Artificial Intelligence Diagnosing of Oral Lichen Planus: A Comparative Study
Abstract
:1. Introduction
2. Methods
2.1. Case Collection
2.2. Image Acquisition and Preprocessing
2.3. AI Platform Selection
2.4. AI Diagnostic Process
2.5. Diagnostic Performance Evaluation
2.6. Statistical Analysis
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nosratzehi, T. Oral Lichen Planus: An Overview of Potential Risk Factors, Biomarkers and Treatments. Asian Pac. J. Cancer Prev. 2018, 19, 1161–1167. [Google Scholar] [PubMed]
- Alrashdan, M.S.; Cirillo, N.; McCullough, M. Oral lichen planus: A literature review and update. Arch. Dermatol. Res. 2016, 308, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, M.A.; Sheikhhoseini, S.; Afshari, Z.; Gandjalikhan Nassab, A.R. The relationship between clinical symptoms of oral lichen planus and quality of life related to oral health. BMC Oral Health 2024, 24, 556. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, H.; Zhou, Y.; Wang, X.; Wang, W.; Duan, N. Clinical Features and Histopathological Analysis of Oral Lichen Planus: An Analysis of 105 Chinese Patients. Oral Health Prev. Dent. 2024, 22, 271–276. [Google Scholar] [PubMed]
- Roberts, S.L.; Bhamra, R.; Ilankovan, V. Malignant transformation rate of erosive oral lichen planus: A retrospective study. Br. J. Oral Maxillofac. Surg. 2024, 62, 788–793. [Google Scholar] [CrossRef]
- Wu, T.; Bai, Y.; Jing, Y.; Chen, F. What can we learn from treatments of oral lichen planus? Front. Cell. Infect. Microbiol. 2024, 14, 1279220. [Google Scholar] [CrossRef]
- Gurav, T.; Thakare, A.; Shinde, P.; Chavan, M.; Taori, K.; Jadhav, V. Clinical Characteristics, Identification, and Treatment of Lichen Planus: A Case Report. Cureus J. Med. Sci. 2024, 16, e65712. [Google Scholar] [CrossRef]
- Liu, J.; Xu, H.; Tang, G.; Liu, H.; Sun, Z.; Zhou, G.; Cheng, B.; Wang, W.; He, H.; Guo, B.; et al. A multi-center cross-sectional study of 1495 Chinese oral lichen planus patients. Oral Dis. 2024, 30, 3155–3164. [Google Scholar] [CrossRef]
- Manchanda, Y.; Rathi, S.K.; Joshi, A.; Das, S. Oral Lichen Planus: An Updated Review of Etiopathogenesis, Clinical Presentation, and Management. Indian Dermatol. Online J. 2024, 15, 8–23. [Google Scholar] [CrossRef]
- Wenderlein, J.M. Artificial intelligence (AI) in diagnostic and therapeutic decision-making-a tool or communication partner. Urologie 2024, 63, 773–778. [Google Scholar] [CrossRef]
- Naik, G.G.; Jagtap, V.A. Two heads are better than one: Unravelling the potential Impact of Artificial Intelligence in nanotechnology. Nano TransMed 2024, 3, 100041. [Google Scholar] [CrossRef]
- Altini, N.; Brunetti, A.; Puro, E.; Taccogna, M.G.; Saponaro, C.; Zito, F.A.; De Summa, S.; Bevilacqua, V. NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM. Bioengineering 2022, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Tanriver, G.; Soluk Tekkesin, M.; Ergen, O. Automated Detection and Classification of Oral Lesions Using Deep Learning to Detect Oral Potentially Malignant Disorders. Cancers 2021, 13, 2766. [Google Scholar] [CrossRef] [PubMed]
- Osipowicz, K.; Turkowski, P.; Zdolińska-Malinowska, I. Classification-Predictive Model Based on Artificial Neural Network Validated by Histopathology and Direct Immunofluorescence for the Diagnosis of Oral Lichen Planus. Diagnostics 2024, 14, 1525. [Google Scholar] [CrossRef] [PubMed]
