Human Septal Cartilage Tissue Engineering: Current Methodologies and Future Directions
Abstract
:1. Introduction
2. Composition, Structure, and Function of Human Nasal Septal Cartilage
3. Current Methodologies and Advancements in Cell Source Selection, Chondrocyte Expansion, Chondrocyte Redifferentiation, and Scaffold Strategies
3.1. Cell Source Selection
3.2. Chondrocyte Expansion
3.3. Chondrocyte Redifferentiation
3.4. Scaffold-Based and Scaffold-Free Strategies
Scaffold | Properties | Pros | Cons | Opportunities for Improvement |
---|---|---|---|---|
Natural Scaffolds | ||||
Collagen | Natural matrix polymer | Biocompatible Low immunogenicity Facilitates cell adhesion and proliferation | Rapid degradation | Increasing cross-linked collagen scaffolds [62] Composite combinations with synthetic scaffolds to reduce degradation rate [63] |
Alginate | Natural polysaccharide extracted from sea algae | Easily crosslinked Compatible with 3D bioprinting | Poor cellular infiltration and attachment | Addition of fibronectin and matrigel coating improed cell attachment to honeycomb alginate scaffolds [64] Addition of collagen increases cell proliferation and ECM production [65,66] |
Hyaluronic Aid | Anionic polysaccharide | Facilitates cell proliferation | Poor mechanical strength even when crosslinked | Composite combinations with synthetic scaffolds to improve mechanical strength [67] |
Decellularized ECM | Comprises proteoglycans and collagen | Biocompatible | Difficult for cells to reseed due to ECM density | Decreasing ECM density via pulverization or creation of porous channels [68,69] |
Synthetic Scaffolds | ||||
Polycaprolactone (PCL) | Low melting point Hydrophobic | High mechanical stability Low melting point Excellent blend-compatibility with different additives Hydrophobic with longer degradation time | Suboptimal cell attachment and tissue integration | Composite combinations with natural scaffolds to improve biocompatibility [70] |
Poly-L-lactic Acid (PLLA) | Biodegradable thermoplastic polyester | High mechanical stability | Suboptimal cell attachment and tissue integration | Composite combinations with natural scaffolds to improve biocompatibility [71] |
Polyglycolic Acid (PGA) | Biodegradable thermoplastic polyester | High mechanical stability | Suboptimal cell attachment and tissue integration | Composite combinations with natural scaffolds to improve biocompatibility [72] Addition of fibrin glue to chondrocytes seeded onto a PGA scaffold results in increased cellular proliferation while maintaining production of ECM components [55] |
Poly(lactic-co-glycolic acid) (PLGA) | Biodegradable polyester | High mechanical stability Excellent blend-compatibility with different additives | Suboptimal cell attachment and tissue integration | Composite combinations with natural scaffolds to improve biocompatibility [63] |
4. Current Methods in Three-Dimensional Bioprinting
5. Pre-Clinical In Vivo Studies and Clinical Applications of Tissue-Engineered Septal Cartilage
6. Pre-Clinical In Vivo Studies of 3D Printed Tissue-Engineered Septal Cartilage
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3D | three-dimensional |
ARC | alginate-recovered-chondrocyte |
CAD | computer-aided design |
CT | computed tomography |
ECM | extracellular matrix |
FFFM | fused filament fabrication method |
FRESH | freeform reversible embedding of suspended hydrogel |
GAG | glycosaminoglycan |
hBM | human bone marrow |
