Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study
Abstract
1. Introduction
2. Methods
2.1. Research Population
2.2. Research Ethics Clearance
2.3. Enrollment Criteria
2.4. Information Acquisition
2.5. Definitions of Study Variables
- The dependent variable: Temporomandibular joint disorders (TMDs), based on the 2015 ICD-9-CM Diagnosis Code 524.60, Temporomandibular joint disorders, unspecified.
- Systemic comorbidities linked to Metabolic Syndrome (MetS) were incorporated within the study as independent variables defined according to the ICD-9-CM diagnostic criteria. These diagnoses are depicted in Table 1 in the results section.
2.6. Analysis Strategy
2.6.1. Statistical Analysis
2.6.2. Machine Learning (ML) Models
3. Results
3.1. The Associations of Temporomandibular Disorders (TMDs) with Demographics, Smoking Status, and Systemic Conditions
| Parameter | TMD Mean ± SD | Without TMD Mean ± SD | p Value * | OR and 95% CI # | |
|---|---|---|---|---|---|
| Age | 25.72 ± 8.03 | 21.83 ± 5.97 | <0.001 | 1.07 (1.06–1.07) | |
| Parameter | Variable | TMD No. (%) | Without TMD No. (%) | p-Value ^ | OR (95% Confidence Interval) ## |
| Sex | Male | 1073 (1.1%) | 98,393 (98.9%) | <0.001 | 1 |
| Female | 826 (2.5%) | 32,237 (97.5%) | 2.34 (2.14–2.57) | ||
| Smoking | Yes | 223 (3.2) | 6661 (96.8) | <0.001 | 2.47 (2.15–2.85) |
| No | 1676 (1.3) | 123,969 (98.7) | 1 | ||
| Hypertension | Yes | 77 (2.3) | 3286 (97.7) | <0.001 | 2.19 (1.60–2.98) |
| No | 1822 (1.4) | 127,344 (98.6) | 1 | ||
| Hyperlipidemia | Yes | 285 (3.7) | 7441 (96.3) | <0.001 | 2.92 (2.57–3.32) |
| No | 1614 (1.3) | 123,189 (98.7) | 1 | ||
| Type 2 diabetes | Yes | 10 (2.9) | 335 (97.1) | 0.022 | 2.06 (1.09–3.86) |
| No | 1889 (1.4) | 130,295 (98.6%) | 1 | ||
| Impaired glucose tolerance (IGT) | Yes | 6 (4.7) | 122 (95.3) | 0.002 | 3.39 (1.49–7.70) |
| No | 1893 (1.4) | 130,508 (98.6) | 1 | ||
| Obesity | Yes | 253 (3.4) | 7195 (96.6) | <0.001 | 2.63 (2.30–3.01) |
| No | 1646 (1.3) | 123,435 (98.7) | 1 | ||
| Nonalcoholic fatty liver disease (NAFLD) | Yes | 43 (4.6) | 895 (95.4) | <0.001 | 3.35 (2.46–4.57) |
| No | 1856 (1.4) | 129,735 (98.6) | 1 | ||
| Obstructive sleep apnea (OSA) | Yes | 18 (5.7) | 300 (94.3) | <0.001 | 4.15 (2.57–6.70) |
| No | 1881 (1.4) | 130,330 (98.6) | 1 | ||
| Cardiac disease | Yes | 110 (3.1) | 3488 (96.9) | <0.001 | 2.24 (1.84–2.72) |
| No | 1789 (1.4) | 127,142 (98.6) | 1 | ||
| S/P Transient ischemic attack (TIA) | Yes | 7 (7.1) | 92 (92.9) | <0.001 | 5.25 (2.43–11.33) |
| No | 1892 (1.4) | 130,538 (98.6) | 1 | ||
| S/P Stroke | Yes | 6 (6.5) | 86 (93.5) | <0.001 | 4.81 (2.10–11.02) |
| No | 1893 (1.4) | 130,544 (98.6) | 1 | ||
| S/P Deep venous thrombosis (DVT) | Yes | 7 (6.5) | 101 (93.5) | <0.001 | 4.78 (2.22–10.30) |
| No | 1892 (1.4) | 130,529 (98.6) | 1 | ||
| Anemia | Yes | 320 (4.1) | 7440 (95.9) | <0.001 | 3.35 (2.97–3.79) |
| No | 1579 (1.3) | 123,190 (98.7) | 1 | ||
3.2. The Associations of Temporomandibular Disorders (TMDs) with Ancillary Test Findings including Biochemistry Blood Test Results Used in the Workup of MetS Components
