Engineering Docetaxel Micelles for Enhanced Cancer Therapy Through Intermolecular Forces
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cells and Animals
2.3. Synthesis of mPEG-PLA-Lys(Fmoc)
2.4. Characterization
2.5. Preparation and Stability Evaluation of mPEG-PLA-Lys(Fmoc)/DTX
2.6. Pharmacokinetics
2.7. In Vivo Antitumor Efficacy
2.8. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of mPEG-PLA-Lys(Fmoc)
3.2. Micelle Formation
3.3. In Vitro Stability
3.4. Pharmacokinetics Result
3.5. In Vivo Cytotoxicity
3.6. Antitumor Efficacy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaishampayan, U.N.; Keessen, M.; Dreicer, R.; Heath, E.I.; Buchler, T.; Árkosy, P.F.; Csöszi, T.; Wiechno, P.; Kopyltsov, E.; Orlov, S.V. A global phase II randomized trial comparing oral taxane ModraDoc006/r to intravenous docetaxel in metastatic castration resistant prostate cancer. Eur. J. Cancer 2024, 202, 114007. [Google Scholar] [CrossRef] [PubMed]
- Dacos, M.; Immordino, B.; Diroff, E.; Sicard, G.; Kosta, A.; Rodallec, A.; Giacometti, S.; Ciccolini, J.; Fanciullino, R. Pegylated liposome encapsulating docetaxel using microfluidic mixing technique: Process optimization and results in breast cancer models. Int. J. Pharm. 2024, 656, 124091. [Google Scholar] [CrossRef] [PubMed]
- Ya-Jung, W.; Jung-Jung, T.; Ming-Wei, L.; Ling-Ming, T.; Chih-Jung, W. Revealing symptom profiles: A pre-post analysis of docetaxel therapy in individuals with breast cancer. Eur. J. Oncol. Nurs. 2024, 68, 102451. [Google Scholar] [CrossRef] [PubMed]
- Pisano, C.; Turco, F.; Arnaudo, E.; Fea, E.; Vanella, P.; Ruatta, F.; Filippi, R.; Brusa, F.; Prati, V.; Vana, F. TEAM Study: Upfront Docetaxel Treatment in Patients With Metastatic Hormone-Sensitive Prostate Cancer: A Real-World, Multicenter, Retrospective Analysis. Clin. Genitourin. Cancer 2024, 22, 56–67.e16. [Google Scholar] [CrossRef]
- Cai, Y.; Qi, J.; Lu, Y.; He, H.; Wu, W. The in vivo fate of polymeric micelles. Adv. Drug Deliv. Rev. 2022, 188, 114463. [Google Scholar] [CrossRef]
- Pires, P.C.; Paiva-Santos, A.C.; Veiga, F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals 2023, 16, 1424. [Google Scholar] [CrossRef]
- Harini, K.; Alomar, S.Y.; Vajagathali, M.; Manoharadas, S.; Thirumalai, A.; Girigoswami, K.; Girigoswami, A. Niosomal Bupropion: Exploring Therapeutic Frontiers through Behavioral Profiling. Pharmaceuticals 2024, 17, 366. [Google Scholar] [CrossRef]
- Pires, P.C.; Rodrigues, M.; Alves, G.; Santos, A.O. Strategies to Improve Drug Strength in Nasal Preparations for Brain Delivery of Low Aqueous Solubility Drugs. Pharmaceutics 2022, 14, 588. [Google Scholar] [CrossRef]
- Thirumalai, A.; Girigoswami, K.; Pallavi, P.; Harini, K.; Gowtham, P.; Girigoswami, A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull. Cancer 2023, 110, 1288–1300. [Google Scholar] [CrossRef]
- Sell, M.; Lopes, A.R.; Escudeiro, M.; Esteves, B.; Monteiro, A.R.; Trindade, T.; Cruz-Lopes, L. Application of Nanoparticles in Cancer Treatment: A Concise Review. Nanomaterials 2023, 13, 2887. [Google Scholar] [CrossRef]
- Yun, W.S.; Kim, J.; Lim, D.-K.; Kim, D.-H.; Jeon, S.I.; Kim, K. Recent Studies and Progress in the Intratumoral Administration of Nano-Sized Drug Delivery Systems. Nanomaterials 2023, 13, 2225. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Lopresti, F.; Marino, A.; Nostro, A. Antimicrobial additives for poly (lactic acid) materials and their applications: Current state and perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 7739–7756. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhang, Z.; Jiao, Z.; Yan, M.; Miao, P.; Wei, Z.; Leng, X.; Li, Y.; Fan, J.; Sun, W. Redox-responsive phenyl-functionalized polylactide micelles for enhancing Ru complexes delivery and phototherapy. Chin. Chem. Lett. 2023, 34, 107574. [Google Scholar] [CrossRef]
- Repp, L.; Unterberger, C.J.; Ye, Z.; Feltenberger, J.B.; Swanson, S.M.; Marker, P.C.; Kwon, G.S. Oligo(Lactic Acid)8-Docetaxel Prodrug-Loaded PEG-b-PLA Micelles for Prostate Cancer. Nanomaterials 2021, 11, 2745. [Google Scholar] [CrossRef]
