Automated Restarting Fast Proximal Gradient Descent Method for Single-View Cone-Beam X-ray Luminescence Computed Tomography Based on Depth Compensation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photon Propagation Model of CB-XLCT
2.2. Automated Restarting CB-XLCT Reconstruction with Depth Compensation
2.3. Experimental Setup
2.3.1. Numerical Simulations
2.3.2. Physical Phantom Experiments
2.3.3. Quantitative Evaluation
3. Results
3.1. Numerical Simulations
3.2. Numerical Simulations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pratx, G.; Carpenter, C.M.; Sun, C.; Xing, L. X-ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study. IEEE Trans. Med. Imaging 2010, 29, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhu, S.; Yi, H.; Zhang, X.; Chen, D.; Liang, J.; Tian, J. Cone beam X-ray luminescence computed tomography: A feasibility study. Med. Phys. 2013, 40, 031111. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Pratx, G.; Bazalova, M.; Xing, L. X-ray Luminescence and X-ray Fluorescence Computed Tomography: New Molecular Imaging Modalities. IEEE Access 2014, 2, 1051–1061. [Google Scholar] [CrossRef]
- Liu, F.; Li, M.; Zhang, B.; Luo, J.; Bai, J. Weighted depth compensation algorithm for fluorescence molecular tomography reconstruction. Appl. Opt. 2012, 51, 8883–8892. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Gao, Y.; Yang, X.; Wang, K.; Tian, J. K-Nearest Neighbor Based Locally Connected Network for Fast Morphological Reconstruction in Fluorescence Molecular Tomography. IEEE Trans. Med. Imaging 2020, 39, 3019–3028. [Google Scholar] [CrossRef] [PubMed]
- Cong, W.; Wang, G.; Kumar, D.; Liu, Y.; Jiang, M.; Wang, L.V.; Hoffman, E.A.; McLennan, G.; McCray, P.B.; Zabner, J.; et al. Practical reconstruction method for bioluminescence tomography. Opt. Express 2005, 13, 6756–6771. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cong, W.; Durairaj, K.; Qian, X.; Shen, H.; Sinn, P.; Hoffman, E.; McLennan, G.; Henry, M. In vivo mouse studies with bioluminescence tomography. Opt. Express 2006, 14, 7801–7809. [Google Scholar] [CrossRef]
- Lun, M.C.; Ranasinghe, M.; Arifuzzaman, M.; Fang, Y.; Guo, Y.; Anker, J.N.; Li, C. Contrast agents for X-ray luminescence computed tomography. Appl. Opt. 2021, 60, 6769–6775. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, B. Solution combustion synthesis, photoluminescence and X-ray luminescence of Eu3+-doped LaAlO3 nanophosphors. Ceram. Int. 2016, 42, 2357–2363. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y.; Liu, M.; Gao, P.; Pu, H.; Fan, L.; Jiang, R.; Liu, Z.; Shi, F.; Lu, H. Sub-10 nm Water-Dispersible β-NaGdF4:X% Eu3+ Nanoparticles with Enhanced Biocompatibility for In Vivo X-ray Luminescence Computed Tomography. ACS Appl. Mater. Interfaces 2017, 9, 39985–39993. [Google Scholar] [CrossRef]
- Li, C.; Di, K.; Bec, J.; Cherry, S.R. X-ray luminescence optical tomography imaging: Experimental studies. Opt. Lett. 2013, 38, 2339–2341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, D.; Lun, M.; Li, C. Multiple pinhole collimator based X-ray luminescence computed tomography. Biomed. Opt. Express 2016, 7, 2506–2523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, D.; Lun, M.; Li, C. Collimated superfine X-ray beam based X-ray luminescence computed tomography. J. X-ray Sci. Technol. 2017, 25, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lun, M.C.; Li, C.; Zhou, Z. Method for improving the spatial resolution of narrow X-ray beam-based X-ray luminescence computed tomography imaging. J. Biomed. Opt. 2019, 24, 086002. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liao, Q.; Wang, H. Fast X-ray Luminescence Computed Tomography Imaging. IEEE Trans. Biomed. Eng. 2014, 61, 1621–1627. [Google Scholar]