hNC | human nasal chondrocytes |
IGF-1 | insulin-like growth factor 1 |
MRI | magnetic resonance imaging |
MSC | medicinal signaling cell |
PCL | Polycaprolactone |
PGA | Polyglycolic acid |
PLGA | Poly(lactic-co-glycolic acid) |
PLLA | Poly L-lactic acid |
TGF-β | transforming growth factor β |
References
- Brown, W.E.; Lavernia, L.; Bielajew, B.J.; Hu, J.C.; Athanasiou, K.A. Human nasal cartilage: Functional properties and structure-function relationships for the development of tissue engineering design criteria. Acta Biomater. 2023, 168, 113–124. [Google Scholar] [CrossRef]
- Griffin, M.F.; Premakumar, Y.; Seifalian, A.M.; Szarko, M.; Butler, P.E. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering. J. Mater. Sci. Mater. Med. 2016, 27, 11. [Google Scholar] [CrossRef]
- Watson, D. Tissue engineering for rhinoplasty. Facial Plast. Surg. Clin. North. Am. 2009, 17, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Greene, J.J.; Watson, D. Septal cartilage tissue engineering: New horizons. Facial Plast. Surg. 2010, 26, 396–404. [Google Scholar] [CrossRef]
- Nandakumar, B.S.; Mukherjee, P.; Yung, A.E.; Nirmalananda, A.; Ch’ng, S. Grafts in septorhinoplasty: A systematic review and future directions. Aust. J. Otolaryngol. 2022, 5, 1–12. [Google Scholar] [CrossRef]
- Watson, D.; Reuther, M.S. Tissue-engineered cartilage for facial plastic surgery. Curr. Opin. Otolaryngol. Head. Neck Surg. 2014, 22, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Bagher, Z.; Asgari, N.; Bozorgmehr, P.; Kamrava, S.K.; Alizadeh, R.; Seifalian, A. Will tissue-engineering strategies bring new jope for the reconstruction of nasal septal cartilage? Curr. Stem Cell Res. Ther. 2020, 15, 144–154. [Google Scholar] [CrossRef]
- Vertu-Ciolino, D.; Brunard, F.; Courtial, E.J.; Pasdeloup, M.; Marquette, C.A.; Perrier-Groult, E.; Mallein-Gerin, F.; Malcor, J.D. Challenges in nasal cartilage tissue engineering to restore the shape and function of the nose. Tissue Eng. Part. B Rev. 2024. [Google Scholar] [CrossRef]
- Cao, Y.; Sang, S.; An, Y.; Xiang, C.; Li, Y.; Zhen, Y. Progress of 3D printing techniques for nasal cartilage regeneration. Aesthetic Plast. Surg. 2022, 46, 947–964. [Google Scholar] [CrossRef]
- Huang, J.; Xiong, J.; Wang, D.; Zhang, J.; Yang, L.; Sun, S.; Liang, Y. 3D bioprinting of hydrogels for cartilage tissue engineering. Gels 2021, 7, 144. [Google Scholar] [CrossRef]
- van der Kraan, P.M.; Buma, P.; van Kuppevelt, T.; van den Berg, W.B. Interaction of chondrocytes, extracellular matrix and growth factors: Relevance for articular cartilage tissue engineering. Osteoarthr. Cartil. 2002, 10, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Bleys, R.L.; Popko, M.; De Groot, J.W.; Huizing, E.H. Histological structure of the nasal cartilages and their perichondrial envelope. Ii. The perichondrial envelope of the septal and lobular cartilage. Rhinology 2007, 45, 153–157. [Google Scholar]
- Ustunel, I.; Cayli, S.; Guney, K.; Celik-Ozenci, C.; Tanriover, G.; Sahin, Z.; Balkan, E.; Demir, R. Immunohistochemical distribution patterns of collagen type ii, chondroitin 4-sulfate, laminin and fibronectin in human nasal septal cartilage. Acta Histochem. 2003, 105, 109–114. [Google Scholar] [CrossRef]
- Neuman, M.K.; Briggs, K.K.; Masuda, K.; Sah, R.L.; Watson, D. A compositional analysis of cadaveric human nasal septal cartilage. Laryngoscope 2013, 123, 2120–2124. [Google Scholar] [CrossRef]