- Ukwuoma, C.C.; Qin, Z.; Heyat, M.; Akhtar, F.; Smahi, A.; Jackson, J.K.; Furqan Qadri, S.; Muaad, A.Y.; Monday, H.N.; Nneji, G.U. Automated Lung-Related Pneumonia and COVID-19 Detection Based on Novel Feature Extraction Framework and Vision Transformer Approaches Using Chest X-ray Images. Bioengineering 2022, 9, 709. [Google Scholar] [CrossRef]
- Momenaei, B.; Wakabayashi, T.; Shahlaee, A.; Durrani, A.F.; Pandit, S.A.; Wang, K.; Mansour, H.A.; Abishek, R.M.; Xu, D.; Sridhar, J.; et al. Appropriateness and Readability of ChatGPT-4-Generated Responses for Surgical Treatment of Retinal Diseases. Ophthalmol. Retin. 2023, 7, 862–868. [Google Scholar] [CrossRef]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 8459–8486. [Google Scholar] [CrossRef]
- Berg, H.T.; van Bakel, B.; van de Wouw, L.; Jie, K.E.; Schipper, A.; Jansen, H.; O’Connor, R.D.; van Ginneken, B.; Kurstjens, S. ChatGPT and Generating a Differential Diagnosis Early in an Emergency Department Presentation. Ann. Emerg. Med. 2024, 83, 83–86. [Google Scholar] [CrossRef]
- Alhaidry, H.M.; Fatani, B.; Alrayes, J.O.; Almana, A.M.; Alfhaed, N.K. ChatGPT in Dentistry: A Comprehensive Review. Cureus J. Med. Sci. 2023, 15, e38317. [Google Scholar] [CrossRef]
- Balasanjeevi, G.; Surapaneni, K.M. Comparison of ChatGPT version 3.5 & 4 for utility in respiratory medicine education using clinical case scenarios. Respir. Med. Res. 2024, 85, 101091. [Google Scholar]
- Shemer, A.; Cohen, M.; Altarescu, A.; Atar-Vardi, M.; Hecht, I.; Dubinsky-Pertzov, B.; Shoshany, N.; Zmujack, S.; Or, L.; Einan-Lifshitz, A.; et al. Diagnostic capabilities of ChatGPT in ophthalmology. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Oleck, N.C.; Naga, H.I.; Nichols, D.S.; Morris, M.X.; Dhingra, B.; Patel, A. Navigating the Ethical Landmines of ChatGPT: Implications of Intelligent Chatbots in Plastic Surgery Clinical Practice. Plast. Reconstr. Surg.–Glob. Open 2023, 11, e5290. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Chintalapudi, N.; Hossain, M.A.; Losco, G.; Ruocco, C.; Sagaro, G.G.; Traini, E.; Nittari, G.; Amenta, F. Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review. Bioengineering 2022, 9, 370. [Google Scholar] [CrossRef] [PubMed]
- Ioannides, D.; Vakirlis, E.; Kemeny, L.; Marinovic, B.; Massone, C.; Murphy, R.; Nast, A.; Ronnevig, J.; Ruzicka, T.; Cooper, S.M.; et al. European S1 guidelines on the management of lichen planus: A cooperation of the European Dermatology Forum with the European Academy of Dermatology and Venereology. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1403–1414. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Liu, S. Utility of ChatGPT in Clinical Practice. J. Med. Internet Res. 2023, 25, e48568. [Google Scholar] [CrossRef]
- Guastafierro, V.; Corbitt, D.N.; Bressan, A.; Fernandes, B.; Mintemur, Ö.; Magnoli, F.; Ronchi, S.; La Rosa, S.; Uccella, S.; Renne, S.L. Unveiling the risks of ChatGPT in diagnostic surgical pathology. Virchows Arch. 2024. ahead of print. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Ramasubramanian, S.; Balaji, S.; Jeyaraman, N.; Nallakumarasamy, A.; Sharma, S. ChatGPT in action: Harnessing artificial intelligence potential and addressing ethical challenges in medicine, education, and scientific research. World J. Methodol. 2023, 13, 170–178. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, B.; Niu, C.; Chen, T.; Li, Y.; Shan, H.; Wang, G. IQAGPT: Computed tomography image quality assessment with vision-language and ChatGPT models. Vis. Comput. Ind. Biomed. Art 2024, 7, 20. [Google Scholar] [CrossRef]
