Unlocking the Potentials of Large Language Models in Orthodontics: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
P (Population): | Human subjects including patients, dental professionals, or laypeople |
I (Intervention): | LLMs, such as ChatGPT (Open AI), Gemini (Google), and Copilot (Microsoft), that were implemented in orthodontic domains |
C (Comparator): | Conventional healthcare approach or blank control |
O (Outcomes): | Assessment of the orthodontic outcomes in terms of diagnostic accuracy, treatment efficacy, speed of action, etc. |
S (Study design): | Original studies published in English within peer-reviewed academic journals between 2017 and 30 June 2024 were included. |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. 1943. Bull. Math. Biol. 1990, 52, 99–115; discussion 173–197. [Google Scholar] [CrossRef] [PubMed]
- Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems; Pearson education: London, UK, 2005. [Google Scholar]
- Tran, B.X.; Vu, G.T.; Ha, G.H.; Vuong, Q.-H.; Ho, M.-T.; Vuong, T.-T.; La, V.-P.; Ho, M.-T.; Nghiem, K.-C.P.; Nguyen, H.L.T.; et al. Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. J. Clin. Med. 2019, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Mintz, Y.; Brodie, R. Introduction to artificial intelligence in medicine. Minim. Invasive Ther. Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Kaul, V.; Enslin, S.; Gross, S.A. History of artificial intelligence in medicine. Gastrointest. Endosc. 2020, 92, 807–812. [Google Scholar] [CrossRef]
- Cao, L. Ai in finance: Challenges, techniques, and opportunities. ACM Comput. Surv. (CSUR) 2022, 55, 1–38. [Google Scholar]
- Arinez, J.F.; Chang, Q.; Gao, R.X.; Xu, C.; Zhang, J. Artificial intelligence in advanced manufacturing: Current status and future outlook. J. Manuf. Sci. Eng. 2020, 142, 110804. [Google Scholar] [CrossRef]
- Mandal, V.; Mussah, A.R.; Jin, P.; Adu-Gyamfi, Y. Artificial intelligence-enabled traffic monitoring system. Sustainability 2020, 12, 9177. [Google Scholar] [CrossRef]
- Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of artificial intelligence in transport: An overview. Sustainability 2019, 11, 189. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Caffery, L.J.; Clunie, D.; Curiel-Lewandrowski, C.; Malvehy, J.; Soyer, H.P.; Halpern, A.C. Transforming dermatologic imaging for the digital era: Metadata and standards. J. Digit. Imaging 2018, 31, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Du-Harpur, X.; Watt, F.; Luscombe, N.; Lynch, M. What is AI? Applications of artificial intelligence to dermatology. Br. J. Dermatol. 2020, 183, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Basu, K.; Sinha, R.; Ong, A.; Basu, T. Artificial intelligence: How is it changing medical sciences and its future? Indian J. Dermatol. 2020, 65, 365–370. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.; Consortium, P.Q. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Habehh, H.; Gohel, S. Machine learning in healthcare. Curr. Genom. 2021, 22, 291. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, X.; Wang, J.; Wu, Y.; Yang, L.; Zhu, K.; Chen, H.; Yi, X.; Wang, C.; Wang, Y.; et al. A survey on evaluation of large language models. ACM Trans. Intell. Syst. Technol. 2024, 15, 1–45. [Google Scholar] [CrossRef]
- Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.D.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al. Evaluating large language models trained on code. arXiv 2021, arXiv:2107.03374. [Google Scholar]
- Shanahan, M. Talking about large language models. Commun. ACM 2024, 67, 68–79. [Google Scholar] [CrossRef]
- Tseng, R.; Verberne, S.; van der Putten, P. ChatGPT as a commenter to the news: Can LLMs generate human-like opinions? In Proceedings of the Multidisciplinary International Symposium on Disinformation in Open Online Media, Amsterdam, The Netherlands, 21–22 November 2023; pp. 160–174. [Google Scholar]
- Garon, J. A practical Introduction to Generative AI, Synthetic Media, and the Messages Found in the Latest Medium (March 14, 2023). 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4388437 (accessed on 10 July 2024).