- Homicz, M.R.; McGowan, K.B.; Lottman, L.M.; Beh, G.; Sah, R.L.; Watson, D. A compositional analysis of human nasal septal cartilage. Arch. Facial Plast. Surg. 2003, 5, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, H.; Watson, D.; Masuda, K. Transplantation of tissue-engineered cartilage in an animal model (xenograft and autograft): Construct validation. In Cartilage Tissue Engineering: Methods and Protocols; Doran, P.M., Ed.; Springer: New York, NY, USA, 2015; pp. 247–259. [Google Scholar]
- Richmon, J.D.; Sage, A.; Wong, W.V.; Chen, A.C.; Sah, R.L.; Watson, D. Compressive biomechanical properties of human nasal septal cartilage. Am. J. Rhinol. 2006, 20, 496–501. [Google Scholar] [CrossRef]
- Rohrich, R.J.; Hoxworth, R.E.; Kurkjian, T.J. The role of the columellar strut in rhinoplasty: Indications and rationale. Plast. Reconstr. Surg. 2012, 129, 118e–125e. [Google Scholar] [CrossRef]
- Westreich, R.W.; Courtland, H.W.; Nasser, P.; Jepsen, K.; Lawson, W. Defining nasal cartilage elasticity: Biomechanical testing of the tripod theory based on a cantilevered model. Arch. Facial Plast. Surg. 2007, 9, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, J.P.; Kushnaryov, A.M.; Reuther, M.S.; Wong, V.W.; Briggs, K.K.; Masuda, K.; Sah, R.L.; Watson, D. Flexural properties of native and tissue-engineered human septal cartilage. Otolaryngol. Head. Neck Surg. 2013, 148, 576–581. [Google Scholar] [CrossRef]
- Homicz, M.R.; Schumacher, B.L.; Sah, R.L.; Watson, D. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngol. Head. Neck Surg. 2002, 127, 398–408. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, H.K.; Kim, D.W. Cartilage tissue engineering for craniofacial reconstruction. Arch. Plast. Surg. 2020, 47, 392–403. [Google Scholar] [CrossRef]
- Naumann, A.; Dennis, J.E.; Aigner, J.; Coticchia, J.; Arnold, J.; Berghaus, A.; Kastenbauer, E.R.; Caplan, A.I. Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system. Tissue Eng. 2004, 10, 1695–1706. [Google Scholar] [CrossRef]
- Tay, A.G.; Farhadi, J.; Suetterlin, R.; Pierer, G.; Heberer, M.; Martin, I. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng. 2004, 10, 762–770. [Google Scholar] [CrossRef]
- Dominice, J.; Levasseur, C.; Larno, S.; Ronot, X.; Adolphe, M. Age-related changes in rabbit articular chondrocytes. Mech. Ageing Dev. 1986, 37, 231–240. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med. 2017, 6, 1445–1451. [Google Scholar] [CrossRef]
- Nakayama, N.; Pothiawala, A.; Lee, J.Y.; Matthias, N.; Umeda, K.; Ang, B.K.; Huard, J.; Huang, Y.; Sun, D. Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering. Cell Mol. Life Sci. 2020, 77, 2543–2563. [Google Scholar] [CrossRef]
- Lach, M.S.; Rosochowicz, M.A.; Richter, M.; Jagiello, I.; Suchorska, W.M.; Trzeciak, T. The induced pluripotent stem cells in articular cartilage regeneration and disease modelling: Are we ready for their clinical use? Cells 2022, 11, 529. [Google Scholar] [CrossRef]
- Saito, T.; Yano, F.; Mori, D.; Kawata, M.; Hoshi, K.; Takato, T.; Masaki, H.; Otsu, M.; Eto, K.; Nakauchi, H.; et al. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells. Biomed. Res. 2015, 36, 179–186. [Google Scholar] [CrossRef]
- Murphy, M.K.; Huey, D.J.; Hu, J.C.; Athanasiou, K.A. Tgf-β1, gdf-5, and bmp-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 2015, 33, 762–773. [Google Scholar] [CrossRef]
- Apelgren, P.; Amoroso, M.; Lindahl, A.; Brantsing, C.; Rotter, N.; Gatenholm, P.; Kolby, L. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS ONE 2017, 12, e0189428. [Google Scholar] [CrossRef]