| Parameter | TMD | Without TMD | p Value * | OR and 95% CI # | ||
|---|---|---|---|---|---|---|
| N | Mean ± SD | N | Mean ± SD | |||
| Weight (kilograms) | 1104 | 73.02 ± 28.43 | 65,513 | 73.30 ± 32.44 | 0.778 | 1.000 (0.998–1.002) |
| Body mass index (BMI) | 1100 | 24.76 ± 4.74 | 65,294 | 24.26 ± 4.29 | 0.001 | 1.026 (1.012–1.039) |
| C-reactive protein (CRP) (mg/L) | 826 | 3.96 ± 6.85 | 29,529 | 3.76 ± 10.26 | 0.571 | 1.002 (0.996–1.008) |
| Glycated hemoglobin (HbA1c) (%) | 69 | 5.36 ± 0.94 | 1874 | 5.40 ± 0.97 | 0.761 | 0.960 (0.738–1.249) |
| Fasting glucose (mg/dL) | 70 | 86.75 ± 9.92 | 2457 | 87.13 ± 11.99 | 0.754 | 0.997 (0.977–1.018) |
| Cholesterol (mg/dL) | 867 | 178.89 ± 33.47 | 27,313 | 175.72 ± 35.69 | 0.006 | 1.002 (1.001–1.004) |
| High-density lipoprotein (HDL) (mg/dL) | 867 | 50.06 ± 12.89 | 27,306 | 48.22 ± 11.73 | <0.001 | 1.013 (1.007–1.018) |
| Low-density lipoprotein (LDL) (mg/dL) | 685 | 109.31 ± 27.83 | 19,528 | 108.31 ± 30.11 | 0.354 | 1.001 (0.999–1.004) |
| LDL cholesterol calculated (mg/dL) | 565 | 110.06 ± 28.07 | 16,893 | 108.32 ± 30.48 | 0.147 | 1.002 (0.944–1.010) |
| Triglycerides (mg/dL) | 867 | 104.87 ± 67.46 | 27,316 | 104.45 ± 63.92 | 0.851 | 1.000 (0.999–1.001) |
| Very-low-density lipoprotein (VLDL) (mg/dL) | 866 | 20.52 ± 11.08 | 27,265 | 20.61 ± 11.20 | 0.817 | 0.999 (0.993–1.005) |
| Non-HDL cholesterol (mg/dL) | 561 | 130.99 ± 32.22 | 16,261 | 129.45 ± 35.10 | 0.270 | 1.001 (0.999–1.004) |
3.3. Multivariable Analysis and Collinearity Statistics Evaluating Temporomandibular Disorders (TMDs) as a Dependent Variable with Significantly Associated Parameters Identified in the Bivariate Analysis
| Parameter | Multivariable Binary Logistic Regression Analysis | Collinearity Statistics Using Linear Regression Analysis | ||||
|---|---|---|---|---|---|---|
| B | SE | p Value | OR (95% CI) | Tolerance | VIF | |
| (Intercept) | 5.31 | 0.08 | 0.005 (0.004–0.006) | |||
| Age | 0.07 | 0.003 | <0.001 | 1.07 (1.06–1.08) | 0.485 | 2.060 |
| Sex: women vs. men | 0.97 | 0.05 | <0.001 | 2.65 (2.41–2.93) | 0.939 | 1.065 |
| Smoking | 0.07 | 0.08 | 0.383 | 1.07 (0.91–1.26) | 0.775 | 1.291 |
| Hypertension | 0.21 | 0.17 | 0.233 | 1.23 (0.87–1.73) | 0.908 | 1.102 |
| Hyperlipidemia | 0.68 | 0.08 | 0.448 | 1.07 (0.89–1.27) | 0.558 | 1.791 |
| Type 2 diabetes | 0.23 | 0.24 | 0.344 | 1.26 (0.78–2.04) | 0.928 | 1.078 |
| Impaired glucose tolerance (IGT) | 0.05 | 0.46 | 0.910 | 1.05 (0.42–2.63) | 0.968 | 1.033 |
| Obesity | 0.06 | 0.08 | 0.429 | 1.07 (0.90–1.26) | 0.681 | 1.468 |
| Cardiac disease | 0.11 | 0.10 | 0.305 | 1.11 (0.90–1.38) | 0.938 | 1.066 |
| Obstructive sleep apnea (OSA) | 0.49 | 0.25 | 0.051 | 1.63 (0.99–2.66) | 0.979 | 1.022 |
| Nonalcoholic fatty liver disease (NAFLD) | 0.31 | 0.17 | 0.069 | 1.37 (0.97–1.93) | 0.903 | 1.107 |
| S/P transient ischemic attack (TIA) | 0.36 | 0.42 | 0.385 | 1.43 (0.63–3.27) | 0.960 | 1.041 |
| S/P stroke | 0.21 | 0.49 | 0.674 | 1.23 (0.46–3.26) | 0.962 | 1.039 |
