Mathematical Models for Ultrasound Elastography: Recent Advances to Improve Accuracy and Clinical Utility
Abstract
:1. Introduction
2. Fundamental Concepts
3. Classical Elasticity Theory
4. Viscoelasticity Theory
5. Poroelasticity Theory
6. Nonlocal Continuum Mechanics
7. Surface Acoustic Waves: Rayleigh and Scholte Waves
8. Recent Advancements
9. Future Directions
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wouters, O.J.; O’donoghue, D.J.; Ritchie, J.; Kanavos, P.G.; Narva, A.S. Early chronic kidney disease: Diagnosis, management and models of care. Nat. Rev. Nephrol. 2015, 11, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, A.; Gonsalves, A.; Menon, J.U. Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics 2021, 13, 723. [Google Scholar] [CrossRef]
- Lungu, N.; Popescu, D.-E.; Jura, A.M.C.; Zaharie, M.; Jura, M.-A.; Roșca, I.; Boia, M. Enhancing Early Detection of Sepsis in Neonates through Multimodal Biosignal Integration: A Study of Pulse Oximetry, Near-Infrared Spectroscopy (NIRS), and Skin Temperature Monitoring. Bioengineering 2024, 11, 681. [Google Scholar] [CrossRef]
- Marouf, A.A.; Mottalib, M.M.; Alhajj, R.; Rokne, J.; Jafarullah, O. An efficient approach to predict eye diseases from symptoms using machine learning and ranker-based feature selection methods. Bioengineering 2022, 10, 25. [Google Scholar] [CrossRef]
- Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J.A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R. Breast cancer early detection: A phased approach to implementation. Cancer 2020, 126, 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef] [PubMed]
- Alizargar, A.; Chang, Y.-L.; Alkhaleefah, M.; Tan, T.-H. Precision Non-Alcoholic Fatty Liver Disease (NAFLD) Diagnosis: Leveraging Ensemble Machine Learning and Gender Insights for Cost-Effective Detection. Bioengineering 2024, 11, 600. [Google Scholar] [CrossRef]
- Tzror-Azankot, C.; Betzer, O.; Sadan, T.; Motiei, M.; Rahimipour, S.; Atkins, A.; Popovtzer, A.; Popovtzer, R. Glucose-functionalized liposomes for reducing false positives in cancer diagnosis. ACS Nano 2020, 15, 1301–1309. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Zhang, Y.; Li, J. An Automated Diagnosis Method for Lung Cancer Target Detection and Subtype Classification-Based CT Scans. Bioengineering 2024, 11, 767. [Google Scholar] [CrossRef]
- Gordon, L.G.; Leung, W.; Johns, R.; McNoe, B.; Lindsay, D.; Merollini, K.M.; Elliott, T.M.; Neale, R.E.; Olsen, C.M.; Pandeya, N. Estimated healthcare costs of melanoma and keratinocyte skin cancers in Australia and Aotearoa New Zealand in 2021. Int. J. Environ. Res. Public Health 2022, 19, 3178. [Google Scholar] [CrossRef]
- Bygrave, A.; Whittaker, K.; Paul, C.; Fradgley, E.A.; Varlow, M.; Aranda, S. Australian experiences of out-of-pocket costs and financial burden following a cancer diagnosis: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 2422. [Google Scholar] [CrossRef]
- Guimarães, C.F.; Gasperini, L.; Marques, A.P.; Reis, R.L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 2020, 5, 351–370. [Google Scholar] [CrossRef]
- Fitzgerald, R.C.; Antoniou, A.C.; Fruk, L.; Rosenfeld, N. The future of early cancer detection. Nat. Med. 2022, 28, 666–677. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Wang, H.; Hesabgar, S.M.; Scholl, T.J.; Samani, A. A novel shape-similarity-based elastography technique for prostate cancer assessment. Med. Phys. 2015, 42, 5110–5119. [Google Scholar] [CrossRef] [PubMed]
- Samani, A.; Zubovits, J.; Plewes, D. Elastic moduli of normal and pathological human breast tissues: An inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 2007, 52, 1565. [Google Scholar] [CrossRef]
- Petitclerc, L.; Sebastiani, G.; Gilbert, G.; Cloutier, G.; Tang, A. Liver fibrosis: Review of current imaging and MRI quantification techniques. J. Magn. Reson. Imaging 2017, 45, 1276–1295. [Google Scholar] [CrossRef] [PubMed]
- Shiina, T.; Maki, T.; Yamakawa, M.; Mitake, T.; Kudo, M.; Fujimoto, K. Mechanical model analysis for quantitative evaluation of liver fibrosis based on ultrasound tissue elasticity imaging. Jpn. J. Appl. Phys. 2012, 51, 07GF11. [Google Scholar] [CrossRef]
- Rhee, K.; Cho, Y. Artery wall viscoelasticity: Measurement, assessment, and clinical implications. Int. J. Precis. Eng. Manuf. 2021, 22, 1157–1168. [Google Scholar] [CrossRef]
- Islam, M.T.; Tang, S.; Liverani, C.; Saha, S.; Tasciotti, E.; Righetti, R. Non-invasive imaging of Young’s modulus and Poisson’s ratio in cancers in vivo. Sci. Rep. 2020, 10, 7266. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303. [Google Scholar] [CrossRef]
