Effect of Task Constraints on Neurobiological Systems Involved in Postural Control in Individuals with and without Chronic Ankle Instability
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.3.1. Sensory Organization Test (SOT)
2.3.2. Movement Variability Measure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzog, M.M.; Kerr, Z.Y.; Marshall, S.W.; Wikstrom, E.A. Epidemiology of Ankle Sprains and Chronic Ankle Instability. J. Athl. Train. 2019, 54, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-M.; Ingersoll, C.D.; Hertel, J. Altered Postural Modulation of Hoffmann Reflex in the Soleus and Fibularis Longus Associated with Chronic Ankle Instability. J. Electromyogr. Kinesiol. 2012, 22, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-M.; Hart, J.M.; Saliba, S.A.; Hertel, J. Modulation of the Fibularis Longus Hoffmann Reflex and Postural Instability Associated with Chronic Ankle Instability. J. Athl. Train. 2016, 51, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Wang, Y.; Xu, X.; Li, H.; Li, Q.; Na, Y.; Tao, W.; Yu, L.; Jin, Z.; Li, H.; et al. Postural Control Deficits During Static Single-Leg Stance in Chronic Ankle Instability: A Systematic Review and Meta-Analysis. Sports Health Multidiscip. Approach 2023, 16, 29–37. [Google Scholar] [CrossRef]
- Davids, K.; Glazier, P. Deconstructing Neurobiological Coordination: The Role of the Biomechanics-Motor Control Nexus. Exerc. Sport Sci. Rev. 2010, 38, 86–90. [Google Scholar] [CrossRef]
- Newell, K.M. Motor Skill Acquisition. Annu. Rev. Psychol. 1991, 42, 213–237. [Google Scholar] [CrossRef]
- Glazier, P.S. Towards a Grand Unified Theory of Sports Performance. Hum. Mov. Sci. 2017, 56, 139–156. [Google Scholar] [CrossRef]
- Sugimoto, Y.A.; McKeon, P.O.; Rhea, C.K.; Schmitz, R.J.; Henson, R.; Mattacola, C.G.; Ross, S.E. Sensory Reweighting System Differences on Vestibular Feedback with Increased Task Constraints in Individuals with and without Chronic Ankle Instability. J. Athl. Train. 2024, 59, 713–723. [Google Scholar] [CrossRef]
- Hertel, J.; Corbett, R.O. An Updated Model of Chronic Ankle Instability. J. Athl. Train. 2019, 54, 572–588. [Google Scholar] [CrossRef]
- Cavanaugh, J.T. Detecting Altered Postural Control after Cerebral Concussion in Athletes with Normal Postural Stability. Br. J. Sports Med. 2005, 39, 805–811. [Google Scholar] [CrossRef]
- Harbourne, R.T.; Stergiou, N. Movement Variability and the Use of Nonlinear Tools: Principles to Guide Physical Therapist Practice. Phys. Ther. 2009, 89, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Delahunt, E.; Bleakley, C.; Caulfield, B.; Docherty, C.; Fourchet, F.; Fong, D.T.-P.; Hertel, J.; Hiller, C.; Kaminski, T.; et al. Selection Criteria for Patients with Chronic Ankle Instability in Controlled Research: A Position Statement of the International Ankle Consortium. Br. J. Sports Med. 2014, 48, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Rhea, C.K.; Kiefer, A.W.; Haran, F.J.; Glass, S.M.; Warren, W.H. A New Measure of the CoP Trajectory in Postural Sway: Dynamics of Heading Change. Med. Eng. Phys. 2014, 36, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human Movement Variability, Nonlinear Dynamics, and Pathology: Is There a Connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; Mcgrath, D.; Stergiou, N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef]