| S/P deep venous thrombosis (DVT) | 0.61 | 0.40 | 0.131 | 1.83 (0.83–4.04) | 0.996 | 1.004 |
| Anemia | 0.52 | 0.06 | <0.001 | 1.69 (1.48–1.93) | 0.917 | 1.090 |
3.4. Feature Importance Based on XGBoost Machine Learning (ML) Algorithm with Temporomandibular Disorders (TMDs) as a Target Variable
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leeuw, R.d.; Klasser, G. (Eds.) Orofacial Pain: Guidelines for Assessment, Diagnosis, and Management, 4th ed.; Quintessence: Chicago, IL, USA, 2013. [Google Scholar]
- National Institute of Dental and Craniofacial Research (NIDCR). Facial Pain. Available online: http://www.nidcr.nih.gov/DataStatistics/FindDataByTopic/FacialPain/ (accessed on 21 October 2023).
- Almoznino, G.; Zini, A.; Zakuto, A.; Sharav, Y.; Haviv, Y.; Hadad, A.; Chweidan, H.; Yarom, N.; Benoliel, R. Oral Health-Related Quality of Life in Patients with Temporomandibular Disorders. J. Oral Facial Pain Headache 2015, 29, 231–241. [Google Scholar] [CrossRef]
- Greenspan, J.D.; Slade, G.D.; Bair, E.; Dubner, R.; Fillingim, R.B.; Ohrbach, R.; Knott, C.; Diatchenko, L.; Liu, Q.; Maixner, W. Pain sensitivity and autonomic factors associated with development of TMD: The OPPERA prospective cohort study. J. Pain 2013, 14, T63–T74.e1-6. [Google Scholar] [CrossRef] [PubMed]
- Slade, G.D.; Ohrbach, R.; Greenspan, J.D.; Fillingim, R.B.; Bair, E.; Sanders, A.E.; Dubner, R.; Diatchenko, L.; Meloto, C.B.; Smith, S.; et al. Painful Temporomandibular Disorder: Decade of Discovery from OPPERA Studies. J. Dent. Res. 2016, 95, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Egermark, I.; Magnusson, T.; Carlsson, G.E. A 20-year follow-up of signs and symptoms of temporomandibular disorders and malocclusions in subjects with and without orthodontic treatment in childhood. Angle Orthod. 2003, 73, 109–115. [Google Scholar] [PubMed]
- Staniszewski, K.; Lygre, H.; Berge, T.; Rosen, A. Serum Analysis in Patients with Temporomandibular Disorders: A Controlled Cross-Sectional Study in Norway. Pain Res. Manag. 2019, 2019, 1360725. [Google Scholar] [CrossRef] [PubMed]
- Ohrbach, R.; Fillingim, R.B.; Mulkey, F.; Gonzalez, Y.; Gordon, S.; Gremillion, H.; Lim, P.F.; Ribeiro-Dasilva, M.; Greenspan, J.D.; Knott, C.; et al. Clinical findings and pain symptoms as potential risk factors for chronic TMD: Descriptive data and empirically identified domains from the OPPERA case-control study. J. Pain 2011, 12, T27-45. [Google Scholar] [CrossRef]
- Rhim, E.; Han, K.; Yun, K.I. Association between temporomandibular disorders and obesity. J. Cranio-Maxillofac. Surg. 2016, 44, 1003–1007. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Kim, T.; Kang, J. Relationship between obstructive sleep apnea, insulin resistance, and metabolic syndrome: A nationwide population-based survey. Endocr. J. 2023, 70, 107–119. [Google Scholar] [CrossRef]
- Tropeano, A.; Corica, D.; Li Pomi, A.; Pepe, G.; Morabito, L.A.; Curatola, S.L.; Casto, C.; Aversa, T.; Wasniewska, M. The metabolic syndrome in pediatrics: Do we have a reliable definition? A systematic review. Eur. J. Endocrinol. 2021, 185, 265–278. [Google Scholar] [CrossRef]