- Apelgren, P.; Amoroso, M.; Saljo, K.; Lindahl, A.; Brantsing, C.; Stridh Orrhult, L.; Gatenholm, P.; Kolby, L. Skin grafting on 3D bioprinted cartilage constructs in vivo. Plast. Reconstr. Surg. Glob. Open 2018, 6, e1930. [Google Scholar] [CrossRef]
- Shafiee, A.; Kabiri, M.; Ahmadbeigi, N.; Yazdani, S.O.; Mojtahed, M.; Amanpour, S.; Soleimani, M. Nasal septum-derived multipotent progenitors: A potent source for stem cell-based regenerative medicine. Stem Cells Dev. 2011, 20, 2077–2091. [Google Scholar] [CrossRef]
- Shafiee, A.; Kabiri, M.; Langroudi, L.; Soleimani, M.; Ai, J. Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. J. Biomed. Mater. Res. A 2016, 104, 600–610. [Google Scholar] [CrossRef]
- Vinod, E.; Johnson, N.N.; Kumar, S.; Amirtham, S.M.; James, J.V.; Livingston, A.; Rebekah, G.; Daniel, A.J.; Ramasamy, B.; Sathishkumar, S. Migratory chondroprogenitors retain superior intrinsic chondrogenic potential for regenerative cartilage repair as compared to human fibronectin derived chondroprogenitors. Sci. Rep. 2021, 11, 23685. [Google Scholar] [CrossRef]
- Marlovits, S.; Hombauer, M.; Truppe, M.; Vècsei, V.; Schlegel, W. Changes in the ratio of type-i and type-ii collagen expression during monolayer culture of human chondrocytes. J. Bone Jt. Surg. Br. 2004, 86, 286–295. [Google Scholar] [CrossRef]
- Chua, K.H.; Aminuddin, B.S.; Fuzina, N.H.; Ruszymah, B.H. Human serum provided additional values in growth factors supplemented medium for human chondrocytes monolayer expansion and engineered cartilage construction. Med. J. Malays. 2004, 59 (Suppl. B), 194–195. [Google Scholar]
- Alexander, T.H.; Sage, A.B.; Schumacher, B.L.; Sah, R.L.; Watson, D. Human serum for tissue engineering of human nasal septal cartilage. Otolaryngol. Head. Neck Surg. 2006, 135, 397–403. [Google Scholar] [CrossRef]
- De Angelis, E.; Grolli, S.; Saleri, R.; Conti, V.; Andrani, M.; Berardi, M.; Cavalli, V.; Passeri, B.; Ravanetti, F.; Borghetti, P. Platelet lysate reduces the chondrocyte dedifferentiation during in vitro expansion: Implications for cartilage tissue engineering. Res. Vet. Sci. 2020, 133, 98–105. [Google Scholar] [CrossRef]
- Kachroo, U.; Zachariah, S.M.; Thambaiah, A.; Tabasum, A.; Livingston, A.; Rebekah, G.; Srivastava, A.; Vinod, E. Comparison of human platelet lysate versus fetal bovine serum for expansion of human articular cartilage-derived chondroprogenitors. Cartilage 2021, 13, 107S–116S. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, W.; Li, X.; Zhong, D.; Li, Y.; Li, J.; Jin, R. Strategies to modulate the redifferentiation of chondrocytes. Front. Bioeng. Biotechnol. 2021, 9, 764193. [Google Scholar] [CrossRef]
- Richmon, J.D.; Sage, A.B.; Shelton, E.; Schumacher, B.L.; Sah, R.L.; Watson, D. Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer. Laryngoscope 2005, 115, 1553–1560. [Google Scholar] [CrossRef]
- Alexander, T.H.; Sage, A.B.; Chen, A.C.; Schumacher, B.L.; Shelton, E.; Masuda, K.; Sah, R.L.; Watson, D. Insulin-like growth factor-i and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage. Tissue Eng. Part. C Methods 2010, 16, 1213–1221. [Google Scholar] [CrossRef]
- Hicks, D.L.; Sage, A.B.; Shelton, E.; Schumacher, B.L.; Sah, R.L.; Watson, D. Effect of bone morphogenetic proteins 2 and 7 on septal chondrocytes in alginate. Otolaryngol. Head. Neck Surg. 2007, 136, 373–379. [Google Scholar] [CrossRef]