- Forte, A.J.; Huayllani, M.T.; Boczar, D.; Cinotto, G.; Ciudad, P.; Manrique, O.J.; Lu, X.; McLaughlin, S.A. The basics of ultrasound elastography for diagnosis, assessment, and staging breast cancer-related lymphedema: A systematic review of the literature. Gland Surg. 2020, 9, 589. [Google Scholar] [CrossRef]
- Ozturk, A.; Olson, M.C.; Samir, A.E.; Venkatesh, S.K. Liver fibrosis assessment: MR and US elastography. Abdom. Radiol. 2022, 47, 3037–3050. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraju, V.; Ashlyin, P.; Elango, N.; Devanand, B. Role of transrectal ultrasound elastography in the diagnosis of prostate carcinoma. J. Med. Ultrasound 2020, 28, 173–178. [Google Scholar] [CrossRef]
- Pruijssen, J.T.; de Korte, C.L.; Voss, I.; Hansen, H.H. Vascular shear wave elastography in atherosclerotic arteries: A systematic review. Ultrasound Med. Biol. 2020, 46, 2145–2163. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, L.D.O.; López, C.A.G.; González, E.R. Ultrasound elastography in the assessment of the stiffness of spastic muscles: A systematic review. Ultrasound Med. Biol. 2021, 47, 1448–1464. [Google Scholar] [CrossRef]
- Oglat, A.A.; Abukhalil, T. Ultrasound Elastography: Methods, Clinical Applications, and Limitations: A Review Article. Appl. Sci. 2024, 14, 4308. [Google Scholar] [CrossRef]
- Sack, I. Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imaging. Nat. Rev. Phys. 2023, 5, 25–42. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, J.; Ma, J.; Meng, X.; Ma, Z.; Fan, F. Optical coherence elastography and its applications for the biomechanical characterization of tissues. J. Biophotonics 2023, 16, e202300292. [Google Scholar] [CrossRef]
- Zaitsev, V.Y.; Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Hepburn, M.S.; Mowla, A.; Kennedy, B.F. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances. J. Biophotonics 2021, 14, e202000257. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chiu, Y.-H.; Chang, K.-V.; Wu, W.-T.; Özçakar, L. Ultrasound elastography for the evaluation of plantar fasciitis: A systematic review and meta-analysis. Eur. J. Radiol. 2022, 155, 110495. [Google Scholar] [CrossRef]
- Caenen, A.; Bézy, S.; Pernot, M.; Nightingale, K.R.; Vos, H.J.; Voigt, J.-U.; Segers, P.; D’hooge, J. Ultrasound Shear Wave Elastography in Cardiology. Cardiovasc. Imaging 2024, 17, 314–329. [Google Scholar] [CrossRef]
- Stiver, M.L.; Mirjalili, S.A.; Agur, A.M. Measuring shear wave velocity in adult skeletal muscle with ultrasound 2-D shear wave elastography: A scoping review. Ultrasound Med. Biol. 2023, 49, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Albakr, A.; Ben-Israel, D.; Yang, R.; Kruger, A.; Alhothali, W.; Al Towim, A.; Lama, S.; Ajlan, A.; Riva-Cambrin, J.; Prada, F. Ultrasound elastography in neurosurgery: Current applications and future perspectives. World Neurosurg. 2023, 170, 195–205.e191. [Google Scholar] [CrossRef]
- Lim, W.T.; Ooi, E.H.; Foo, J.J.; Ng, K.H.; Wong, J.H.; Leong, S.S. Shear wave elastography: A review on the confounding factors and their potential mitigation in detecting chronic kidney disease. Ultrasound Med. Biol. 2021, 47, 2033–2047. [Google Scholar] [CrossRef]
- Dewilde, K.; Vanthienen, M.; Van Schoubroeck, D.; Froyman, W.; Timmerman, D.; Van den Bosch, T. Elastography in ultrasound assessment of the uterus. J. Endometr. Uterine Disord. 2023, 1, 100014. [Google Scholar] [CrossRef]
- Molga-Magusiak, M.; Krawczyk, P.; Rzepakowska, A.; Niemczyk, K. Application of ultrasound shear wave elastography in tumors of head and neck region–a preliminary study and literature review. Pol. Otorhinolaryngol. Rev. 2024, 13, 22–28. [Google Scholar] [CrossRef]
- Mao, Y.-J.; Lim, H.-J.; Ni, M.; Yan, W.-H.; Wong, D.W.-C.; Cheung, J.C.-W. Breast tumour classification using ultrasound elastography with machine learning: A systematic scoping review. Cancers 2022, 14, 367. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Zhang, J.; Hou, X. Diagnostic accuracy of ultrasound shear wave elastography combined with superb microvascular imaging for breast tumors: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e26262. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Q.; Wang, J.-Y.; Yu, Y.; Yi, A.-J.; Cui, X.-W.; Dietrich, C.F. Ultrasound elastography for the evaluation of lymph nodes. Front. Oncol. 2021, 11, 714660. [Google Scholar] [CrossRef]
- Liao, J.; Yang, H.; Yu, J.; Liang, X.; Chen, Z. Progress in the application of ultrasound elastography for brain diseases. J. Ultrasound Med. 2020, 39, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Ślósarz, D.; Poniewierka, E.; Neubauer, K.; Kempiński, R. Ultrasound elastography in the assessment of the intestinal changes in inflammatory bowel disease—Systematic review. J. Clin. Med. 2021, 10, 4044. [Google Scholar] [CrossRef]