- Wu, T.; He, S.; Liu, J.; Sun, S.; Liu, K.; Han, Q.-L.; Tang, Y. A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA J. Autom. Sin. 2023, 10, 1122–1136. [Google Scholar] [CrossRef]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Akhtar, Z.B. Unveiling the evolution of generative AI (GAI): A comprehensive and investigative analysis toward LLM models (2021–2024) and beyond. J. Electr. Syst. Inf. Technol. 2024, 11, 22. [Google Scholar]
- Seth, I.; Cox, A.; Xie, Y.; Bulloch, G.; Hunter-Smith, D.J.; Rozen, W.M.; Ross, R.J. Evaluating chatbot efficacy for answering frequently asked questions in plastic surgery: A ChatGPT case study focused on breast augmentation. Aesthetic Surg. J. 2023, 43, 1126–1135. [Google Scholar] [CrossRef]
- Lim, Z.W.; Pushpanathan, K.; Yew, S.M.E.; Lai, Y.; Sun, C.-H.; Lam, J.S.H.; Chen, D.Z.; Goh, J.H.L.; Tan, M.C.J.; Sheng, B.; et al. Benchmarking large language models’ performances for myopia care: A comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and Google Bard. EBioMedicine 2023, 95, 104770. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Ma, J.; Zhang, X.; Hao, N.; Yan, A.; Nourbakhsh, A.; Yang, X.; McAuley, J.; Petzold, L.; Wang, W.Y. A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law. arXiv 2024, arXiv:2405.01769. [Google Scholar]
- Karabacak, M.; Margetis, K. Embracing large language models for medical applications: Opportunities and challenges. Cureus 2023, 15, e39305. [Google Scholar] [CrossRef]
- Geantă, M.; Bădescu, D.; Chirca, N.; Nechita, O.C.; Radu, C.G.; Rascu, S.; Rădăvoi, D.; Sima, C.; Toma, C.; Jinga, V. The Potential Impact of Large Language Models on Doctor–Patient Communication: A Case Study in Prostate Cancer. Healthcare 2024, 12, 1548. [Google Scholar] [CrossRef]
- Garg, R.K.; Urs, V.L.; Agarwal, A.A.; Chaudhary, S.K.; Paliwal, V.; Kar, S.K. Exploring the role of ChatGPT in patient care (diagnosis and treatment) and medical research: A systematic review. Health Promot. Perspect. 2023, 13, 183. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large language models in medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Meskó, B.; Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit. Med. 2023, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, A.; PourNejatian, N.; Shin, H.C.; Smith, K.E.; Parisien, C.; Compas, C.; Martin, C.; Costa, A.B.; Flores, M.G.; et al. A large language model for electronic health records. NPJ Digit. Med. 2022, 5, 194. [Google Scholar] [CrossRef] [PubMed]
- Cenzato, N.; Nobili, A.; Maspero, C. Prevalence of Dental Malocclusions in Different Geographical Areas: Scoping Review. Dent. J. 2021, 9, 117. [Google Scholar] [CrossRef]
- Jamilian, A.; Kiaee, B.; Sanayei, S.; Khosravi, S.; Perillo, L. Orthodontic treatment of malocclusion and its impact on oral health-related quality of life. Open Dent. J. 2016, 10, 236. [Google Scholar] [CrossRef]
- Ko, E.W.-C.; Huang, C.S.; Lin, C.-H.; Chen, Y.-R. Orthodontic perspective for face asymmetry correction. Symmetry 2022, 14, 1822. [Google Scholar] [CrossRef]
- Kahn, S.; Ehrlich, P.; Feldman, M.; Sapolsky, R.; Wong, S. The jaw epidemic: Recognition, origins, cures, and prevention. Bioscience 2020, 70, 759–771. [Google Scholar] [CrossRef]
- Caruso, S.; Caruso, S.; Pellegrino, M.; Skafi, R.; Nota, A.; Tecco, S. A knowledge-based algorithm for automatic monitoring of orthodontic treatment: The dental monitoring system. Two cases. Sensors 2021, 21, 1856. [Google Scholar] [CrossRef]
- Littlewood, S.J.; Mitchell, L. An Introduction to Orthodontics; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef]
- Giannakopoulos, K.; Kavadella, A.; Aaqel Salim, A.; Stamatopoulos, V.; Kaklamanos, E.G. Evaluation of the performance of generative AI large language models ChatGPT, Google Bard, and Microsoft Bing Chat in supporting evidence-based dentistry: Comparative mixed methods study. J. Med. Internet Res. 2023, 25, e51580. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Han, J.; Wang, Z.; Zhang, D. Cephgpt-4: An interactive multimodal cephalometric measurement and diagnostic system with visual large language model. arXiv 2023, arXiv:2307.07518. [Google Scholar]