- Yentes, J.M.; Denton, W.; McCamley, J.; Raffalt, P.C.; Schmid, K.K. Effect of Parameter Selection on Entropy Calculation for Long Walking Trials. Gait Posture 2018, 60, 128–134. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Glass, S.M.; Ross, S.E.; Arnold, B.L.; Rhea, C.K. Center of Pressure Regularity with and without Stochastic Resonance Stimulation in Stable and Unstable Ankles. Athl. Train. Sports Health Care 2014, 6, 170–178. [Google Scholar] [CrossRef]
- Terada, M.; Beard, M.; Carey, S.; Pfile, K.; Pietrosimone, B.; Rullestad, E.; Whitaker, H.; Gribble, P. Nonlinear Dynamic Measures for Evaluating Postural Control in Individuals with and without Chronic Ankle Instability. Mot. Control 2019, 23, 243–261. [Google Scholar] [CrossRef]
- Byl, N.N.; Nagarajan, S.S.; Merzenich, M.M.; Roberts, T.; McKenzie, A. Correlation of Clinical Neuromusculoskeletal and Central Somatosensory Performance: Variability in Controls and Patients with Severe and Mild Focal Hand Dystonia. Neural Plast. 2002, 9, 177–203. [Google Scholar] [CrossRef]
- Merzenich, M.M.; Jenkins, W.M. Reorganization of Cortical Representations of the Hand Following Alterations of Skin Inputs Induced by Nerve Injury, Skin Island Transfers, and Experience. J. Hand Ther. 1993, 6, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Nudo, R.; Milliken, G.; Jenkins, W.; Merzenich, M. Use-Dependent Alterations of Movement Representations in Primary Motor Cortex of Adult Squirrel Monkeys. J. Neurosci. 1996, 16, 785–807. [Google Scholar] [CrossRef] [PubMed]
- Bonan, I.V.; Yelnik, A.P.; Colle, F.M.; Michaud, C.; Normand, E.; Panigot, B.; Roth, P.; Guichard, J.P.; Vicaut, E. Reliance on Visual Information after Stroke. Part II: Effectiveness of a Balance Rehabilitation Program with Visual Cue Deprivation after Stroke: A Randomized Controlled Trial1. Arch. Phys. Med. Rehabil. 2004, 85, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Cooke, J.D.; Brown, J.D.; Brooks, V.B. Increased Dependence on Visual Information for Movement Control in Patients with Parkinson’s Disease. Can. J. Neurol. Sci. 1978, 5, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Hafstrom, A.; Fransson, P.-A.; Karlberg, M.; Magnusson, M. Ipsilesional Visual Field Dependency for Patients with Vestibular Schwannoma. NeuroReport 2004, 15, 2201–2204. [Google Scholar] [CrossRef]
- Lin, P.E.; Sigward, S.M. Subtle Alterations in Whole Body Mechanics during Gait Following Anterior Cruciate Ligament Reconstruction. Gait Posture 2019, 68, 494–499. [Google Scholar] [CrossRef]
- Lopez, C.; Lacour, M.; Magnan, J.; Borel, L. Visual Field Dependence-independence before and after Unilateral Vestibular Loss. NeuroReport 2006, 17, 797–803. [Google Scholar] [CrossRef]
- Slaboda, J.C.; Barton, J.E.; Maitin, I.B.; Keshner, E.A. Visual Field Dependence Influences Balance in Patients with Stroke. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1147–1150. [Google Scholar]
- Lee, A.J.Y.; Lin, W.-H.; Huang, C.H. Impaired Proprioception and Poor Static Postural Control in Subjects with Functional Instability of the Ankle. J. Exerc. Sci. Fit. 2006, 4, 117–125. [Google Scholar]
- Pasma, J.H.; Boonstra, T.A.; Campfens, S.F.; Schouten, A.C.; Van der Kooij, H. Sensory Reweighting of Proprioceptive Information of the Left and Right Leg during Human Balance Control. J. Neurophysiol. 2012, 108, 1138–1148. [Google Scholar] [CrossRef]