- Mendes, L.F.; Katagiri, H.; Tam, W.L.; Chai, Y.C.; Geris, L.; Roberts, S.J.; Luyten, F.P. Advancing osteochondral tissue engineering: Bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Res. Ther. 2018, 9, 42. [Google Scholar] [CrossRef]
- Reuther, M.S.; Briggs, K.K.; Schumacher, B.L.; Masuda, K.; Sah, R.L.; Watson, D. In vivo oxygen tension in human septal cartilage increases with age. Laryngoscope 2012, 122, 2407–2410. [Google Scholar] [CrossRef]
- Twu, C.W.; Reuther, M.S.; Briggs, K.K.; Sah, R.L.; Masuda, K.; Watson, D. Effect of oxygen tension on tissue-engineered human nasal septal chondrocytes. Allergy Rhinol. 2014, 5, 125–131. [Google Scholar] [CrossRef]
- Jahr, H.; Gunes, S.; Kuhn, A.R.; Nebelung, S.; Pufe, T. Bioreactor-controlled physoxia regulates tgf-beta signaling to alter extracellular matrix synthesis by human chondrocytes. Int. J. Mol. Sci. 2019, 20, 1715. [Google Scholar] [CrossRef]
- Watson, D.; Reuther, M.S.; Wong, V.W.; Sah, R.L.; Masuda, K.; Briggs, K.K. Effect of hyaluronidase on tissue-engineered human septal cartilage. Laryngoscope 2016, 126, 1984–1989. [Google Scholar] [CrossRef]
- Woodfield, T.B.; Bezemer, J.M.; Pieper, J.S.; van Blitterswijk, C.A.; Riesle, J. Scaffolds for tissue engineering of cartilage. Crit. Rev. Eukaryot. Gene Expr. 2002, 12, 209–236. [Google Scholar] [CrossRef]
- Mao, Y.; Block, T.; Singh-Varma, A.; Sheldrake, A.; Leeth, R.; Griffey, S.; Kohn, J. Extracellular matrix derived from chondrocytes promotes rapid expansion of human primary chondrocytes in vitro with reduced dedifferentiation. Acta Biomater. 2019, 85, 75–83. [Google Scholar] [CrossRef]
- Hu, M.-Y.; Nukavarapu, S. Scaffolds for cartilage tissue engineering. In Handbook of Tissue Engineering Scaffolds: Volume One; Woodhead Publishing: Duxford, UK, 2019; pp. 211–244. [Google Scholar]
- Eviana Putri, N.R.; Wang, X.; Chen, Y.; Li, X.; Kawazoe, N.; Chen, G. Preparation of plga-collagen hybrid scaffolds with controlled pore structures for cartilage tissue engineering. Prog. Nat. Sci. Mater. Int. 2020, 30, 642–650. [Google Scholar] [CrossRef]
- Sage, A.; Chang, A.A.; Schumacher, B.L.; Sah, R.L.; Watson, D. Cartilage outgrowth in fibrin scaffolds. Am. J. Rhinol. Allergy 2009, 23, 486–491. [Google Scholar] [CrossRef]
- Watson, D.; Sage, A.; Chang, A.A.; Schumacher, B.L.; Sah, R.L. Growth of human septal chondrocytes in fibrin scaffolds. Am. J. Rhinol. Allergy 2010, 24, e19–e22. [Google Scholar] [CrossRef]
- Alghuwainem, A.; Alshareeda, A.T.; Alsowayan, B. Scaffold-free 3-d cell sheet technique bridges the gap between 2-d cell culture and animal models. Int. J. Mol. Sci. 2019, 20, 4926. [Google Scholar] [CrossRef]
- Ovsianikov, A.; Khademhosseini, A.; Mironov, V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 2018, 36, 348–357. [Google Scholar] [CrossRef]
- Cooper, S.M.; Rainbow, R.S. The developing field of scaffold-free tissue engineering for articular cartilage repair. Tissue Eng. Part. B Rev. 2022, 28, 995–1006. [Google Scholar] [CrossRef]
- Chia, S.H.; Schumacher, B.L.; Klein, T.J.; Thonar, E.J.; Masuda, K.; Sah, R.L.; Watson, D. Tissue-engineered human nasal septal cartilage using the alginate-recovered-chondrocyte method. Laryngoscope 2004, 114, 38–45. [Google Scholar] [CrossRef]
- Dobratz, E.J.; Kim, S.W.; Voglewede, A.; Park, S.S. Injectable cartilage: Using alginate and human chondrocytes. Arch. Facial Plast. Surg. 2009, 11, 40–47. [Google Scholar] [CrossRef]