- Kahn, R.; Buse, J.; Ferrannini, E.; Stern, M.; American Diabetes Association; European Association for the Study of Diabetes. The metabolic syndrome: Time for a critical appraisal: Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005, 28, 2289–2304. [Google Scholar] [CrossRef]
- Smiti, A. When machine learning meets medical world: Current status and future challenges. Comput. Sci. Rev. 2020, 37, 100280. [Google Scholar] [CrossRef]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Lee, M.J.; Asadi, H. eDoctor: Machine learning and the future of medicine. J. Intern. Med. 2018, 284, 603–619. [Google Scholar] [CrossRef]
- Ahmedt-Aristizabal, D.; Armin, M.A.; Denman, S.; Fookes, C.; Petersson, L. Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future. Sensors 2021, 21, 4758. [Google Scholar] [CrossRef]
- Cerquitelli, T.; Meo, M.; Curado, M.; Skorin-Kapov, L.; Tsiropoulou, E.E. Machine Learning Empowered Computer Networks. Comput. Netw. 2023, 230, 109807. [Google Scholar] [CrossRef]
- Lukauskas, M.; Ruzgas, T. Data clustering and its applications in medicine. New Trends in Mathematical Science. New Trends Math. Sci. (ISAME2022-Proc.) 2022, 10, 067–070. [Google Scholar] [CrossRef]
- Huang, L.; Shea, A.L.; Qian, H.; Masurkar, A.; Deng, H.; Liu, D. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 2019, 99, 103291. [Google Scholar] [CrossRef] [PubMed]
- Al-Shammari, A.; Zhou, R.; Naseriparsaa, M.; Liu, C. An effective density-based clustering and dynamic maintenance framework for evolving medical data streams. Int. J. Med. Inform. 2019, 126, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta 2019, 496, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Almoznino, G.; Kedem, R.; Turgeman, R.; Bader, T.; Yavnai, N.; Zur, D.; Shay, B. The Dental, Oral, Medical Epidemiological (DOME) Study: Protocol and Study Methods. Methods Inf. Med. 2020, 59, 119–130. [Google Scholar] [CrossRef]
- Almoznino, G.; Kessler Baruch, O.; Kedem, R.; Protter, N.E.; Shay, B.; Yavnai, N.; Zur, D.; Mijiritsky, E.; Abramovitz, I. SOS Teeth: First Priority Teeth with Advanced Caries and Its Associations with Metabolic Syndrome among a National Representative Sample of Young and Middle-Aged Adults. J. Clin. Med. 2020, 9, 3170. [Google Scholar] [CrossRef] [PubMed]
- Almoznino, G.; Zini, A.; Kedem, R.; Protter, N.E.; Zur, D.; Abramovitz, I. Hypertension and Its Associations with Dental Status: Data from the Dental, Oral, Medical Epidemiological (DOME) Nationwide Records-Based Study. J. Clin. Med. 2021, 10, 176. [Google Scholar] [CrossRef]
- Abramovitz, I.; Zini, A.; Atzmoni, M.; Kedem, R.; Zur, D.; Protter, N.E.; Almoznino, G. Cognitive Performance and Its Associations with Dental Caries: Results from the Dental, Oral, Medical Epidemiological (DOME) Records-Based Nationwide Study. Biology 2021, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Abramovitz, I.; Zini, A.; Kessler Baruch, O.; Kedem, R.; Protter, N.E.; Shay, B.; Yavnai, N.; Zur, D.; Mijiritsky, E.; Almoznino, G. SOS teeth with advanced caries and sociodemographic indicators, health-related habits and dental attendance patterns: Data from the Dental, Oral, Medical Epidemiological (DOME) nationwide records-based study. BMC Oral Health 2021, 21, 389. [Google Scholar] [CrossRef] [PubMed]