- Ophir, J.; Cespedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 1991, 13, 111–134. [Google Scholar] [CrossRef]
- Muthupillai, R.; Lomas, D.; Rossman, P.; Greenleaf, J.F.; Manduca, A.; Ehman, R.L. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995, 269, 1854–1857. [Google Scholar] [CrossRef]
- Sadd, M.H. Elasticity: Theory, Applications, and Numerics; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Varghese, T. Quasi-static ultrasound elastography. Ultrasound Clin. 2009, 4, 323. [Google Scholar] [CrossRef]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Pierce, A.D. Acoustics: An Introduction to Its Physical Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Nitta, N.; Yamakawa, M.; Hachiya, H.; Shiina, T. A review of physical and engineering factors potentially affecting shear wave elastography. J. Med. Ultrason. 2021, 48, 403–414. [Google Scholar] [CrossRef]
- O’Hara, S.; Edwards, C.; Zelesco, M. Two dimensional shear wave elastography—Basic principles and current applications. Sonography 2024, 11, 201–210. [Google Scholar] [CrossRef]
- Zaniker, E.J.; Zhang, M.; Hughes, L.; La Follette, L.; Atazhanova, T.; Trofimchuk, A.; Babayev, E.; Duncan, F.E. Shear wave elastography to assess stiffness of the human ovary and other reproductive tissues across the reproductive lifespan in health and disease. Biol. Reprod. 2024, 110, 1100–1114. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, X. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography. J. Mech. Behav. Biomed. Mater. 2018, 85, 109–116. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Y.; Zheng, Y.; Lin, H.; Guo, Y.; Zhu, Y.; Zhang, X.; Wang, T.; Chen, S. Quantification of liver viscoelasticity with acoustic radiation force: A study of hepatic fibrosis in a rat model. Ultrasound Med. Biol. 2013, 39, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Poul, S.S.; Ormachea, J.; Ge, G.R.; Parker, K.J. Comprehensive experimental assessments of rheological models’ performance in elastography of soft tissues. Acta Biomater. 2022, 146, 259–273. [Google Scholar] [CrossRef]
- Verruijt, A. Theory and problems of poroelasticity. Delft Univ. Technol. 2013, 71, 465. [Google Scholar]
- Leiderman, R.; Barbone, P.E.; Oberai, A.A.; Bamber, J.C. Coupling between elastic strain and interstitial fluid flow: Ramifications for poroelastic imaging. Phys. Med. Biol. 2006, 51, 6291. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Righetti, R. An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression. J. Biomech. 2019, 89, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1957, 241, 376–396. [Google Scholar]
- Farajpour, A.; Ghayesh, M.H.; Farokhi, H. A review on the mechanics of nanostructures. Int. J. Eng. Sci. 2018, 133, 231–263. [Google Scholar] [CrossRef]
- Nuhu, A.A.; Safaei, B. A comprehensive review on the vibration analyses of small-scaled plate-based structures by utilizing the nonclassical continuum elasticity theories. Thin-Walled Struct. 2022, 179, 109622. [Google Scholar] [CrossRef]
- Darban, H.; Fabbrocino, F.; Luciano, R. Size-dependent linear elastic fracture of nanobeams. Int. J. Eng. Sci. 2020, 157, 103381. [Google Scholar] [CrossRef]
- Gholipour, A.; Ghayesh, M.H. Nonlinear coupled mechanics of functionally graded nanobeams. Int. J. Eng. Sci. 2020, 150, 103221. [Google Scholar] [CrossRef]
- Goswami, S.; Ahmed, R.; Khan, S.; Doyley, M.M.; McAleavey, S.A. Shear induced non-linear elasticity imaging: Elastography for compound deformations. IEEE Trans. Med. Imaging 2020, 39, 3559–3570. [Google Scholar] [CrossRef] [PubMed]
- Favata, A.; Paroni, R.; Recrosi, F.; Tomassetti, G. Competition between epithelial tissue elasticity and surface tension in cancer morphogenesis. Int. J. Eng. Sci. 2022, 176, 103677. [Google Scholar] [CrossRef]
- Cieszko, M.; Kubik, J. Equations and fundamental characteristics of compressional waves propagating in fluid-saturated porous materials. Int. J. Eng. Sci. 2022, 171, 103619. [Google Scholar] [CrossRef]
- Tong, L.H.; Ding, H.B.; Yan, J.W.; Xu, C.; Lei, Z. Strain gradient nonlocal Biot poromechanics. Int. J. Eng. Sci. 2020, 156, 103372. [Google Scholar] [CrossRef]
- Caporale, A.; Darban, H.; Luciano, R. Nonlocal strain and stress gradient elasticity of Timoshenko nano-beams with loading discontinuities. Int. J. Eng. Sci. 2022, 173, 103620. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, L.; Hu, Y. A nonlocal surface theory for surface–bulk interactions and its application to mechanics of nanobeams. Int. J. Eng. Sci. 2022, 172, 103624. [Google Scholar] [CrossRef]