- Griffith, L.A.; Arnold, K.M.; Sengers, B.G.; Tare, R.S.; Houghton, F.D. A scaffold-free approach to cartilage tissue generation using human embryonic stem cells. Sci. Rep. 2021, 11, 18921. [Google Scholar] [CrossRef]
- Omobono, M.A.; Zhao, X.; Furlong, M.A.; Kwon, C.H.; Gill, T.J.; Randolph, M.A.; Redmond, R.W. Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration. J. Biomed. Mater. Res. A 2015, 103, 1332–1338. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Q.; Cheng, N.; Tao, X.; Zhang, Z.; Sun, X.; Zhang, Q. Collagen/silk fibroin composite scaffold incorporated with plga microsphere for cartilage repair. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 705–711. [Google Scholar] [CrossRef]
- Yamamoto, M.; James, D.; Li, H.; Butler, J.; Rafii, S.; Rabbany, S. Generation of stable co-cultures of vascular cells in a honeycomb alginate scaffold. Tissue Eng. Part. A 2010, 16, 299–308. [Google Scholar] [CrossRef]
- Almeida, H.V.; Sathy, B.N.; Dudurych, I.; Buckley, C.T.; O’Brien, F.J.; Kelly, D.J. Anisotropic shape-memory alginate scaffolds functionalized with either type i or type ii collagen for cartilage tissue engineering. Tissue Eng. Part. A 2017, 23, 55–68. [Google Scholar] [CrossRef]
- Guillaume, O.; Naqvi, S.M.; Lennon, K.; Buckley, C.T. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair. J. Biomater. Appl. 2015, 29, 1230–1246. [Google Scholar] [CrossRef]
- Jia, W.; Liu, Z.; Sun, L.; Cao, Y.; Shen, Z.; Li, M.; An, Y.; Zhang, H.; Sang, S. A multicrosslinked network composite hydrogel scaffold based on dlp photocuring printing for nasal cartilage repair. Biotechnol. Bioeng. 2024, 121, 2752–2766. [Google Scholar] [CrossRef]
- Guo, P.; Jiang, N.; Mini, C.; Miklosic, G.; Zhu, S.; Vernengo, A.J.; D’Este, M.; Grad, S.; Alini, M.; Li, Z. Decellularized extracellular matrix particle-based biomaterials for cartilage repair applications. J. Mater. Sci. Technol. 2023, 160, 194–203. [Google Scholar] [CrossRef]
- Liebesny, P.H.; Mroszczyk, K.; Zlotnick, H.; Hung, H.H.; Frank, E.; Kurz, B.; Zanotto, G.; Frisbie, D.; Grodzinsky, A.J. Enzyme pretreatment plus locally delivered hb-igf-1 stimulate integrative cartilage repair in vitro. Tissue Eng. Part. A 2019, 25, 1191–1201. [Google Scholar] [CrossRef]
- Feng, B.; Ji, T.; Wang, X.; Fu, W.; Ye, L.; Zhang, H.; Li, F. Engineering cartilage tissue based on cartilage-derived extracellular matrix cecm/pcl hybrid nanofibrous scaffold. Mater. Des. 2020, 193, 108773. [Google Scholar] [CrossRef]
- Riazi Moghadam, R.; Keshvari, H.; Imani, R.; Nazarpak, M.H. A biomimetic three-layered fibrin gel/plla nanofibers composite as a potential scaffold for articular cartilage tissue engineering application. Biomed. Mater. 2022, 17, 055017. [Google Scholar] [CrossRef]
- Toosi, S.; Naderi-Meshkin, H.; Kalalinia, F.; Peivandi, M.T.; HosseinKhani, H.; Bahrami, A.R.; Heirani-Tabasi, A.; Mirahmadi, M.; Behravan, J. Pga-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering. J. Biomed. Mater. Res. A 2016, 104, 2020–2028. [Google Scholar] [CrossRef]
- Di Gesu, R.; Acharya, A.P.; Jacobs, I.; Gottardi, R. 3D printing for tissue engineering in otolaryngology. Connect. Tissue Res. 2020, 61, 117–136. [Google Scholar] [CrossRef]
- Byrne, P.J.; Garcia, J.R. Autogenous nasal tip reconstruction of complex defects: A structural approach employing rapid prototyping. Arch. Facial Plast. Surg. 2007, 9, 358–364. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Chen, I.C.; Lin, T.H.; Young, T.H.; Fang, H.W. Effects of chitosan on chondrocytes derived from human nasal septal cartilage. Vivo 2023, 37, 2001–2005. [Google Scholar] [CrossRef]
