Mesenchymal Stem Cell Plasticity: What Role Do Culture Conditions and Substrates Play in Shaping Biomechanical Signatures?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Generation of iMSCs
2.3. Flow Cytometric Analysis of MSC-Markers
2.4. Gene Expression Analyses
2.5. Osteogenic Differentiation
2.6. Atomic Force Microscopy (AFM) Measurements
2.7. Fluorescent Staining of Osteogenically Differentiated JPC and iMSC Monolayers
2.8. Statistical Analysis
3. Results
3.1. Phenotypic Characterization of JPCs/iMSCs
3.2. Variability in Cellular Stiffness Between Undifferentiated JPCs and iMSCs
3.3. Distinct Biomechanical Fingerprints of Untreated Cells, Osteogenically Induced Cells, and Formed CaP Precipitates
3.4. Influence of Culture Conditions and Substrate Coatings on Stiffness of the Mineralized Matrix Produced by JPCs and iMSCs
3.5. Influence of Culture Conditions and Substrate Coatings on Cellular Stiffness Profiles of Osteogenically Induced JPCs and iMSCs
3.6. Fluorescence Labelling of Cell Mineralization and Cytoskeleton Arrangement
3.7. JPC and iMSC Mineralization Potential Correlates with Cellular Biomechanical Fingerprint
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darling, E.M.; Wilusz, R.E.; Bolognesi, M.P.; Zauscher, S.; Guilak, F. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Biophys. J. 2010, 98, 2848–2856. [Google Scholar] [CrossRef]
- Pongkitwitoon, S.; Uzer, G.; Rubin, J.; Judex, S. Cytoskeletal Configuration Modulates Mechanically Induced Changes in Mesenchymal Stem Cell Osteogenesis, Morphology, and Stiffness. Sci. Rep. 2016, 6, 34791. [Google Scholar] [CrossRef]
- Tan, S.C.W.; Pan, W.X.; Ma, G.; Cai, N.; Leong, K.W.; Liao, K. Viscoelastic behaviour of human mesenchymal stem cells. BMC Cell Biol. 2008, 9, 40. [Google Scholar] [CrossRef]
- Griffin, F.E.; Schiavi, J.; McDevitt, T.C.; McGarry, J.P.; McNamara, L.M. The role of adhesion junctions in the biomechanical behaviour and osteogenic differentiation of 3D mesenchymal stem cell spheroids. J. Biomech. 2017, 59, 71–79. [Google Scholar] [CrossRef]
- Kihara, T.; Haghparast, S.M.; Shimizu, Y.; Yuba, S.; Miyake, J. Physical properties of mesenchymal stem cells are coordinated by the perinuclear actin cap. Biochem. Biophys. Res. Commun. 2011, 409, 1–6. [Google Scholar] [CrossRef]
- Kasper, G.; Mao, L.; Geissler, S.; Draycheva, A.; Trippens, J.; Kühnisch, J.; Tschirschmann, M.; Kaspar, K.; Perka, C.; Duda, G.N.; et al. Insights into mesenchymal stem cell aging: Involvement of antioxidant defense and actin cytoskeleton. Stem Cells 2009, 27, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Xu, G.; Wang, Q.; Yang, L.; Zheng, L.; Zhao, J.; Zhang, X. In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death Dis. 2017, 8, e2851. [Google Scholar] [CrossRef]
- Sheyn, D.; Ben-David, S.; Shapiro, G.; De Mel, S.; Bez, M.; Ornelas, L.; Sahabian, A.; Sareen, D.; Da, X.; Pelled, G.; et al. Human Induced Pluripotent Stem Cells Differentiate Into Functional Mesenchymal Stem Cells and Repair Bone Defects. Stem Cells Transl. Med. 2016, 5, 1447–1460. [Google Scholar] [CrossRef]
- Crippa, S.; Bernardo, M.E. Mesenchymal Stromal Cells: Role in the BM Niche and in the Support of Hematopoietic Stem Cell Transplantation. Hemasphere 2018, 2, e151. [Google Scholar] [CrossRef]
- Lee, S.S.; Vũ, T.T.; Weiss, A.S.; Yeo, G.C. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur. J. Cell Biol. 2023, 102, 151331. [Google Scholar] [CrossRef] [PubMed]
- Umrath, F.; Steinle, H.; Weber, M.; Wendel, H.P.; Reinert, S.; Alexander, D.; Avci-Adali, M. Generation of iPSCs from Jaw Periosteal Cells Using Self-Replicating RNA. Int. J. Mol. Sci. 2019, 20, 1648. [Google Scholar] [CrossRef] [PubMed]
- Umrath, F.; Weber, M.; Reinert, S.; Wendel, H.P.; Avci-Adali, M.; Alexander, D. iPSC-Derived MSCs Versus Originating Jaw Periosteal Cells: Comparison of Resulting Phenotype and Stem Cell Potential. Int. J. Mol. Sci. 2020, 21, 587. [Google Scholar] [CrossRef]