- Zhang, G.; Liu, F.; Liu, J.; Luo, J.; Xie, Y.; Bai, J.; Xing, L. Cone beam X-ray luminescence computed tomography based on Bayesian method. IEEE Trans. Med. Imaging 2016, 36, 225–235. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, S.; Cao, X.; Zhao, F.; Liang, J. X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method. Biomed. Opt. Express 2015, 6, 2649–2663. [Google Scholar] [CrossRef]
- Fang, Y.; Lun, M.C.; Zhang, Y.; Anker, J.N.; Wang, G.; Li, C. Super-fast three-dimensional focused X-ray luminescence computed tomography with a gated photon counter. In Proceedings of the Medical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging, San Diego, CA, USA, 20–22 February 2022; SPIE: Bellingham, WA, USA, 2022; p. 120360K. [Google Scholar]
- Fang, Y.; Zhang, Y.; Lun, M.C.; Anker, J.N.; Wang, G.; Li, C. Development of fast and three-dimensional focused X-ray luminescence tomography system. In Proceedings of the Medical Imaging 2023: Biomedical Applications in Molecular, Structural, and Functional Imaging, San Diego, CA, USA, 19–22 February 2023; SPIE: Bellingham, WA, USA, 2023; p. 124680Z. [Google Scholar]
- Man, F.; Tang, J.; Swedrowska, M.; Forbes, B.; de Rosales, R.T.M. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv. Drug Deliv. Rev. 2023, 192, 114641. [Google Scholar] [CrossRef]
- Liu, T.; Rong, J.; Gao, P.; Pu, H.; Zhang, W.; Zhang, X.; Liang, Z.; Lu, H. Regularized reconstruction based on joint L1 and total variation for sparse-view cone-beam X-ray luminescence computed tomography. Biomed. Opt. Express 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, H.; Yu, J.; Yi, H.; Hou, Y.; He, X. A robust elastic net-ℓ1ℓ2 reconstruction method for X-ray luminescence computed tomography. Phys. Med. Biol. 2021, 66, 195005. [Google Scholar] [CrossRef]
- Gao, P.; Rong, J.; Pu, H.; Liu, T.; Zhang, W.; Zhang, X.; Lu, H. Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition. Opt. Express 2018, 26, 23233–23250. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Rong, J.; Liu, T.; Zhang, W.; Lan, B.; Ouyang, X.; Lu, H. Limited view cone-beam X-ray luminescence tomography based on depth compensation and group sparsity prior. J. Biomed. Opt. 2020, 25, 016004. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Xu, M.; Nie, S.; Lu, H. A wavelet-based single-view reconstruction approach for cone beam X-ray luminescence tomography imaging. Biomed. Opt. Express 2014, 5, 3848–3858. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liao, Q.; Wang, H. In vivo X-ray luminescence tomographic imaging with single-view data. Opt. Lett. 2013, 38, 4530–4533. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tang, X.; Shu, Y.; Zhao, L.; Liu, Y.; Zhou, T. Single-view cone-beam X-ray luminescence optical tomography based on Group_YALL1 method. Phys. Med. Biol. 2019, 64, 105004. [Google Scholar] [CrossRef]
- Gao, P.; Cheng, K.; Schüler, E.; Jia, M.; Zhao, W.; Xing, L. Restarted primal–dual Newton conjugate gradient method for enhanced spatial resolution of reconstructed cone-beam X-ray luminescence computed tomography images. Phys. Med. Biol. 2020, 65, 135008. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, J. Fast Proximal Gradient Descent for a Class of Non-convex and Non-smooth Sparse Learning Problems. In Proceedings of the 35th Uncertainty in Artificial Intelligence Conference, PMLR, Proceedings of Machine Learning Research, Tel Aviv, Israel, 22–25 July 2019; Ryan, P.A., Vibhav, G., Eds.; Elsevier B.V.: Tel Aviv, Israel, 2020; pp. 1253–1262. [Google Scholar]
- Tian, F.; Liu, H. Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head. Neuroimage 2014, 85, 166–180. [Google Scholar] [CrossRef]