- Eringen, A.C.; Wegner, J. Nonlocal continuum field theories. Appl. Mech. Rev. 2003, 56, B20–B22. [Google Scholar] [CrossRef]
- Faghidian, S.A. Higher–order nonlocal gradient elasticity: A consistent variational theory. Int. J. Eng. Sci. 2020, 154, 103337. [Google Scholar] [CrossRef]
- Xu, X.; Shahsavari, D.; Karami, B. On the forced mechanics of doubly-curved nanoshell. Int. J. Eng. Sci. 2021, 168, 103538. [Google Scholar] [CrossRef]
- Farajpour, A.; Howard, C.Q.; Robertson, W.S. On size-dependent mechanics of nanoplates. Int. J. Eng. Sci. 2020, 156, 103368. [Google Scholar] [CrossRef]
- Rohani Rad, E.; Farajpour, M.R. Influence of taxol and CNTs on the stability analysis of protein microtubules. J. Comput. Appl. Mech. 2019, 50, 140–147. [Google Scholar]
- Farajpour, A.; Żur, K.K.; Kim, J.; Reddy, J.N. Nonlinear frequency behaviour of magneto-electromechanical mass nanosensors using vibrating MEE nanoplates with multiple nanoparticles. Compos. Struct. 2021, 260, 113458. [Google Scholar] [CrossRef]
- Kaplunov, J.; Prikazchikov, D.A.; Prikazchikova, L. On integral and differential formulations in nonlocal elasticity. Eur. J. Mech.-A/Solids 2023, 100, 104497. [Google Scholar] [CrossRef]
- Farajpour, A.; Ingman, W.V. Mechanics of Small-Scale Spherical Inclusions Using Nonlocal Poroelasticity Integrated with Light Gradient Boosting Machine. Micromachines 2024, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Masud, A.A.; Liu, J. Ultrasonic surface acoustic wave elastography: A review of basic theories, technical developments, and medical applications. Med. Phys. 2024, 51, 3220–3244. [Google Scholar] [CrossRef]
- Kundu, T. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Rose, J. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Zhang, X.; Greenleaf, J.F. Estimation of tissue’s elasticity with surface wave speed. J. Acoust. Soc. Am. 2007, 122, 2522–2525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique. J. Acoust. Soc. Am. 2016, 140, 3619–3622. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.; Bartholmai, B.; Zhang, X. Application of lung ultrasound surface wave elastography in the evaluation of diffuse lung diseases. J. Acoust. Soc. Am. 2023, 154, A221. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, J.J.; Kazemi, A.; Sit, A.J.; Zhang, X. An ultrasound vibro-elastography technique for assessing papilledema. Ultrasound Med. Biol. 2019, 45, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, B.; Osborn, T. Ultrasound surface wave elastography for assessing scleroderma. Ultrasound Med. Biol. 2020, 46, 1263–1269. [Google Scholar] [CrossRef]
- Banerjee, S.; Leckey, C.A. Computational Nondestructive Evaluation Handbook: Ultrasound Modeling Techniques; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Liu, J.; Leer, J.; Aglayomov, S.R.; Emelianov, S.Y. A Scholte wave approach for ultrasonic surface acoustic wave elastography. Med. Phys. 2023, 50, 4138–4150. [Google Scholar] [CrossRef]
- Langdon, J.H.; Elegbe, E.; Gonzalez, R.S.; Osapoetra, L.; Ford, T.; McAleavey, S.A. Measurement of liver stiffness using shear wave elastography in a rat model: Factors impacting stiffness measurement with multiple-and single-tracking-location techniques. Ultrasound Med. Biol. 2017, 43, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Fuhs, T.; Wetzel, F.; Fritsch, A.W.; Li, X.; Stange, R.; Pawlizak, S.; Kießling, T.R.; Morawetz, E.; Grosser, S.; Sauer, F. Rigid tumours contain soft cancer cells. Nat. Phys. 2022, 18, 1510–1519. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Farajpour, A. A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 2019, 137, 8–36. [Google Scholar] [CrossRef]
- Srinivasa, A.R.; Reddy, J. An overview of theories of continuum mechanics with nonlocal elastic response and a general framework for conservative and dissipative systems. Appl. Mech. Rev. 2017, 69, 030802. [Google Scholar] [CrossRef]
- Sadigh, G.; Carlos, R.C.; Neal, C.H.; Dwamena, B.A. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: A meta-analysis. Breast Cancer Res. Treat. 2012, 134, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Farajpour, A.; Ingman, W.V. Flexural Eigenfrequency Analysis of Healthy and Pathological Tissues Using Machine Learning and Nonlocal Viscoelasticity. Computers 2024, 13, 179. [Google Scholar] [CrossRef]
- Cespedes, I.; Ophir, J.; Ponnekanti, H.; Maklad, N. Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason. Imaging 1993, 15, 73–88. [Google Scholar] [CrossRef]