- Waris, A.; Ali, A.; Khan, A.U.; Asim, M.; Zamel, D.; Fatima, K.; Raziq, A.; Khan, M.A.; Akbar, N.; Baset, A.; et al. Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. Nanomaterials 2022, 12, 2140. [Google Scholar] [CrossRef]
- Avgoustakis, K.; Beletsi, A.; Panagi, Z.; Klepetsanis, P.; Livaniou, E.; Evangelatos, G.; Ithakissios, D. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA–mPEG nanoparticles. Int. J. Pharm. 2003, 259, 115–127. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhang, W.; Nie, J.; Yu, L.; Liu, J.; Ren, L.; Chen, G. Nanoparticles with Active Targeting Ability and Acid Responsiveness for an Enhanced Antitumor Effect of Docetaxel. Biomacromolecules 2023, 25, 213–221. [Google Scholar] [CrossRef]
- Tariq, I.; Hassan, H.; Ali, S.; Raza, S.A.; Shah, P.A.; Ali, M.Y.; Tariq, Z.; Bakowsky, U. Ameliorative Delivery of Docetaxel and Curcumin using PEG Decorated Lipomers: A Cutting-Edge In-Vitro/In-Vivo Appraisal. J. Drug Deliv. Sci. Technol. 2024, 97, 105814. [Google Scholar] [CrossRef]
- Pei, Q.; Jiang, B.; Hao, D.; Xie, Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm. Sin. B 2023, 13, 3252–3276. [Google Scholar] [CrossRef]
- Shi, Y.; Van Der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E.H.; Fens, M.H.; Ehling, J.; Schiffelers, R.M.; Storm, G.; Van Nostrum, C.F. Complete regression of xenograft tumors upon targeted delivery of paclitaxel via Π–Π stacking stabilized polymeric micelles. ACS Nano 2015, 9, 3740–3752. [Google Scholar] [CrossRef]
- Yang, Z.-y.; Zhong, Y.-y.; Zheng, J.; Liu, Y.; Li, T.; Hu, E.; Zhu, X.-f.; Ding, R.-q.; Wu, Y.; Zhang, Y. Fmoc-amino acid-based hydrogel vehicle for delivery of amygdalin to perform neuroprotection. Smart Mater. Med. 2021, 2, 56–64. [Google Scholar] [CrossRef]
- Ischakov, R.; Adler-Abramovich, L.; Buzhansky, L.; Shekhter, T.; Gazit, E. Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorg. Med. Chem. 2013, 21, 3517–3522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Huang, Y.; Liu, H.; Marquez, R.T.; Lu, J.; Zhao, W.; Zhang, X.; Gao, X.; Li, J.; Venkataramanan, R. A PEG-Fmoc conjugate as a nanocarrier for paclitaxel. Biomaterials 2014, 35, 7146–7156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, J.; Ghazwani, M.; Zhao, W.; Huang, Y.; Zhang, X.; Venkataramanan, R.; Li, S. Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials 2015, 67, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Toderascu, L.I.; Sima, L.E.; Orobeti, S.; Florian, P.E.; Icriverzi, M.; Maraloiu, V.-A.; Comanescu, C.; Iacob, N.; Kuncser, V.; Antohe, I.; et al. Synthesis and Anti-Melanoma Activity of L-Cysteine-Coated Iron Oxide Nanoparticles Loaded with Doxorubicin. Nanomaterials 2023, 13, 621. [Google Scholar] [CrossRef] [PubMed]
- Gunarathne, R.; Guan, X.; Feng, T.; Zhao, Y.; Lu, J. L-lysine dietary supplementation for childhood and adolescent growth: Promises and precautions. J. Adv. Res. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Tian, R.; Wang, H.; Niu, R.; Ding, D. Drug delivery with nanospherical supramolecular cell penetrating peptide–taxol conjugates containing a high drug loading. J. Colloid Interface Sci. 2015, 453, 15–20. [Google Scholar] [CrossRef]
- Moghaddam, S.V.; Abedi, F.; Alizadeh, E.; Baradaran, B.; Annabi, N.; Akbarzadeh, A.; Davaran, S. Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. Carbohydr. Polym. 2020, 250, 116861. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Shao, K.; Huang, R.; Ye, L.; Lou, J.; Jiang, C. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 2010, 31, 5246–5257. [Google Scholar] [CrossRef]
- Moghadam, M.R.; Karimi, S.; Namazi, H. A targeted biosystem based on l-lysine coated GO@ rod-Cu (II) metal-organic frameworks for pH-controlled co-delivery of doxorubicin and curcumin. Food Biosci. 2024, 58, 103578. [Google Scholar] [CrossRef]
- Pang, J.; Zhuang, B.; Zhang, L.-M. A co-carrier for plasmid DNA and curcumin delivery to treat pancreatic cancer via dendritic poly (l-lysine) modified amylose. Int. J. Biol. Macromol. 2023, 253, 127467. [Google Scholar] [CrossRef]
- GB/T 42011-2022; Laboratory Animals—General Code of Animal Welfare. Laboratory Animal: Beijing, China, 2022.