- Danalache, M.; Kliesch, S.M.; Munz, M.; Naros, A.; Reinert, S.; Alexander, D. Quality Analysis of Minerals Formed by Jaw Periosteal Cells under Different Culture Conditions. Int. J. Mol. Sci. 2019, 20, 4193. [Google Scholar] [CrossRef]
- Spencer, J.A.; Ferraro, F.; Roussakis, E.; Klein, A.; Wu, J.; Runnels, J.M.; Zaher, W.; Mortensen, L.J.; Alt, C.; Turcotte, R.; et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014, 508, 269–273. [Google Scholar] [CrossRef]
- Tassinari, R.; Olivi, E.; Cavallini, C.; Taglioli, V.; Zannini, C.; Marcuzzi, M.; Fedchenko, O.; Ventura, C. Mechanobiology: A landscape for reinterpreting stem cell heterogeneity and regenerative potential in diseased tissues. iScience 2023, 26, 105875. [Google Scholar] [CrossRef]
- Yen, M.H.; Chen, Y.H.; Liu, Y.S.; Lee, O.K. Alteration of Young’s modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy. Biochem. Biophys. Res. Commun. 2020, 526, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, Q.; Ge, L.; Zhou, Q.; Warszawik, E.M.; Bron, R.; Lai, K.W.C.; van Rijn, P. Topography induced stiffness alteration of stem cells influences osteogenic differentiation. Biomater. Sci. 2020, 8, 2638–2652. [Google Scholar] [CrossRef]
- Wanner, Y.; Umrath, F.; Waidmann, M.; Reinert, S.; Alexander, D. Platelet Lysate: The Better Choice for Jaw Periosteal Cell Mineralization. Stem Cells Int. 2017, 2017, 8303959. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Umrath, F.; Steinle, H.; Schmitt, L.-F.; Yu, L.T.; Schlensak, C.; Wendel, H.-P.; Reinert, S.; Alexander, D.; Avci-Adali, M. Influence of Human Jaw Periosteal Cells Seeded β-Tricalcium Phosphate Scaffolds on Blood Coagulation. Int. J. Mol. Sci. 2021, 22, 9942. [Google Scholar] [CrossRef]
- Horimizu, M.; Kawase, T.; Tanaka, T.; Okuda, K.; Nagata, M.; Burns, D.M.; Yoshie, H. Biomechanical evaluation by AFM of cultured human cell-multilayered periosteal sheets. Micron 2013, 48, 1–10. [Google Scholar] [CrossRef]
- Nikolaev, N.I.; Müller, T.; Williams, D.J.; Liu, Y. Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. J. Biomech. 2014, 47, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Titushkin, I.; Cho, M. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys. J. 2007, 93, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- Yourek, G.; Hussain, M.A.; Mao, J.J. Cytoskeletal changes of mesenchymal stem cells during differentiation. Asaio J. 2007, 53, 219–228. [Google Scholar] [CrossRef]
- Takai, E.; Costa, K.D.; Shaheen, A.; Hung, C.T.; Guo, X.E. Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 2005, 33, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Besser, R.R.; Bowles, A.C.; Alassaf, A.; Carbonero, D.; Claure, I.; Jones, E.; Reda, J.; Wubker, L.; Batchelor, W.; Ziebarth, N.; et al. Enzymatically crosslinked gelatin-laminin hydrogels for applications in neuromuscular tissue engineering. Biomater. Sci. 2020, 8, 591–606. [Google Scholar] [CrossRef]
- Zieseniss, A. Hypoxia and the modulation of the actin cytoskeleton—Emerging interrelations. Hypoxia 2014, 2, 11–21. [Google Scholar] [CrossRef]
- Brauer, E.; Lange, T.; Keller, D.; Görlitz, S.; Cho, S.; Keye, J.; Gossen, M.; Petersen, A.; Kornak, U. Dissecting the influence of cellular senescence on cell mechanics and extracellular matrix formation in vitro. Aging Cell 2023, 22, e13744. [Google Scholar] [CrossRef]
- Gavara, N.; Chadwick, R.S. Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging. Biomech. Model. Mechanobiol. 2016, 15, 511–523. [Google Scholar] [CrossRef]
- LeBlon, C.E.; Casey, M.E.; Fodor, C.R.; Zhang, T.; Zhang, X.; Jedlicka, S.S. Correlation between in vitro expansion-related cell stiffening and differentiation potential of human mesenchymal stem cells. Differentiation 2015, 90, 1–15. [Google Scholar]
- van Eijden, T.M. Biomechanics of the mandible. Crit. Rev. Oral. Biol. Med. 2000, 11, 123–136. [Google Scholar] [CrossRef]