- De Korte, C.L.; Van Der Steen, A.F.; Céspedes, E.I.; Pasterkamp, G. Intravascular ultrasound elastography in human arteries: Initial experience in vitro. Ultrasound Med. Biol. 1998, 24, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Insana, M.F.; Pellot-Barakat, C.; Sridhar, M.; Lindfors, K.K. Viscoelastic imaging of breast tumor microenvironment with ultrasound. J. Mammary Gland Biol. Neoplasia 2004, 9, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Konofagou, E.E.; Harrigan, T.; Ophir, J.; Krouskop, T. Poroelastography: Estimating and imaging the poroelastic properties of tissues. In Proceedings of the 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027), Tahoe, NV, USA, 17–20 October 1999; pp. 1627–1630. [Google Scholar]
- Walker, W.F.; Fernandez, F.J.; Negron, L.A. A method of imaging viscoelastic parameters with acoustic radiation force. Phys. Med. Biol. 2000, 45, 1437. [Google Scholar] [CrossRef] [PubMed]
- Berry, G.P.; Bamber, J.C.; Armstrong, C.G.; Miller, N.R.; Barbone, P.E. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation. Ultrasound Med. Biol. 2006, 32, 547–567. [Google Scholar] [CrossRef]
- Berry, G.P.; Bamber, J.C.; Miller, N.R.; Barbone, P.E.; Bush, N.L.; Armstrong, C.G. Towards an acoustic model-based poroelastic imaging method: II. Experimental investigation. Ultrasound Med. Biol. 2006, 32, 1869–1885. [Google Scholar] [CrossRef]
- Hoyt, K.; Kneezel, T.; Castaneda, B.; Parker, K.J. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity. Phys. Med. Biol. 2008, 53, 4063. [Google Scholar] [CrossRef]
- Schmitt, C.; Henni, A.H.; Cloutier, G. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior. J. Biomech. 2011, 44, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Stegemann, J.P.; Deng, C.X. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography. Biomaterials 2016, 88, 12–24. [Google Scholar] [CrossRef]
- Bied, M.; Gennisson, J.-L. Acoustoelasticity in transversely isotropic soft tissues: Quantification of muscle nonlinear elasticity. J. Acoust. Soc. Am. 2021, 150, 4489–4500. [Google Scholar] [CrossRef] [PubMed]
- Aichele, J.; Catheline, S. Fluids alter elasticity measurements: Porous wave propagation accounts for shear wave dispersion in elastography. Front. Phys. 2021, 9, 697990. [Google Scholar] [CrossRef]
- Islam, M.T.; Tang, S.; Tasciotti, E.; Righetti, R. Non-invasive assessment of the spatial and temporal distributions of interstitial fluid pressure, fluid velocity and fluid flow in cancers in vivo. IEEE Access 2021, 9, 89222–89233. [Google Scholar] [CrossRef]
- Kishimoto, R.; Suga, M.; Usumura, M.; Iijima, H.; Yoshida, M.; Hachiya, H.; Shiina, T.; Yamakawa, M.; Konno, K.; Obata, T. Shear wave speed measurement bias in a viscoelastic phantom across six ultrasound elastography systems: A comparative study with transient elastography and magnetic resonance elastography. J. Med. Ultrason. 2022, 49, 143–152. [Google Scholar] [CrossRef]
- Khan, M.H.R.; Righetti, R. Ultrasound estimation of strain time constant and vascular permeability in tumors using a CEEMDAN and linear regression-based method. Comput. Biol. Med. 2022, 148, 105707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Murgoitio-Esandi, J.; Qian, X.; Li, R.; Gong, C.; Nankali, A.; Hao, L.; Xu, B.Y.; Shung, K.K.; Oberai, A. High-frequency ultrasound elastography to assess the nonlinear elastic properties of the cornea and ciliary body. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 2621–2629. [Google Scholar] [CrossRef]
- Farajpour, A.; Ingman, W.V. In-Plane Wave Propagation Analysis of Human Breast Lesions Using a Higher-Order Nonlocal Model and Deep Learning. Mathematics 2023, 11, 4804. [Google Scholar] [CrossRef]
- Tang, S.; Weiner, B.; Taraballi, F.; Haase, C.; Stetco, E.; Mehta, S.M.; Shajudeen, P.; Hogan, M.; De Rosa, E.; Horner, P.J. Assessment of spinal cord injury using ultrasound elastography in a rabbit model in vivo. Sci. Rep. 2023, 13, 15323. [Google Scholar] [CrossRef]
- Khan, S.; Goswami, S.; Feng, F.; Doyley, M.M.; McAleavey, S.A. Quantifying Strain Dependence of Multi-Frequency Shearwave Elasticity Imaging. In Proceedings of the 2023 IEEE Western New York Image and Signal Processing Workshop (WNYISPW), Rochester, NY, USA , 3 November 2023; pp. 1–7. [Google Scholar]
- Pagé, G.; Bied, M.; Garteiser, P.; Van Beers, B.; Etaix, N.; Fraschini, C.; Bel-Brunon, A.; Gennisson, J.-L. Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus. Phys. Med. Biol. 2023, 68, 205003. [Google Scholar] [CrossRef] [PubMed]