- McGivern, S.; Boutouil, H.; Al-Kharusi, G.; Little, S.; Dunne, N.J.; Levingstone, T.J. Translational application of 3D bioprinting for cartilage tissue engineering. Bioengineering 2021, 8, 144. [Google Scholar] [CrossRef]
- Szychlinska, M.A.; Bucchieri, F.; Fucarino, A.; Ronca, A.; D’Amora, U. Three-dimensional bioprinting for cartilage tissue engineering: Insights into naturally-derived bioinks from land and marine sources. J. Funct. Biomater. 2022, 13, 118. [Google Scholar] [CrossRef]
- Lan, X.; Boluk, Y.; Adesida, A.B. 3D bioprinting of hyaline cartilage using nasal chondrocytes. Ann. Biomed. Eng. 2023, 52, 1816–1834. [Google Scholar] [CrossRef]
- Tamo, A.K.; Djouonkep, L.D.W.; Selabi, N.B.S. 3D printing of polysaccharide-based hydrogel scaffolds for tissue engineering applications: A review. Int. J. Biol. Macromol. 2024, 270, 132123. [Google Scholar] [CrossRef]
- Jang, E.J.; Patel, R.; Sankpal, N.V.; Bouchard, L.-S.; Patel, M. Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration. Eur. Polym. J. 2024, 202, 112651. [Google Scholar] [CrossRef]
- Hernandez-Gonzalez, A.C.; Tellez-Jurado, L.; Rodriguez-Lorenzo, L.M. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr. Polym. 2020, 229, 115514. [Google Scholar] [CrossRef]
- Wu, J.; Han, Y.; Fu, Q.; Hong, Y.; Li, L.; Cao, J.; Li, H.; Liu, Y.; Chen, Y.; Zhu, J.; et al. Application of tissue-derived bioink for articular cartilage lesion repair. Chem. Eng. J. 2022, 450, 138292. [Google Scholar] [CrossRef]
- Gu, Y.; Schwarz, B.; Forget, A.; Barbero, A.; Martin, I.; Shastri, V.P. Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness. Bioengineering 2020, 7, 141. [Google Scholar] [CrossRef]
- Cui, X.; Boland, T.; D’Lima, D.D.; Lotz, M.K. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent. Pat. Drug Deliv. Formul. 2012, 6, 149–155. [Google Scholar] [CrossRef]
- Aisenbrey, E.A.; Tomaschke, A.; Kleinjan, E.; Muralidharan, A.; Pascual-Garrido, C.; McLeod, R.R.; Ferguson, V.L.; Bryant, S.J. A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol. Biosci. 2018, 18, 1700267. [Google Scholar] [CrossRef]
- Chiesa-Estomba, C.M.; Aiastui, A.; Gonzalez-Fernandez, I.; Hernaez-Moya, R.; Rodino, C.; Delgado, A.; Garces, J.P.; Paredes-Puente, J.; Aldazabal, J.; Altuna, X.; et al. Three-dimensional bioprinting scaffolding for nasal cartilage defects: A systematic review. Tissue Eng. Regen. Med. 2021, 18, 343–353. [Google Scholar] [CrossRef]
- Kim, D.H.; Yun, W.S.; Shim, J.H.; Park, K.H.; Choi, D.; Park, M.I.; Hwang, S.H.; Kim, S.W. Clinical application of 3-dimensional printing technology for patients with nasal septal deformities: A multicenter study. JAMA Otolaryngol. Head. Neck Surg. 2018, 144, 1145–1152. [Google Scholar] [CrossRef]
- Shafiee, A.; Seyedjafari, E.; Sadat Taherzadeh, E.; Dinarvand, P.; Soleimani, M.; Ai, J. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 40, 445–454. [Google Scholar] [CrossRef]
- Estomba, C.; Fernández, I.; Otero, M.J.E. 3D printing for biomedical applications: Where are we now. EMJ 2017, 2, 16–22. [Google Scholar] [CrossRef]
- Chang, A.A.; Reuther, M.S.; Briggs, K.K.; Schumacher, B.L.; Williams, G.M.; Corr, M.; Sah, R.L.; Watson, D. In vivo implantation of tissue-engineered human nasal septal neocartilage constructs: A pilot study. Otolaryngol. Head. Neck Surg. 2012, 146, 46–52. [Google Scholar] [CrossRef]
