait Analysis in Clinical Patients. Gait Posture 2023, 104, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sandbakk, Ø.; Holmberg, H.-C. A Reappraisal of Success Factors for Olympic Cross-Country Skiing. Int. J. Sport Physiol. Perform. 2014, 9, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, B.; Sandbakk, Ø.; Stöggl, T.; Supej, M.; Ørtenblad, N.; Schürer, A.; Steiner, T.; Lunina, A.; Manhard, C.; Liu, H.; et al. Methodological Guidelines Designed to Improve the Quality of Research on Cross-Country Skiing. J. Sci. Sport Exerc. 2021, 3, 207–223. [Google Scholar] [CrossRef]
- Ohtonen, O.; Ruotsalainen, K.; Mikkonen, P.; Heikkinen, T.; Hakkarainen, A.; Leppävuori, A.; Linnamo, V. Online Feedback System for Athletes and Coaches. In Proceedings of the 3rd International Congress on Science and Nordic Skiing, Vuokatti, Finland, 5 June 2015; p. 35. [Google Scholar]
- Abdel-aziz, Y.; Karara, H. Direct Linear Transformation from Comparator to Object Space Coordinates in Close-Range Pho-Togramme. Photogramm. Eng. Remote Sens. 2015, 81, 103–107. [Google Scholar] [CrossRef]
- Bell, A.L.; Brand, R.A.; Pedersen, D.R. Prediction of Hip Joint Centre Location from External Landmarks. Hum. Mov. Sci. 1989, 8, 3–16. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Mukaka, M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Steinebach, T.; Grosse, E.; Glock, C.; Wakula, J.; Lunin, A. Accuracy Evaluation of Two Markerless Motion Capture Systems for Measurement of Upper Extremities: Kinect V2 and Captiv. Hum. Factors Ergon. Manuf. Serv. Ind. 2020, 30, 291–302. [Google Scholar] [CrossRef]
- Stöggl, T.; Müller, E.; Lindinger, S. Biomechanical Comparison of the Double-Push Technique and the Conventional Skate Skiing Technique in Cross-Country Sprint Skiing. J. Sport Sci. 2008, 26, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Stöggl, T.; Holmberg, H.-C. Three-Dimensional Force and Kinematic Interactions in V1 Skating at High Speeds. Med. Sci. Sport Exerc. 2015, 47, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Göpfert, C.; Pohjola, M.V.; Linnamo, V.; Ohtonen, O.; Rapp, W.; Lindinger, S.J. Forward Acceleration of the Centre of Mass during Ski Skating Calculated from Force and Motion Capture Data. Sport Eng. 2017, 20, 141–153. [Google Scholar] [CrossRef]
- Zhao, S.; Linnamo, V.; Ruotsalainen, K.; Lindinger, S.; Kananen, T.; Koponen, P.; Ohtonen, O. Validation of 2D Force Measurement Roller Ski and Practical Application. Sensors 2022, 22, 9856. [Google Scholar] [CrossRef]
Trial | Skiing Technique | Speed of Treadmill (km/h) | Angle of Treadmill (deg) |
---|---|---|---|
1 | G1 | 8 | 5 |
2 | G1 | 6 | 8 |
3 | G1 | 8 | 5 |
4 | G1 | 6 | 8 |
5 | G3 | 12 f/14 m | 2 |
6 | G3 | 18 f/20 m | 2 |
7 | G3 | 24 f/26 m | 2 |
Detected Point | Skiing Technique | Mean Difference (Bias) [mm] | ±SD [mm] | 95% LoA Lower/Upper |
---|---|---|---|---|
Wrist | G1 | 40.3 | 30.1 | 40.4/40.5 |
G3 | 38.3 | 22.6 | 38.1/38.5 | |
Elbow | G1 | 33.6 | 28.9 | 33.3/33.8 |
G3 | 29.5 | 17.5 | 29.4/29.7 | |
Shoulder | G1 | 26.6 | 19.7 | 26.4/26.8 |
G3 | 24.0 | 14.1 | 23.9/24.1 | |
Hip | G1 | 31.9 | 14.9 | 31.8/32.0 |
G3 | 31.3 | 16.1 | 31.2/31.5 | |
Knee | G1 | 30.5 | 16.6 | 30.4/30.7 |
G3 | 30.2 | 20.2 | 30.0/30.4 | |
Ankle | G1 | 31.5 | 17.0 | 31.4/31.6 |
G3 | 32.4 | 22.9 | 32.2/32.6 | |
Toe | G1 | 40.8 | 21.3 | 40.6/41.0 |
G3 | 39.4 | 29.7 | 39.1/39.7 |
Angle | Skiing Technique | Mean Difference (Bias) [deg] | ±SD [deg] | 95% LoA Lower/Upper | RMSE [deg] | r Pearson Correlation | p-Value | ICC [Mean (95% Confidence Interval)] |
---|---|---|---|---|---|---|---|---|
Elbow | G1 | 0.99 | 7.16 | 0.94/1.06 | 7.23 | 0.96 | <0.001 | 0.96 (0.95/0.96) |
G3 | 0.60 | 5.69 | 0.55/0.66 | 5.72 | 0.97 | <0.001 | 0.97 (0.96/0.97) | |
Shoulder | G1 | 3.69 | 3.84 | 3.66/3.72 | 5.33 | 0.94 | <0.001 | 0.92 (0.87/0.97) |
G3 | 2.71 | 3.76 | 2.68/2.74 | 4.64 | 0.96 | <0.001 | 0.97 (0.95/0.98) | |
Hip | G1 | 1.08 | 4.06 | 1.05/1.12 | 4.21 | 0.94 | <0.001 | 0.94 (0.92/0.95) |
G3 | 0.74 | 3.48 | 0.72/0.78 | 3.56 | 0.97 | <0.001 | 0.97 (0.96/0.97) | |
Knee | G1 | 1.15 | 3.06 | 1.13/1.18 | 3.27 | 0.96 | <0.001 | 0.95 (0.93/0.97) |
G3 | 0.82 | 2.89 | 0.80/0.85 | 3.01 | 0.96 | <0.001 | 0.96 (0.95/0.97) | |
Ankle | G1 | −2.47 | 4.31 | −2.51/−2.44 | 4.96 | 0.82 | <0.001 | 0.77 (0.59/0.86) |
G3 | −2.03 | 4.23 | −2.07/−1.99 | 4.69 | 0.84 | <0.001 | 0.80 (0.68/0.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torvinen, P.; Ruotsalainen, K.S.; Zhao, S.; Cronin, N.; Ohtonen, O.; Linnamo, V. Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill. Bioengineering 2024, 11, 136. https://doi.org/10.3390/bioengineering11020136
Torvinen P, Ruotsalainen KS, Zhao S, Cronin N, Ohtonen O, Linnamo V. Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill. Bioengineering. 2024; 11(2):136. https://doi.org/10.3390/bioengineering11020136
Chicago/Turabian StyleTorvinen, Petra, Keijo S. Ruotsalainen, Shuang Zhao, Neil Cronin, Olli Ohtonen, and Vesa Linnamo. 2024. "Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill" Bioengineering 11, no. 2: 136. https://doi.org/10.3390/bioengineering11020136
APA StyleTorvinen, P., Ruotsalainen, K. S., Zhao, S., Cronin, N., Ohtonen, O., & Linnamo, V. (2024). Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill. Bioengineering, 11(2), 136. https://doi.org/10.3390/bioengineering11020136