- Kheirkhah, N.; Dempsey, S.; Sadeghi-Naini, A.; Samani, A. A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography. Med. Phys. 2023, 50, 2176–2194. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.R.; Islam, M.T.; Taraballi, F.; Righetti, R. Assessment of compression-induced solid stress, fluid pressure and mechanopathological parameters in cancers in vivo using poroelastography. Phys. Med. Biol. 2023, 68, 135014. [Google Scholar] [CrossRef]
- Majumder, S.; Islam, M.T.; Righetti, R. Non-invasive imaging of interstitial fluid transport parameters in solid tumors in vivo. Sci. Rep. 2023, 13, 7132. [Google Scholar] [CrossRef] [PubMed]
- Dwairy, M.; Reddy, J.; Righetti, R. Predicting stress and interstitial fluid pressure in tumors based on biphasic theory. Comput. Biol. Med. 2023, 167, 107651. [Google Scholar] [CrossRef]
- Kheirkhah, N.; Kornecki, A.; Czarnota, G.J.; Samani, A.; Sadeghi-Naini, A. Enhanced full-inversion-based ultrasound elastography for evaluating tumor response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Phys. Medica 2023, 112, 102619. [Google Scholar] [CrossRef]
- Tecse, A.; Romero, S.E.; Naemi, R.; Castaneda, B. Characterisation of the soft tissue viscous and elastic properties using ultrasound elastography and rheological models: Validation and applications in plantar soft tissue assessment. Phys. Med. Biol. 2023, 68, 105005. [Google Scholar] [CrossRef]
- Götschi, T.; Schärer, Y.; Gennisson, J.-L.; Snedeker, J.G. Investigation of the relationship between tensile viscoelasticity and unloaded ultrasound shear wave measurements in ex vivo tendon. J. Biomech. 2023, 146, 111411. [Google Scholar] [CrossRef]
- Duroy, A.-L.; Detti, V.; Coulon, A.; Basset, O.; Brusseau, E. Regularization-based 2D strain tensor imaging in quasi-static ultrasound elastography SAGE publications. Ultrason. Imaging 2023, 45, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Elmeliegy, A.M.; Guddati, M.N. Correlation-based full-waveform shear wave elastography. Phys. Med. Biol. 2023, 68, 115001. [Google Scholar] [CrossRef]
- Osika, M.; Kijanka, P. Ultrasound shear wave propagation modeling in general tissue–like viscoelastic materials. Ultrasound Med. Biol. 2024, 50, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Islam, M.T.; Taraballi, F.; Righetti, R. Non-invasive imaging of mechanical properties of cancers in vivo based on transformations of the Eshelby’s tensor using compression elastography. IEEE Trans. Med. Imaging 2024, 43, 3027–3043. [Google Scholar] [CrossRef]
- Cihan, A.; Holko, K.; Wei, L.; Vos, H.J.; Debbaut, C.; Caenen, A.; Segers, P. Effect of interstitial fluid pressure on shear wave elastography: An experimental and computational study. Phys. Med. Biol. 2024, 69, 075001. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.K.; Arora, M. Hyperelastic Strain Elastography to Measure Subcutaneous Adipose Tissue and Muscle Thickness: A Simulation Study. In Proceedings of the 2024 IEEE South Asian Ultrasonics Symposium (SAUS), Gujarat, India, 27–29 March 2024; pp. 1–4. [Google Scholar]
- Shiina, T. JSUM ultrasound elastography practice guidelines: Basics and terminology. J. Med. Ultrason. 2013, 40, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Mariappan, Y.K.; Glaser, K.J.; Ehman, R.L. Magnetic resonance elastography: A review. Clin. Anat. 2010, 23, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Regan, K.; LeBourdais, R.; Banerji, R.; Zhang, S.; Muhvich, J.; Zheng, S.; Nia, H.T. Multiscale elasticity mapping of biological samples in 3D at optical resolution. Acta Biomater. 2024, 176, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Moritoki, Y.; Furukawa, T.; Sun, J.; Yokoyama, M.; Shimono, T.; Yamada, T.; Nishiwaki, S.; Kageyama, T.; Fukuda, J.; Mukai, M. 3D-printed micro-tweezers with a compliant mechanism designed using topology optimization. Micromachines 2021, 12, 579. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, D.; Cowley, N.; Bian, Z.; Zheng, G.; Claffey, K.P.; Hoshino, K. Stiffness analysis of 3D spheroids using microtweezers. PLoS ONE 2017, 12, e0188346. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, B.F.; Wijesinghe, P.; Sampson, D.D. The emergence of optical elastography in biomedicine. Nat. Photonics 2017, 11, 215–221. [Google Scholar] [CrossRef]
- Mok, S.; Al Habyan, S.; Ledoux, C.; Lee, W.; MacDonald, K.N.; McCaffrey, L.; Moraes, C. Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes. Nat. Commun. 2020, 11, 4757. [Google Scholar] [CrossRef] [PubMed]
- Krieg, M.; Fläschner, G.; Alsteens, D.; Gaub, B.M.; Roos, W.H.; Wuite, G.J.; Gaub, H.E.; Gerber, C.; Dufrêne, Y.F.; Müller, D.J. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 2019, 1, 41–57. [Google Scholar] [CrossRef]
- Haase, K.; Pelling, A.E. Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 2015, 12, 20140970. [Google Scholar] [CrossRef]