- van Esterik, F.A.; Zandieh-Doulabi, B.; Kleverlaan, C.J.; Klein-Nulend, J. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels. Stem Cells Int. 2016, 2016, 1934270. [Google Scholar] [CrossRef]
- Johnson, R.W.; Sowder, M.E.; Giaccia, A.J. Hypoxia and Bone Metastatic Disease. Curr. Osteoporos. Rep. 2017, 15, 231–238. [Google Scholar] [CrossRef] [PubMed]
A | ||||||
---|---|---|---|---|---|---|
Cell Type | JPCs | iMSCs | JPCs + iMSCs | |||
Young’s modulus | CaPP vs. Ob t = −0.121, p = 0.583 CaPP vs. Co t = 0.091, p = 0.681 Co vs. Ob t = 0.364, p = 0.100 | CaPP vs. Ob t = 0.091, p = 0.681 CaPP vs. Co t = −0.212, p = 0.337 Co vs. Ob t = 0.333, p = 0.131 | CaPP vs. Ob t = 0.043, p = 0.766 CaPP vs. Co t = −0.094, p = 0.519 Co vs. Ob t = 0.225, p = 0.124 | |||
Coating 1. CaPP vs. Ob | Laminin t = −0.333 p = 0.348 | Gelatin t = 0.200 p = 0.573 | Laminin t = −0.033 p = 0.348 | Gelatin t = 0.333 p = 0.348 | Laminin t = −0.152 p = 0.493 | Gelatin t = 0.303 p = 0.170 |
2. CaPP vs. Co | t = 0.200 p = 0.573 | t = 0.067 p = 0.851 | t = −0.467 p = 0.188 | t = −0.200 p = 0.573 | t = −0.152 p = 0.493 | t = 0.030 p = 0.891 |
3. Co vs. Ob | t = 0.467 p = 0.188 | t = 0.333 p =0.348 | t = 0.333 p = 0.348 | t = 0.200 p = 0.573 | t = 0.152 p = 0.493 | t = 0.303 p = 0.891 |
B | ||||||
Cell Type | JPCs | iMSCs | JPCs + iMSCs | |||
Calcium concentration (cc) vs. Young’s modulus (Ym) | CaPP t = 0.242, p = 0.273 Ob t = −0.636, p = 0.004 Co t = −0.152, p = 0.49 | CaPP t = 0.273, p = 0.217 Ob t = 0.091, p = 0.681 Co t = −0.212, p = 0.337 | CaPP t = 0.232, p = 0.112 Ob t = −0.362, p = 0.013 Co t = −0.101, p = 0.487 | |||
Coating 1. CaPP Cc vs. Ym | Laminin t = 0.200 p = 0.573 | Gelatin t = 0.067 p = 0.851 | Laminin t = 0.333 p = 0.348 | Gelatin t = 0.333 p = 0.348 | Laminin t = 0.242 p = 0.273 | Gelatin t = 0.212 p= 0.337 |
2. Ob Cc vs. Ym | t = −0.867 p = 0.015 | t = −0.600 p =0.091 | t = 0.067 p = 0.851 | t = 0.200 p = 0.573 | t = −0.485 p = 0.028 | t = −0.212 p = 0.337 |
3. Co Cc vs. Ym | t = −0.333 p = 0.348 | t = −0.200 p = 0.573 | t = −0.333 p = 0.348 | t = −0.067 p = 0.851 | t = −0.242 p = 0.273 | t = 0.000 p = 1.000 |
Culturing Condition 1. CaPP Cc vs. Ym | Normoxia t = −0.067 p = 0.851 | Hypoxia t = 0.200 p = 0.573 | Normoxia t = 0.200 p = 0.573 | Hypoxia t = 0.200 p = 0.573 | Normoxia t = 0.061 p =0.784 | Hypoxia t = 0.121 p = 0.583 |
2. Ob Cc vs. Ym | t = −0.333 p = 0.348 | t = −0.333 p = 0.348 | t = −0.200 p = 0.573 | t = 0.200 p = 0.573 | t = −0.333 p = 0.131 | t = −0.364 p = 0.100 |
3. Co Cc vs. Ym | t = −0.200 p = 0.573 | t= −0.200 p = 0.573 | t = −0.733 p = 0.039 | t = 0.333 p = 0.348 | t = −0.485 p = 0.028 | t = 0.333 p = 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danalache, M.; Gaa, L.K.; Burgun, C.; Umrath, F.; Naros, A.; Alexander, D. Mesenchymal Stem Cell Plasticity: What Role Do Culture Conditions and Substrates Play in Shaping Biomechanical Signatures? Bioengineering 2024, 11, 1282. https://doi.org/10.3390/bioengineering11121282
Danalache M, Gaa LK, Burgun C, Umrath F, Naros A, Alexander D. Mesenchymal Stem Cell Plasticity: What Role Do Culture Conditions and Substrates Play in Shaping Biomechanical Signatures? Bioengineering. 2024; 11(12):1282. https://doi.org/10.3390/bioengineering11121282
Chicago/Turabian StyleDanalache, Marina, Lena Karin Gaa, Charline Burgun, Felix Umrath, Andreas Naros, and Dorothea Alexander. 2024. "Mesenchymal Stem Cell Plasticity: What Role Do Culture Conditions and Substrates Play in Shaping Biomechanical Signatures?" Bioengineering 11, no. 12: 1282. https://doi.org/10.3390/bioengineering11121282
APA StyleDanalache, M., Gaa, L. K., Burgun, C., Umrath, F., Naros, A., & Alexander, D. (2024). Mesenchymal Stem Cell Plasticity: What Role Do Culture Conditions and Substrates Play in Shaping Biomechanical Signatures? Bioengineering, 11(12), 1282. https://doi.org/10.3390/bioengineering11121282