- Furriel, B.; Oliveira, B.D.; Prôa, R.; Paiva, J.Q.; Loureiro, R.M.; Calixto, W.P.; Reis, M.; Giavina-Bianchi, M. Artificial intelligence for skin cancer detection and classification for clinical environment: A systematic review. Front. Med. 2023, 10, 1305954. [Google Scholar] [CrossRef]
- Ye, Y.J.; Han, Y.; Liu, Y.; Guo, Z.L.; Huang, M.W. Utilizing deep learning for automated detection of oral lesions: A multicenter study. Oral Oncol. 2024, 155, 106873. [Google Scholar] [CrossRef]
- Checcucci, E.; Rodler, S.; Piazza, P.; Porpiglia, F.; Cacciamani, G.E. Transitioning from “Dr. Google” to “Dr. ChatGPT”: The advent of artificial intelligence chatbots. Transl. Androl. Urol. 2024, 13, 1067–1070. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.Q. Potential and limitations of ChatGPT and generative artificial intelligence in medical safety education. World J. Clin. Cases 2023, 11, 7935–7939. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Polonowita, A.; Sun, Q.; Mei, L. Immune-mediated conditions and cellular biomarkers for early diagnosis of oral diseases. Nano TransMed 2023, 2, 100001. [Google Scholar] [CrossRef]
Affected Areas of OLP | Buccal Mucosa | Tongue | Vestibular Sulcus | Gingiva | Cheilosis | |
---|---|---|---|---|---|---|
Samples | 70 | 35 | 7 | 10 | 6 | |
Age (Years) | 45.76 ± 13.02 | 46.63 ± 14.54 | 48.71 ± 11.24 | 50.00 ± 6.63 | 51.17 ± 5.23 | |
Sex | Male | 32 | 14 | 4 | 4 | 1 |
Female | 38 | 21 | 3 | 6 | 5 |
Different Sites | Number of Cases | Non-Pre-Training | Pre-Training | ||||
---|---|---|---|---|---|---|---|
Chat-4O | Chat-Diagrams | Claude | Chat-4O | Chat-Diagrams | Claude | ||
Buccal mucosa | 70 | 56 (80%) | 60 (86%) | 11 (16%) | 66 (94%) | 65 (93%) | 39 (56%) |
Tongue | 35 | 11 (31%) | 16 (46%) | 3 (9%) | 17 (49%) | 19 (54%) | 14 (40%) |
Vestibular sulcus | 7 | 4 (57%) | 7 (100%) | 3 (43%) | 5 (71%) | 7 (100%) | 7 (100%) |
Gingiva | 10 | 3 (30%) | 1 (10%) | 1 (10%) | 6 (60%) | 6 (60%) | 2 (20%) |
Cheilosis | 6 | 2 (33%) | 3 (50%) | 1 (17%) | 5 (83%) | 5 (83%) | 2 (33%) |
Overall | 128 | 76 (59%) | 87 (68%) | 19 (15%) | 99 (77%) | 102 (80%) | 64 (50%) |
Chat-4O | Chat-Diagrams | Claude | p | |
---|---|---|---|---|
Non-pre-training | 76 (59%) | 87 (68%) | 19 (15%) | <0.01 |
Pre-training | 99 (77%) | 102 (80%) | 64 (50%) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Sun, W.; Mi, D.; Jin, S.; Wu, X.; Xin, B.; Zhang, H.; Wang, Y.; Sun, X.; He, X. Artificial Intelligence Diagnosing of Oral Lichen Planus: A Comparative Study. Bioengineering 2024, 11, 1159. https://doi.org/10.3390/bioengineering11111159
Yu S, Sun W, Mi D, Jin S, Wu X, Xin B, Zhang H, Wang Y, Sun X, He X. Artificial Intelligence Diagnosing of Oral Lichen Planus: A Comparative Study. Bioengineering. 2024; 11(11):1159. https://doi.org/10.3390/bioengineering11111159
Chicago/Turabian StyleYu, Sensen, Wansu Sun, Dawei Mi, Siyu Jin, Xing Wu, Baojian Xin, Hengguo Zhang, Yuanyin Wang, Xiaoyu Sun, and Xin He. 2024. "Artificial Intelligence Diagnosing of Oral Lichen Planus: A Comparative Study" Bioengineering 11, no. 11: 1159. https://doi.org/10.3390/bioengineering11111159
APA StyleYu, S., Sun, W., Mi, D., Jin, S., Wu, X., Xin, B., Zhang, H., Wang, Y., Sun, X., & He, X. (2024). Artificial Intelligence Diagnosing of Oral Lichen Planus: A Comparative Study. Bioengineering, 11(11), 1159. https://doi.org/10.3390/bioengineering11111159