- Abramovitz, I.; Zini, A.; Pribluda, P.; Kedem, R.; Zur, D.; Protter, N.E.; Almoznino, G. “Dental Cluster” Versus “Metabolic Cluster”: Analyzing the Associations of Planned and Delivered Dental Procedures with Metabolic Syndrome, Utilizing Data from the Dental, Oral, Medical Epidemiological (DOME) Cross-Sectional Record-Based Nationwide Study. Biology 2021, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Ram, D.; Wilensky, A.; Zur, D.; Almoznino, G. The Triangle of Nonalcoholic Fatty Liver Disease, Metabolic Dysfunction, and Periodontitis: Analysis of the Dental, Oral, Medical and Epidemiological (DOME) Records-Based Nationwide Research. Metabolites 2022, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Ytzhaik, N.; Zur, D.; Goldstein, C.; Almoznino, G. Obstructive Sleep Apnea, Metabolic Dysfunction, and Periodontitis—Machine Learning and Statistical Analyses of the Dental, Oral, Medical Epidemiological (DOME) Big Data Study. Metabolites 2023, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Arbabshirani, M.R.; Fornwalt, B.K.; Mongelluzzo, G.J.; Suever, J.D.; Geise, B.D.; Patel, A.A.; Moore, G.J. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit. Med. 2018, 1, 9. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.C.; Lu, X.S.; Yao, C. Weighted Gini index feature selection method for imbalanced data. In Proceedings of the ICNSC 2018—15th IEEE International Conference on Networking, Sensing and Control, Zhuhai, China, 27–29 March 2018; pp. 1–6. [Google Scholar]
- Huang, N.; Lu, G.; Cai, G.; Xu, D.; Xu, J.; Li, F.; Zhang, L. Feature selection of power quality disturbance signals with an entropy-importance-based random forest. Entropy 2016, 18, 44. [Google Scholar] [CrossRef]
- Yang, S.; Berdine, G. The receiver operating characteristic (ROC) curve. Southwest Respir. Crit. Care Chron. 2017, 5, 34–36. [Google Scholar] [CrossRef]
- Jha, N.; Lee, K.S.; Kim, Y.J. Diagnosis of temporomandibular disorders using artificial intelligence technologies: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272715. [Google Scholar] [CrossRef]
- Yap, A.U.; Dworkin, S.F.; Chua, E.K.; List, T.; Tan, K.B.; Tan, H.H. Prevalence of temporomandibular disorder subtypes, psychologic distress, and psychosocial dysfunction in Asian patients. J. Oral Facial Pain Headache 2003, 17, 21–28. [Google Scholar]
- Slade, G.D.; Bair, E.; Greenspan, J.D.; Dubner, R.; Fillingim, R.B.; Diatchenko, L.; Maixner, W.; Knott, C.; Ohrbach, R. Signs and symptoms of first-onset TMD and sociodemographic predictors of its development: The OPPERA prospective cohort study. J. Pain 2013, 14, T20–T32.e1-3. [Google Scholar] [CrossRef] [PubMed]