- Surovková, J.; Haluzová, S.; Strunga, M.; Urban, R.; Lifková, M.; Thurzo, A. The New Role of the Dental Assistant and Nurse in the Age of Advanced Artificial Intelligence in Telehealth Orthodontic Care with Dental Monitoring: Preliminary Report. Appl. Sci. 2023, 13, 5212. [Google Scholar] [CrossRef]
- Tanaka, O.M.; Gasparello, G.G.; Hartmann, G.C.; Casagrande, F.A.; Pithon, M.M. Assessing the reliability of ChatGPT: A content analysis of self-generated and self-answered questions on clear aligners, TADs and digital imaging. Dent. Press J. Orthod. 2023, 28, e2323183. [Google Scholar] [CrossRef]
- Abu Arqub, S.; Al-Moghrabi, D.; Allareddy, V.; Upadhyay, M.; Vaid, N.; Yadav, S. Content analysis of AI-generated (ChatGPT) responses concerning orthodontic clear aligners. Angle Orthod. 2024, 94, 263–272. [Google Scholar] [CrossRef]
- Arslan, C.; Kahya, K.; Cesur, E.; Cakan, D.G. An evaluation of orthodontic information quality regarding artificial intelligence (AI) chatbot technologies: A comparison of ChatGPT and google BARD. Australas. Orthod. J. 2024, 40, 149–157. [Google Scholar] [CrossRef]
- Daraqel, B.; Wafaie, K.; Mohammed, H.; Cao, L.; Mheissen, S.; Liu, Y.; Zheng, L. The performance of artificial intelligence models in generating responses to general orthodontic questions: ChatGPT vs Google Bard. Am. J. Orthod. Dentofac. Orthop. 2024, 165, 652–662. [Google Scholar] [CrossRef]
- Demir, G.B.; Süküt, Y.; Duran, G.S.; Topsakal, K.G.; Görgülü, S. Enhancing systematic reviews in orthodontics: A comparative examination of GPT-3.5 and GPT-4 for generating PICO-based queries with tailored prompts and configurations. Eur. J. Orthod. 2024, 46, cjae011. [Google Scholar] [CrossRef]
- Hatia, A.; Doldo, T.; Parrini, S.; Chisci, E.; Cipriani, L.; Montagna, L.; Lagana, G.; Guenza, G.; Agosta, E.; Vinjolli, F.; et al. Accuracy and Completeness of ChatGPT-Generated Information on Interceptive Orthodontics: A Multicenter Collaborative Study. J. Clin. Med. 2024, 13, 735. [Google Scholar] [CrossRef]
- Kılınç, D.D.; Mansız, D. Examination of the reliability and readability of Chatbot Generative Pretrained Transformer’s (ChatGPT) responses to questions about orthodontics and the evolution of these responses in an updated version. Am. J. Orthod. Dentofac. Orthop. 2024, 165, 546–555. [Google Scholar] [CrossRef]
- Makrygiannakis, M.A.; Giannakopoulos, K.; Kaklamanos, E.G. Evidence-based potential of generative artificial intelligence large language models in orthodontics: A comparative study of ChatGPT, Google Bard, and Microsoft Bing. Eur. J. Orthod. 2024; ahead of print. [Google Scholar]
- Morishita, M.; Fukuda, H.; Muraoka, K.; Nakamura, T.; Hayashi, M.; Yoshioka, I.; Ono, K.; Awano, S. Evaluating GPT-4V’s performance in the Japanese national dental examination: A challenge explored. J. Dent. Sci. 2024, 19, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Strunga, M.; Urban, R.; Surovková, J.; Thurzo, A. Artificial intelligence systems assisting in the assessment of the course and retention of orthodontic treatment. Healthcare 2023, 11, 683. [Google Scholar] [CrossRef] [PubMed]
- Demszky, D.; Yang, D.; Yeager, D.S.; Bryan, C.J.; Clapper, M.; Chandhok, S.; Eichstaedt, J.C.; Hecht, C.; Jamieson, J.; Johnson, M.; et al. Using large language models in psychology. Nat. Rev. Psychol. 2023, 2, 688–701. [Google Scholar] [CrossRef]
- Qureshi, R.; Irfan, M.; Gondal, T.M.; Khan, S.; Wu, J.; Hadi, M.U.; Heymach, J.; Le, X.; Yan, H.; Alam, T. AI in drug discovery and its clinical relevance. Heliyon 2023, 9, e17575. [Google Scholar] [CrossRef] [PubMed]
- Shoham, O.B.; Rappoport, N. Cpllm: Clinical prediction with large language models. arXiv 2023, arXiv:2309.11295. [Google Scholar]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Huang, J.; Chang, K.C.-C. Towards reasoning in large language models: A survey. arXiv 2022, arXiv:2212.10403. [Google Scholar]
- Awais, M.; Naseer, M.; Khan, S.; Anwer, R.M.; Cholakkal, H.; Shah, M.; Yang, M.-H.; Khan, F.S. Foundational models defining a new era in vision: A survey and outlook. arXiv 2023, arXiv:2307.13721. [Google Scholar]