- Tseng, Y.; Kole, T.P.; Wirtz, D. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 2002, 83, 3162–3176. [Google Scholar] [CrossRef] [PubMed]
- Robertson-Anderson, R.M. Optical tweezers microrheology: From the basics to advanced techniques and applications. ACS Macro Lett. 2018, 7, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Park, A.Y.; Son, E.J.; Han, K.; Youk, J.H.; Kim, J.-A.; Park, C.S. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur. J. Radiol. 2015, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Barretta, R.; Iuorio, A.; Luciano, R.; Vaccaro, M.S. On wave propagation in nanobeams. Int. J. Eng. Sci. 2024, 196, 104014. [Google Scholar] [CrossRef]
- Malandrino, A.; Mak, M.; Kamm, R.D.; Moeendarbary, E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extrem. Mech. Lett. 2018, 21, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, L.; Xu, H.; Du, Q.; Li, L.; Wang, L.; Zhang, E.S.; Chen, G.; Wang, Y. Heterogeneous responses to mechanical force of prostate cancer cells inducing different metastasis patterns. Adv. Sci. 2020, 7, 1903583. [Google Scholar] [CrossRef] [PubMed]
Loading Condition | Stress | Strain | Mechanical Property | Hooke’s Law | Property Dependency | Strain Deformation |
---|---|---|---|---|---|---|
Axial | ||||||
Shear | ||||||
Hydrostatic |
Wave Propagation | Wave Speed | Incompressible Medium | Particle Oscilation | Approximate Speed in Soft Tissue (m/s) | Imaging Techniques |
---|---|---|---|---|---|
Longitudinal waves | Parallel to the wave propagation direction | 1540 | 1-D transient and B-mode | ||
Shear waves | Perpendicular to the wave propagation direction | 1 to 10 | Point and 2D shear wave ultrasound elastography |
Model | Mechanical Properties | Independent Parameters | Microfiltration | Fluid Effects | Scale Effects | Computational Time |
---|---|---|---|---|---|---|
Classical elasticity | No | No | No | Very Low | ||
Viscoelasticity | No | Yes | No | Low | ||
Poroelasticity | Can be incorporated | Yes | No | Medium | ||
Nonlocal elasticity | No | No | Yes | High | ||
Nonlocal poroelasticity | Can be incorporated | Yes | Yes | Very high |
Continuum Model | Evaluation Metric | Metric Value | Study Model | Computational Complexity Level | Potential Clinical Application |
---|---|---|---|---|---|
Classical local elasticity [90] | Specificity | 78–88% | Human breast tissue | Simple | Solid tumours |
Viscoelasticity [51] | Residual error | 1.0529 | Tissue-mimicking phantom | Intermediate | Soft biological tissues |
Poroelasticity [19] | Accuracy | 90% | Orthotopic mouse model | Intermediate | Solid tumours |
Nonlocal viscoelasticity [91] | Test mean square error | 4.3 × 10−6 | In silico study | Complex | Ovarian diseases |
Authors | Year | Model | Ultrasound Elastography | Tissue |
---|---|---|---|---|
Cespedes et al. [92] | 1993 | Classical elasticity | Ultrasound elastography by linear array transducers | Muscle and breast in vivo |
Korte et al. [93] | 1998 | A geometry model | Strain imaging | Human arteries |
Konofagou et al. [95] | 1999 | Poroelasticity | Poroelastography | Tissue mimicking phantoms |
Walker et al. [96] | 2000 | Viscoelasticity | Acoustic radiation force ultrasound elastography | Tissue mimicking phantoms |
Insana et al. [94] | 2004 | Viscoelasticity | Strain imaging | Tumour microenvironment |
Berry et al. [97,98] | 2006 | Poroelasticity | Strain imaging | Tofu as a suitable poroelastic material |
Hoyt et al. [99] | 2008 | Viscoelasticity | Shear wave | Skeletal muscle |
Schmitt et al. [100] | 2011 | Viscoelasticity | plane shear wave | Blood clot |
Chen et al. [52] | 2013 | Viscoelasticity | Shear wave | Liver |
Mousavi et al. [14] | 2015 | Classical elasticity | Ultrasound or magnetic resonance imaging | Tissue-mimicking phantom for prostate cancer |
Hong et al. [101] | 2016 | Viscoelasticity | Dual mode | protein hydrogels |
Zhou and Zhang [51] | 2018 | Viscoelasticity | Shear wave | Phantom |
Goswami et al. [62] | 2020 | Nonlinear elasticity | Quasi-static and shear wave | Gelatin phantoms |
Bied and Gennisson [102] | 2021 | Nonlinear elasticity | Shear wave | Phantom and ex vivo bovine and porcine muscular tissues |
Aichele and Catheline [103] | 2021 | Poroelasticity and viscoelasticity | Shear wave | Liver and phantom |
Islam et al. [104] | 2021 | Poroelasticity | Poroelastography | Phantom and mice breast model |
Kishimoto et al. [105] | 2022 | Viscoelasticity | Transient, point and 2D shear waves | Phantom |
Khan and Righetti [106] | 2022 | Poroelasticity | Poroelastography | mice datasets with triple negative breast cancer |