- Blumensath, T.; Davies, M.E. Gradient Pursuits. IEEE Trans. Signal Process. 2008, 56, 2370–2382. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Bao, C.; Ji, H.; Quan, Y.; Shen, Z. L0 Norm Based Dictionary Learning by Proximal Methods with Global Convergence. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: New York, NY, USA; pp. 3858–3865. [Google Scholar]
- Alexandrakis, G.; Rannou, F.R.; Chatziioannou, A.F. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: A computer simulation feasibility study. Phys. Med. Biol. 2005, 50, 4225–4241. [Google Scholar] [CrossRef]
- Gao, P.; Pu, H.; Rong, J.; Zhang, W.; Liu, T.; Liu, W.; Zhang, Y.; Lu, H. Resolving adjacent nanophosphors of different concentrations by excitation-based cone-beam X-ray luminescence tomography. Biomed. Opt. Express 2017, 8, 3952–3965. [Google Scholar] [CrossRef]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [Google Scholar] [CrossRef]
- An, Y.; Liu, J.; Zhang, G.; Ye, J.; Du, Y.; Mao, Y.; Chi, C.; Tian, J. A Novel Region Reconstruction Method for Fluorescence Molecular Tomography. IEEE Trans. Biomed. Eng. 2015, 62, 1818–1826. [Google Scholar] [CrossRef]
- Liu, T.; Ruan, J.; Rong, J.; Hao, W.; Li, W.; Li, R.; Zhan, Y.; Lu, H. Cone-beam X-ray luminescence computed tomography based on MLEM with adaptive FISTA initial image. Comput. Methods Programs Biomed. 2023, 229, 107265. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liu, J.; An, Y.; Gao, Y.; Meng, H.; Wang, K.; Tian, J. Fluorescence Molecular Tomography Based on Group Sparsity Priori for Morphological Reconstruction of Glioma. IEEE Trans. Biomed. Eng. 2020, 67, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Wang, K.; Gao, Y.; Jin, Y.; Ma, X.; Tian, J. Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography. IEEE Trans. Med. Imaging 2019, 38, 2726–2734. [Google Scholar] [CrossRef] [PubMed]
LE (mm) | DICE | SPI | |||
---|---|---|---|---|---|
Tumor 1 | Tumor 2 | Tumor 1 | Tumor 2 | ||
T-FISTA | 2.84 | 7.32 | 0.38 | 0.15 | 0.46 |
DC-FL | 1.84 | 5.60 | 0.44 | 0.30 | 0.21 |
re-DC-FPGD | 0.50 | 0.30 | 0.60 | 0.69 | 0.67 |
Method | LE (mm) | DICE | SPI | ||
---|---|---|---|---|---|
Tube 1 | Tube 2 | Tube 1 | Tube 2 | ||
T-FISTA | 1.95 | 4.98 | 0.47 | 0.01 | 0.12 |
DC-FL | 2.06 | 4.87 | 0.32 | 0.06 | 0.16 |
re-DC-FPGD | 0.20 | 0.83 | 0.59 | 0.71 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Pu, H.; Liu, T.; Cao, Y.; Li, W.; Huang, S.; Li, R.; Lu, H.; Rong, J. Automated Restarting Fast Proximal Gradient Descent Method for Single-View Cone-Beam X-ray Luminescence Computed Tomography Based on Depth Compensation. Bioengineering 2024, 11, 123. https://doi.org/10.3390/bioengineering11020123
Gao P, Pu H, Liu T, Cao Y, Li W, Huang S, Li R, Lu H, Rong J. Automated Restarting Fast Proximal Gradient Descent Method for Single-View Cone-Beam X-ray Luminescence Computed Tomography Based on Depth Compensation. Bioengineering. 2024; 11(2):123. https://doi.org/10.3390/bioengineering11020123
Chicago/Turabian StyleGao, Peng, Huangsheng Pu, Tianshuai Liu, Yilin Cao, Wangyang Li, Shien Huang, Ruijing Li, Hongbing Lu, and Junyan Rong. 2024. "Automated Restarting Fast Proximal Gradient Descent Method for Single-View Cone-Beam X-ray Luminescence Computed Tomography Based on Depth Compensation" Bioengineering 11, no. 2: 123. https://doi.org/10.3390/bioengineering11020123
APA StyleGao, P., Pu, H., Liu, T., Cao, Y., Li, W., Huang, S., Li, R., Lu, H., & Rong, J. (2024). Automated Restarting Fast Proximal Gradient Descent Method for Single-View Cone-Beam X-ray Luminescence Computed Tomography Based on Depth Compensation. Bioengineering, 11(2), 123. https://doi.org/10.3390/bioengineering11020123