- Yang, J.; Jin, H.; Tang, R.; Han, X.; Feng, Q.; Jiang, H.; Zhong, S.; Yin, B.; Hu, X. Harnessing the power of llms in practice: A survey on chatgpt and beyond. ACM Trans. Knowl. Discov. Data 2024, 18, 1–32. [Google Scholar] [CrossRef]
- Rasmy, L.; Xiang, Y.; Xie, Z.; Tao, C.; Zhi, D. Med-BERT: Pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ Digit. Med. 2021, 4, 86. [Google Scholar] [CrossRef]
- Safranek, C.W.; Sidamon-Eristoff, A.E.; Gilson, A.; Chartash, D. The role of large language models in medical education: Applications and implications. JMIR Med. Educ. 2023, 9, e50945. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Hoyo, A.; Shan, N.L.; Li, A.; Pearson, A.T.; Pusztai, L.; Howard, F.M. Evaluation of large language models as a diagnostic aid for complex medical cases. Front. Med. 2024, 11, 1380148. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, A.; PourNejatian, N.; Shin, H.C.; Smith, K.E.; Parisien, C.; Compas, C.; Martin, C.; Flores, M.G.; Zhang, Y.; et al. Gatortron: A large clinical language model to unlock patient information from unstructured electronic health records. arXiv 2022, arXiv:2203.03540. [Google Scholar]
- Kraljevic, Z.; Bean, D.; Shek, A.; Bendayan, R.; Hemingway, H.; Yeung, J.A.; Deng, A.; Baston, A.; Ross, J.; Idowu, E.; et al. Foresight--generative pretrained transformer (GPT) for modelling of patient timelines using Ehrs. arXiv 2022, arXiv:2212.08072. [Google Scholar]
- Keyser, M.M.B.; Lathrop, H.; Jhingree, S.; Giduz, N.; Bocklage, C.; Couldwell, S.; Oliver, S.; Moss, K.; Frazier-Bowers, S.; Phillips, C.; et al. Impacts of Skeletal Anterior Open Bite Malocclusion on Speech. FACE 2022, 3, 339–349. [Google Scholar] [CrossRef]
- Handoko, H.; Yohana, N. Speech production and malocclusion: A review. JURNAL ARBITRER 2023, 10, 107–115. [Google Scholar] [CrossRef]
- Al-Huwaizi, A. Occlusal Features, Perception of Occlusion, Orthodontic Treatment Need and Demand Among 13 Year Old Iraqi Students. Ph.D. Thesis, University of Baghdad, Baghdad, Iraq, 2002. [Google Scholar]
- Tripathi, S.; Sukumaran, R.; Cook, T.S. Efficient healthcare with large language models: Optimizing clinical workflow and enhancing patient care. J. Am. Med. Inform. Assoc. 2024, 31, 1436–1440. [Google Scholar] [CrossRef]
- Arora, A.; Arora, A. The promise of large language models in health care. Lancet 2023, 401, 641. [Google Scholar] [CrossRef]
- Askin, S.; Burkhalter, D.; Calado, G.; El Dakrouni, S. Artificial Intelligence Applied to clinical trials: Opportunities and challenges. Health Technol. 2023, 13, 203–213. [Google Scholar] [CrossRef]
- Radford, A.; Kim, J.W.; Xu, T.; Brockman, G.; McLeavey, C.; Sutskever, I. Robust speech recognition via large-scale weak supervision. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 28492–28518. [Google Scholar]
- Zhu, W.; Liu, H.; Dong, Q.; Xu, J.; Huang, S.; Kong, L.; Chen, J.; Li, L. Multilingual machine translation with large language models: Empirical results and analysis. arXiv 2023, arXiv:2304.04675. [Google Scholar]
- Nori, H.; King, N.; McKinney, S.M.; Carignan, D.; Horvitz, E. Capabilities of gpt-4 on medical challenge problems. arXiv 2023, arXiv:2303.13375. [Google Scholar]
- Kumar, H.; Musabirov, I.; Reza, M.; Shi, J.; Kuzminykh, A.; Williams, J.J.; Liut, M. Impact of guidance and interaction strategies for LLM use on Learner Performance and perception. arXiv 2023, arXiv:2310.13712. [Google Scholar]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; De Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, A.S.; Polascik, B.W.; Doddapaneni, D.; Byrnes, E.S.; Sridhar, J. The digital metaverse: Applications in artificial intelligence, medical education, and integrative health. Integr. Med. Res. 2023, 12, 100917. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Country | Objective | Assessment Method | Effects/Results |
---|---|---|---|---|