Zhang et al. [107] | 2022 | Hyperelasticity | High-frequency ultrasound elastography | Cornea and ciliary body |
Farajpour and Ingman [108] | 2023 | Higher-order nonlocal elasticity | In-plane waves | Breast cancer |
Tang et al. [109] | 2023 | Classical elasticity | Strain elastography | Spinal cord injury using an in-vivo rabbit model |
Khan et al. [110] | 2023 | Hyperelasticity and viscoelasticity | Quasi-static and dynamic | Tissue mimic phantoms |
Pagé et al. [111] | 2023 | Nonlinear elasticity | Shear wave | Gelatin-agar phantoms |
Kheirkhah et al. [112] | 2023 | Hyperelasticity | Quasi-static | Tissue-mimicking phantom |
Khan et al. [113] | 2023 | Poroelastic | Poroelastography | A mice model of triple-negative breast cancer |
Majumder et al. [114] | 2023 | A bi-phasic poroelastic model | Poroelastography | Polyacrylamide samples and breast mouse model |
Dwairy et al. [115] | 2023 | Biphasic theory | N/A | Solid tumour |
Kheirkhah et al. [116] | 2023 | Inversion-based classical elasticity | Strain imaging | Locally breast cancer |
Tecse et al. [117] | 2023 | Viscoelastic | Reverberant shear wave | Plantar soft tissue and gelatine phantom |
Gotschi et al. [118] | 2023 | Viscoelastic | Shear wave | Tendon |
Duroy et al. [119] | 2023 | Classical elasticity | Quasi-static ultrasound elastography | Phantoms and breast tissues |
Elmeliegy and Guddati [120] | 2023 | Elasticity modelling | Shear wave | In silico simulation |
Farajpour and Ingman [91] | 2024 | Nonlocal viscoelasticity | Scale-dependent elastography | Ovarian cancer, breast cancer, and ovarian fibrosis |
Osika and Kijanka [121] | 2024 | Viscoelasticity | Shear wave | Phantom |
Majumder et al. [122] | 2024 | Eshelby’s theory of continuum mechanics | Compression elastography | Phantoms and orthotopic mouse model of breast cancer |
Cihan et al. [123] | 2024 | Poroelastic | Shear wave | Chicken breast |
Gautam and Arora [124] | 2024 | Hyperelasticity | Strain elastography | Subcutaneous adipose tissue and Muscle thickness |
Imaging Device | Scale Range | Scale Range (m) | Benefits | Drawbacks | Available Studies |
---|---|---|---|---|---|
Magnetic resonance elastography | Tissue-scale level | 10−4–10−3 | Non-invasive, entire organ assessment, quantitative | Bulky, relatively expensive, lack of cellular resolution, limited availability | [126] |
Microscale tweezers | Microscale | 10−5 | Ability to apply in-plane forces with high precision | Restrictions in strain extraction and scalability | [128,129] |
Thermo-responsive microgel probes | Microscale | 10−5–10−4 | Tracking mechanical features during microenvironment evolution over time | Restricted to local regions, scalability limitation, challenging validation | [131] |
Microrheology | Nanoscale and microscale | 10−9–10−6 | Accurate viscoelasticity measurements | Scale restrictions (only microscales and local regions), incompatible with larger scales | [134,135] |
Scanning force microscopy | Nanoscale and microscale | 10−9–10−6 | detailed and precise elasticity maps at nanoscale level | Destructive tissue preparation, only 2D surface imaging | [132,133] |
μElastography | Microscale | 10−7–10−3 | 3D elasticity maps, multiplane details, Scalability | Depth limitations, reduced mechanical strain sensitivity | [127] |
Ultrasound elastography | Tissue-scale level | 10−4 | Non-invasive, mobile, widespread availability, inexpensive, measurement flexibility | Reduced spatial resolution, not applicable at cellular level, signal attenuation due to fluid content | [49,125] |
Optical coherence elastography | Microscale | 10−5–10−4 | Strong biocompatibility and enhanced mechanical sensitivity | Depth restriction, lack of capability to distinguish between elasticity and density | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farajpour, A.; Ingman, W.V. Mathematical Models for Ultrasound Elastography: Recent Advances to Improve Accuracy and Clinical Utility. Bioengineering 2024, 11, 991. https://doi.org/10.3390/bioengineering11100991
Farajpour A, Ingman WV. Mathematical Models for Ultrasound Elastography: Recent Advances to Improve Accuracy and Clinical Utility. Bioengineering. 2024; 11(10):991. https://doi.org/10.3390/bioengineering11100991
Chicago/Turabian StyleFarajpour, Ali, and Wendy V. Ingman. 2024. "Mathematical Models for Ultrasound Elastography: Recent Advances to Improve Accuracy and Clinical Utility" Bioengineering 11, no. 10: 991. https://doi.org/10.3390/bioengineering11100991
APA StyleFarajpour, A., & Ingman, W. V. (2024). Mathematical Models for Ultrasound Elastography: Recent Advances to Improve Accuracy and Clinical Utility. Bioengineering, 11(10), 991. https://doi.org/10.3390/bioengineering11100991