- LeResche, L. Epidemiology of temporomandibular disorders: Implications for the investigation of etiologic factors. Crit. Rev. Oral Biol. Med. 1997, 8, 291–305. [Google Scholar] [CrossRef]
- LeResche, L.; Saunders, K.; Von Korff, M.R.; Barlow, W.; Dworkin, S.F. Use of exogenous hormones and risk of temporomandibular disorder pain. Pain 1997, 69, 153–160. [Google Scholar] [CrossRef]
- Warren, M.P.; Fried, J.L. Temporomandibular disorders and hormones in women. Cells Tissues Organs 2001, 169, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Lipton, J.A.; Ship, J.A.; Larach-Robinson, D. Estimated prevalence and distribution of reported orofacial pain in the United States. J. Am. Dent. Assoc. 1993, 124, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Gillborg, S.; Akerman, S.; Lundegren, N.; Ekberg, E.C. Temporomandibular Disorder Pain and Related Factors in an Adult Population: A Cross-Sectional Study in Southern Sweden. J. Oral Facial Pain Headache 2017, 31, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Banafa, A.; Suominen, A.L.; Sipila, K. Factors associated with signs of temporomandibular pain: An 11-year-follow-up study on Finnish adults. Acta Odontol. Scand. 2020, 78, 57–63. [Google Scholar] [CrossRef]
- Marpaung, C.; Lobbezoo, F.; van Selms, M.K.A. Temporomandibular Disorders among Dutch Adolescents: Prevalence and Biological, Psychological, and Social Risk Indicators. Pain Res. Manag. 2018, 2018, 5053709. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, R.; Eisenlohr-Moul, T.; Bertrand, P. The association of smoking status with sleep disturbance, psychological functioning, and pain severity in patients with temporomandibular disorders. J. Oral Facial Pain Headache 2013, 27, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Katyayan, P.A.; Katyayan, M.K. Effect of smoking status and nicotine dependence on pain intensity and outcome of treatment in Indian patients with temporomandibular disorders: A longitudinal cohort study. J. Indian Prosthodont. Soc. 2017, 17, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Wanman, A. Temporomandibular disorders among smokers and nonsmokers: A longitudinal cohort study. J. Oral Facial Pain Headache 2005, 19, 209–217. [Google Scholar] [CrossRef]
- Yekkalam, N.; Wanman, A. Associations between craniomandibular disorders, sociodemographic factors and self-perceived general and oral health in an adult population. Acta Odontol. Scand. 2014, 72, 1054–1065. [Google Scholar] [CrossRef]
- Mehra, P.; Wolford, L.M. Serum nutrient deficiencies in the patient with complex temporomandibular joint problems. Proc. Bayl. University. Med. Cent. 2008, 21, 243–247. [Google Scholar] [CrossRef]
- Orhan, K.; Delilbasi, C.; Paksoy, C. Magnetic resonance imaging evaluation of mandibular condyle bone marrow and temporomandibular joint disc signal intensity in anaemia patients. Dentomaxillofacial Radiol. 2009, 38, 247–254. [Google Scholar] [CrossRef]