K. Giannakopoulos et al. (2023) [45] | Cyprus | To evaluate the accuracy of the answers provided by Bard, ChatGPT-3.5 and ChatGPT-4, and Bing Chat related to the two orthodontic questions. (1. Is early orthodontic treatment in two phases for children with prominent upper teeth more beneficial compared to treatment that is provided in one phase in adolescence? 2. Does orthodontic treatment affect airway function?) | Comparative Mixed Methods Study |
|
L. Ma et al. (2023) [46] | China | In this paper, they propose a novel multimodal cephalometric analysis and diagnostic dialogue model called CephGPT-4. | Discussion |
|
J. Surovková et al. (2023) [47] | Slovakia | The paper introduces the Dental Monitoring (DM), an orthodontic software that uses AI and knowledge-based algorithms to provide accurate treatment tracking and can answer questions from patients. It also evaluates DM’s clinical application within the daily workflow of orthodontic treatment. | Discussion |
|
O. M. Tanaka et al. (2023) [48] | Brazil | To evaluate the accuracy of ChatGPT in answering to a total of 45 questions on Clear aligners, TAD and Digital imaging. | Quantitative analysis |
|
S. Abu Arqub et al. (2024) [49] | USA | To assess the accuracy of ChatGPT answers of 111 questions concerning orthodontic clear aligners. | Quantitative analysis |
|
C. Arslan et al. (2024) [50] | Turkey | 24 questions about conventional braces, clear aligners, orthognathic surgery and orthodontic retainers were chosen for assessing the accuracy of the answers provided by ChatGPT and BARD. | Quantitative analysis |
|
B. Daraqel, et al. (2024) [51] | China | 100 questions were used to evaluate and compare the performance of ChatGPT-3.5, Google Bard in terms of response accuracy, completeness, generation time, and response length when answering general orthodontic questions | Quantitative analysis |
|
G. B. Demir et al. (2024) [52] | Turkey | To compare the effectiveness of ChatGPT3.5 and ChatGPT4 in completing systematic reviews. | Quantitative analysis |
|
A. Hatia et al. (2024) [53] | Italy | Twenty-one questions were used to investigate the accuracy and completeness of ChatGPT in answering questions and solving clinical scenarios related to interceptive orthodontics. | Quantitative analysis |
|
D. D. Kılınç and D. Mansız (2024) [54] | Turkey | 34 questions about orthodontics were used to assess the reliability and readability of the responses to the two versions of ChatGPT. | Quantitative analysis |
|
M. A. Makrygiannakis et al. (2024) [55] | Greece | Ten questions about orthodontics were used to assess and compare the answers provided by Google’s Bard, OpenAI’s ChatGPT-3.5 and ChatGPT-4, and Microsoft’s Bing. | Quantitative analysis |
|
M. Morishita et al.(2024) [56] | Japan | A total of 160 questions were used to assess the capabilities of ChatGPT-4V in answering image-based questions, including 20 questions specifically in the field of orthodontics. | Quantitative analysis |
|
Published Year | Methodological | Region Distribution | LLMs | The Field of Orthodontics |
---|---|---|---|---|
2023 2024 | Discussion
Comparative mixed method
| Europe
| ChatGPT
| Clinical Applications Assisting treatment and question answering
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Ding, X.; Pu, J.J.; Chung, S.M.; Ai, Q.Y.H.; Hung, K.F.; Shan, Z. Unlocking the Potentials of Large Language Models in Orthodontics: A Scoping Review. Bioengineering 2024, 11, 1145. https://doi.org/10.3390/bioengineering11111145
Zheng J, Ding X, Pu JJ, Chung SM, Ai QYH, Hung KF, Shan Z. Unlocking the Potentials of Large Language Models in Orthodontics: A Scoping Review. Bioengineering. 2024; 11(11):1145. https://doi.org/10.3390/bioengineering11111145
Chicago/Turabian StyleZheng, Jie, Xiaoqian Ding, Jingya Jane Pu, Sze Man Chung, Qi Yong H. Ai, Kuo Feng Hung, and Zhiyi Shan. 2024. "Unlocking the Potentials of Large Language Models in Orthodontics: A Scoping Review" Bioengineering 11, no. 11: 1145. https://doi.org/10.3390/bioengineering11111145
APA StyleZheng, J., Ding, X., Pu, J. J., Chung, S. M., Ai, Q. Y. H., Hung, K. F., & Shan, Z. (2024). Unlocking the Potentials of Large Language Models in Orthodontics: A Scoping Review. Bioengineering, 11(11), 1145. https://doi.org/10.3390/bioengineering11111145