- Fulco, I.; Miot, S.; Haug, M.D.; Barbero, A.; Wixmerten, A.; Feliciano, S.; Wolf, F.; Jundt, G.; Marsano, A.; Farhadi, J.; et al. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: An observational first-in-human trial. Lancet 2014, 384, 337–346. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, F.; Kang, N.; Wang, S.; You, J.; Wang, H.; Zhang, B. Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing. Plast. Reconstr. Surg. 2015, 135, 451–458. [Google Scholar] [CrossRef]
- Shokri, A.; Ramezani, K.; Jamalpour, M.R.; Mohammadi, C.; Vahdatinia, F.; Irani, A.D.; Sharifi, E.; Haddadi, R.; Jamshidi, S.; Amirabad, L.M.; et al. In vivo efficacy of 3D-printed elastin-gelatin-hyaluronic acid scaffolds for regeneration of nasal septal cartilage defects. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 614–624. [Google Scholar] [CrossRef]
- Yi, H.G.; Choi, Y.J.; Jung, J.W.; Jang, J.; Song, T.H.; Chae, S.; Ahn, M.; Choi, T.H.; Rhie, J.W.; Cho, D.W. Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty. J. Tissue Eng. 2019, 10, 2041731418824797. [Google Scholar] [CrossRef]
- Lan, X.; Liang, Y.; Erkut, E.J.N.; Kunze, M.; Mulet-Sierra, A.; Gong, T.; Osswald, M.; Ansari, K.; Seikaly, H.; Boluk, Y.; et al. Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering. FASEB J. 2021, 35, e21191. [Google Scholar] [CrossRef]
- Hinton, T.J.; Hudson, A.; Pusch, K.; Lee, A.; Feinberg, A.W. 3D printing pdms elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater. Sci. Eng. 2016, 2, 1781–1786. [Google Scholar] [CrossRef]
- Hinton, T.J.; Jallerat, Q.; Palchesko, R.N.; Park, J.H.; Grodzicki, M.S.; Shue, H.J.; Ramadan, M.H.; Hudson, A.R.; Feinberg, A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 2015, 1, e1500758. [Google Scholar] [CrossRef]
- Lan, X.; Liang, Y.; Vyhlidal, M.; Erkut, E.J.; Kunze, M.; Mulet-Sierra, A.; Osswald, M.; Ansari, K.; Seikaly, H.; Boluk, Y.; et al. In vitro maturation and in vivo stability of bioprinted human nasal cartilage. J. Tissue Eng. 2022, 13, 20417314221086368. [Google Scholar] [CrossRef]
Steps/Decision Points | ||
---|---|---|
1 | Modeling the Defect and Custom Graft | Physical Exam Measurement of Defect CT/MRI Creation of CAD Model |
2 | Selection of Bioink for Scaffold | Natural (e.g., natural polymers, hydrogels) Synthetic Composite |
3 | Selection of 3D Printing Technique | Extrusion-based Inkjet Laser-Assisted Stereolithography |
4 | Selection of Cell Source | Chondrocytes Chondroprogenitor Cells Stem Cells Co-Cultures of Cell Sources (e.g., chondrocytes + stem cells) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.B.; Sah, R.L.; Masuda, K.; Watson, D. Human Septal Cartilage Tissue Engineering: Current Methodologies and Future Directions. Bioengineering 2024, 11, 1123. https://doi.org/10.3390/bioengineering11111123
Pham TB, Sah RL, Masuda K, Watson D. Human Septal Cartilage Tissue Engineering: Current Methodologies and Future Directions. Bioengineering. 2024; 11(11):1123. https://doi.org/10.3390/bioengineering11111123
Chicago/Turabian StylePham, Tammy B., Robert L. Sah, Koichi Masuda, and Deborah Watson. 2024. "Human Septal Cartilage Tissue Engineering: Current Methodologies and Future Directions" Bioengineering 11, no. 11: 1123. https://doi.org/10.3390/bioengineering11111123
APA StylePham, T. B., Sah, R. L., Masuda, K., & Watson, D. (2024). Human Septal Cartilage Tissue Engineering: Current Methodologies and Future Directions. Bioengineering, 11(11), 1123. https://doi.org/10.3390/bioengineering11111123