- Shah, N.; Melo, L.; Reid, W.D.; Cioffi, I. Masseter Deoxygenation in Adults at Risk for Temporomandibular Disorders. J. Dent. Res. 2019, 98, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.H.; Min, C.; Yoo, D.M.; Yang, B.E.; Choi, H.G. Increased Risk of Migraine in Patients with Temporomandibular Disorder: A Longitudinal Follow-up Study Using a National Health Screening Cohort. Diagnostics 2020, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Wu, Y.T.; Chien, W.C.; Chung, C.H.; Chen, L.C.; Shieh, Y.S. The prevalence of first-onset temporomandibular disorder in low back pain and associated risk factors: A nationwide population-based cohort study with a 15-year follow-up. Medicine 2020, 99, e18686. [Google Scholar] [CrossRef]
- Sanders, A.E.; Essick, G.K.; Fillingim, R.; Knott, C.; Ohrbach, R.; Greenspan, J.D.; Diatchenko, L.; Maixner, W.; Dubner, R.; Bair, E.; et al. Sleep apnea symptoms and risk of temporomandibular disorder: OPPERA cohort. J. Dent. Res. 2013, 92, 70S–77S. [Google Scholar] [CrossRef] [PubMed]
- Maixner, W.; Fillingim, R.; Kincaid, S.; Sigurdsson, A.; Harris, M.B. Relationship between pain sensitivity and resting arterial blood pressure in patients with painful temporomandibular disorders. Psychosom. Med. 1997, 59, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Song, H.S.; Shin, J.S.; Lee, J.; Lee, Y.J.; Kim, M.R.; Cho, J.H.; Kim, K.W.; Park, Y.; Song, H.J.; Park, S.Y.; et al. Association between temporomandibular disorders, chronic diseases, and ophthalmologic and otolaryngologic disorders in Korean adults: A cross-sectional study. PLoS ONE 2018, 13, e0191336. [Google Scholar] [CrossRef]
- Dursun, O.; Cankaya, T. Assessment of Temporomandibular Joint Dysfunction in Patients with Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 2141–2146. [Google Scholar] [CrossRef]
- Pfutzner, A.; Forst, T. High-sensitivity C-reactive protein as cardiovascular risk marker in patients with diabetes mellitus. Diabetes Technol. Ther. 2006, 8, 28–36. [Google Scholar] [CrossRef]
- Pihut, M.; Ceranowicz, P.; Gala, A. Evaluation of C-Reactive Protein Level in Patients with Pain Form of Temporomandibular Joint Dysfunction. Pain Res. Manag. 2018, 2018, 7958034. [Google Scholar] [CrossRef]
- Sperrin, M.; Marshall, A.D.; Higgins, V.; Renehan, A.G.; Buchan, I.E. Body mass index relates weight to height differently in women and older adults: Serial cross-sectional surveys in England (1992–2011). J. Public Health 2016, 38, 607–613. [Google Scholar] [CrossRef]
- Jordani, P.C.; Campi, L.B.; Circeli, G.Z.; Visscher, C.M.; Bigal, M.E.; Goncalves, D.A. Obesity as a risk factor for temporomandibular disorders. J. Oral Rehabil. 2017, 44, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; Lin, L.; Yao, Q.; Zhang, J. Obesity and temporomandibular joint disorders: A systematic review and meta-analysis. BMC Oral Health 2023, 23, 607. [Google Scholar] [CrossRef] [PubMed]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Almeida, L.E.; Ronsivalle, V.; Cicciu, M. Prevalence of temporomandibular disorders (TMD) in obesity patients: A systematic review and meta-analysis. J. Oral Rehabil. 2023, 50, 1544–1553. [Google Scholar] [CrossRef] [PubMed]

| Age Groups | Parameter | Multivariable Binary Logistic Regression Analysis | |||