- Qi, D.; Gong, F.; Teng, X.; Ma, M.; Wen, H.; Yuan, W.; Cheng, Y.; Lu, C. Design and evaluation of mPEG-PLA micelles functionalized with drug-interactive domains as improved drug carriers for docetaxel delivery. J. Biomater. Sci. Polym. Ed. 2017, 28, 1538–1555. [Google Scholar] [CrossRef]
Parameters | Group | |
---|---|---|
Docetaxel Injection | mPEG-PLA-Lys(Fmoc)/DTX | |
AUC(0–t), μg/L·min | (4.2 ± 0.8) × 104 | (3.2 ± 1.1) × 104 |
AUC(0–∞), μg/L·min | (4.3 ± 0.8) × 104 | (4.1 ± 2.1) × 104 |
MRT(0–t), min | (8.5 ± 2.3) × 10 | (1.6 ± 1.6) × 102 |
MRT(0–∞), min | (9.8 ± 2.5) × 10 | (1.1 ± 1.9) × 103 |
t1/2z, min | (1.7 ± 0.8) × 102 | (1.2 ± 1.9) × 103 |
Vz, L/m2 | (2.5 ± 0.9) × 102 | (1.4 ± 1.6) × 103 |
CLz, L/min/m2 | 1.1 ± 0.2 | 1.5 ± 1.1 |
Cmax, μg/L | (5.3 ± 1.0) × 102 | (3.3 ± 1.2) × 102 ** |
Group | Frequency (Time) | Volume (mm3) | T/C (%) | Tumor Weight (g) | Recurrence Rate (%) | Antitumor Rate (%) | |
---|---|---|---|---|---|---|---|
Initial | Final | ||||||
Saline | 3 | (1.6 ± 0.5) × 102 | (2.2 ± 0.8) × 103 | -- | 2.1 ± 1.1 | -- | -- |
Docetaxel injection | 3 | (1.6 ± 0.4) × 102 | (1.0 ± 0.6) × 102 | 4.70 | 0.10 ± 0.07 | 100 (6/6) | 94.96 |
Low | 3 | (1.6 ± 0.5) × 102 | (1.7 ± 0.3) × 103 | 77.81 | 1.7 ± 0.3 | -- | 19.44 |
Mid | 3 | (1.6 ± 0.3) × 102 | (6.6 ± 2.8) × 102 | 29.96 | 0.60 ± 0.03 | -- | 72.25 |
High | 3 | (1.6 ± 0.2) × 102 | (2.1 ± 1.1) × 10 | 0.98 | 0.010 ± 0.007 | 0 (0/6) | 99.27 |
Blank | 3 | (1.6 ± 0.6) × 102 | (2.1 ± 0.3) × 103 | 97.03 | 2.0 ± 0.6 | -- | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Gong, F.; Liu, J.; Xiang, L.; Hu, Y.; Che, W.; Li, R.; Yang, S.; Zhuang, Q.; Teng, X. Engineering Docetaxel Micelles for Enhanced Cancer Therapy Through Intermolecular Forces. Bioengineering 2024, 11, 1078. https://doi.org/10.3390/bioengineering11111078
Wang H, Gong F, Liu J, Xiang L, Hu Y, Che W, Li R, Yang S, Zhuang Q, Teng X. Engineering Docetaxel Micelles for Enhanced Cancer Therapy Through Intermolecular Forces. Bioengineering. 2024; 11(11):1078. https://doi.org/10.3390/bioengineering11111078
Chicago/Turabian StyleWang, Hao, Feirong Gong, Jiajie Liu, Lanlan Xiang, Yanfen Hu, Wenchen Che, Ran Li, Sisi Yang, Qixin Zhuang, and Xin Teng. 2024. "Engineering Docetaxel Micelles for Enhanced Cancer Therapy Through Intermolecular Forces" Bioengineering 11, no. 11: 1078. https://doi.org/10.3390/bioengineering11111078
APA StyleWang, H., Gong, F., Liu, J., Xiang, L., Hu, Y., Che, W., Li, R., Yang, S., Zhuang, Q., & Teng, X. (2024). Engineering Docetaxel Micelles for Enhanced Cancer Therapy Through Intermolecular Forces. Bioengineering, 11(11), 1078. https://doi.org/10.3390/bioengineering11111078