|---|---|---|---|---|---|
| B | SE | p Value | OR (95% CI) | ||
| Age 18–30 | (Intercept) | 3.97 | 0.04 | <0.001 | 0.02 (0.01–0.02) |
| Sex: women vs. men | 0.88 | 0.05 | <0.001 | 2.41 (2.16–2.68) | |
| Smoking | 0.52 | 0.14 | <0.001 | 1.69 (1.27–2.25) | |
| Hypertension | 0.64 | 0.28 | 0.024 | 1.91 (1.08–3.35) | |
| Hyperlipidemia | 0.49 | 0.17 | 0.005 | 1.63 (1.16–2.29) | |
| Type 2 diabetes | 0.31 | 0.73 | 0.670 | 1.36 (0.32–5.74) | |
| Impaired glucose tolerance (IGT) | 0.86 | 1.06 | 0.42 | 2.36 (0.29–19.18) | |
| Obesity | 0.54 | 0.14 | <0.001 | 1.72 (1.31–2.26) | |
| Cardiac disease | 0.42 | 1.68 | 0.01 | 1.52 (1.09–2.12) | |
| Obstructive sleep apnea (OSA) | 1.93 | 0.44 | <0.001 | 6.89 (2.88–16.47) | |
| Nonalcoholic fatty liver disease (NAFLD) | 1.13 | 0.47 | 0.772 | 1.14 (0.45–2.91) | |
| S/P transient ischemic attack (TIA) | 0.84 | 1.04 | 0.422 | 2.32 (0.29–18.17) | |
| S/P stroke | 1.12 | 1.02 | 0.272 | 3.09 (0.41–23.15) | |
| S/P deep venous thrombosis (DVT) | 1.08 | 0.61 | 0.076 | 2.94 (0.88–9.75) | |
| Anemia | 0.75 | 0.08 | <0.001 | 2.13 (1.81–2.50) | |
| Age 31–50 | (Intercept) | 2.89 | 0.11 | <0.001 | 0.05 (0.04–0.07) |
| Sex: women vs. men | 0.87 | 0.11 | <0.001 | 2.39 (1.91–3.00) | |
| Smoking | 0.04 | 0.10 | 0.679 | 1.04 (0.85–1.27) | |
| Hypertension | 0.34 | 0.020 | 0.142 | 1.35 (0.90–2.03) | |
| Hyperlipidemia | 0.20 | 0.10 | 0.051 | 1.22 (0.99–1.49) | |
| Type 2 diabetes | 0.07 | 0.25 | 0.778 | 1.07 (0.64–1.78) | |
| Impaired glucose tolerance (IGT) | 0.09 | 0.47 | 0.843 | 1.09 (0.43–2.77) | |
| Obesity | 0.04 | 1.05 | 0.688 | 1.04 (0.84–1.28) | |
| Cardiac disease | 0.04 | 0.19 | 0.688 | 1.04 (0.84–1.28) | |
| Obstructive sleep apnea (OSA) | 0.32 | 0.30 | 0.283 | 1.38 (0.76–2.51) | |
| Nonalcoholic fatty liver disease (NAFLD) | 0.50 | 0.18 | 0.006 | 1.65 (1.15–2.37) | |
| S/P transient ischemic attack (TIA) | 0.50 | 0.46 | 0.278 | 1.65 (0.67–4.08) | |
| S/P stroke | 0.47 | 0.51 | 0.355 | 1.60 (0.59–4.34) | |
| S/P deep venous thrombosis (DVT) | 0.57 | 0.53 | 0.278 | 1.77 (0.63–5.03) | |
| Anemia | 0.40 | 0.11 | <0.001 | 1.49 (1.19–1.86) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chweidan, H.; Rudyuk, N.; Tzur, D.; Goldstein, C.; Almoznino, G. Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study. Bioengineering 2024, 11, 134. https://doi.org/10.3390/bioengineering11020134
Chweidan H, Rudyuk N, Tzur D, Goldstein C, Almoznino G. Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study. Bioengineering. 2024; 11(2):134. https://doi.org/10.3390/bioengineering11020134
Chicago/Turabian StyleChweidan, Harry, Nikolay Rudyuk, Dorit Tzur, Chen Goldstein, and Galit Almoznino. 2024. "Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study" Bioengineering 11, no. 2: 134. https://doi.org/10.3390/bioengineering11020134
APA StyleChweidan, H., Rudyuk, N., Tzur, D., Goldstein, C., & Almoznino, G. (2024). Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study. Bioengineering, 11(2), 134. https://doi.org/10.3390/bioengineering11020134