Group | |||
---|---|---|---|
Control | CAI | p-Values | |
N | 21 (13 females, 8 males) | 21 (13 females, 8 males) | - |
Age (years) | 25.41 ± 5.92 | 26.09 ± 5.76 | 0.836 |
Height (cm) | 169.70 ± 9.32 | 172.25 ± 9.76 | 0.606 |
Weight (kg) | 71.98 ± 14.79 | 76.18 ± 14.91 | 0.934 |
NASA-PASS | 6.27 ± 1.03 | 6.27 ± 0.18 | 0.674 |
IdFAI | 1.36 ± 1.81 | 19.09 ± 5.39 | <0.001 * |
Number of ankle sprains | 0.00 ± 0.00 | 6.48 ± 7.08 | <0.001 * |
Episodes of giving way | 0.00 ± 0.00 | 8.88 ± 21.36 | <0.001 * |
SOT Conditions | Sensory Feedback | |||||
---|---|---|---|---|---|---|
Manipulation Modalities | Manipulated | Absent | Tested | |||
Support Surface | Eyes | Visual Surroundings | ||||
C1-VnSfPf | Fixed | Open | Fixed | None | - | None |
C2-VaSfPf | Fixed | Closed | Fixed | None | VIS | SOM |
C3-VdSmPf | Fixed | Open | Sway-referenced | VIS | - | SOM |
C4-VdSfPm | Sway-referenced | Open | Fixed | SOM | - | VIS |
C5-VaSfPm | Sway-referenced | Closed | Fixed | SOM | VIS | VST |
C6-VdSmPm | Sway-referenced | Open | Sway-referenced | SOM, VIS | - | VST |
SampEN Values | |||||
---|---|---|---|---|---|
Parameter | Group | p-Value | Effect Size (95% CI) | ||
SOT Condition | Task | Control | CAI | ||
C1-VnSfPf | Double-limb | 1.04 ± 0.13 | 0.98 ± 0.13 | 0.213 | 0.46 (−0.14 to 1.06) |
Uninjured-limb | 1.34 ± 0.10 | 1.22 ± 0.14 | 0.002 * | 0.99 (0.36 to 1.61) | |
Injured-limb | 1.30 ± 0.12 | 1.23 ± 0.13 | 0.084 | 0.56 (−0.04 to 1.16) | |
C5-VaSfPm | Double-limb | 1.38 ± 0.12 | 1.32 ± 0.10 | 0.076 | 0.54 (−0.06 to 1.15) |
Uninjured-limb | 1.91 ± 0.15 | 1.73 ± 0.14 | <0.001 * | 1.24 (0.60 to 1.89) | |
Injured-limb | 1.85 ± 0.13 | 1.75 ± 0.17 | 0.031 * | 0.66 (0.05 to 1.27) |
SampEN Value | ||||
---|---|---|---|---|
Parameter | Group | p-Value | Effect Size (95% CI) | |
SOT Condition | Control | CAI | ||
C2-VaSfPf | 1.52 ± 0.33 | 1.44 ± 0.32 | 0.012 * | 0.25 (−0.35 to 0.84) |
C3-VdSmPf | 1.37 ± 0.25 | 1.29 ± 0.24 | 0.035 * | 0.33 (−0.27 to 0.92) |
C4-VdSfPm | 1.30 ± 0.18 | 1.21 ± 0.18 | 0.010 * | 0.50 (−0.10 to 1.10) |
C6-VdSmPm | 1.50 ± 0.20 | 1.42 ± 0.19 | 0.028 * | 0.30 (−0.19 to 1.01) |
SampEN Value | |||||
---|---|---|---|---|---|
Parameter | |||||
SOT Condition | Task | p-Value | Effect Size (95% CI) | ||
Double | Uninjured | Injured | |||
C2-VaSfPf | 1.05 ± 0.12 | 1.69 ± 0.14 | - | <0.001 * | 4.91 (3.72 to 6.09) |
C2-VaSfPf | 1.05 ± 0.12 | - | 1.69 ± 0.13 | <0.001 * | 5.12 (3.89 to 6.34) |
C2-VaSfPf | - | 1.69 ± 0.14 | 1.69 ± 0.13 | 0.569 | 0.00 (−0.59 to 0.59) |
C3-VdSmPf | 1.04 ± 0.14 | 1.49 ± 0.15 | - | <0.001 * | 3.10 (2.22 to 3.98) |
C3-VdSmPf | 1.04 ± 0.14 | - | 1.46 ± 0.14 | <0.001 * | 3.00 (2.14 to 3.86) |
C3-VdSmPf | - | 1.49 ± 0.15 | 1.46 ± 0.14 | 0.063 | 0.21 (−0.39 to 0.80) |
C4-VdSfPm | 1.09 ± 0.14 | 1.35 ± 0.14 | - | <0.001 * | 1.86 (1.15 to 2.56) |
C4-VdSfPm | 1.09 ± 0.14 | - | 1.34 ± 0.14 | <0.001 * | 1.79 (1.09 to 2.48) |
C4-VdSfPm | - | 1.35 ± 0.14 | 1.34 ± 0.14 | 0.427 | 0.07 (−0.52 to 0.66) |
C6-VdSmPm | 1.26 ± 0.11 | 1.57 ± 0.17 | - | <0.001 * | 2.17 (1.42 to 2.91) |
C6-VdSmPm | 1.26 ± 0.11 | - | 1.55 ± 0.14 | <0.001 * | 2.30 (1.54 to 3.07) |
C6-VdSmPm | - | 1.57 ± 0.17 | 1.55 ± 0.14 | 0.230 | 0.13 (−0.46 to 0.72) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugimoto, Y.A.; McKeon, P.O.; Rhea, C.K.; Mattacola, C.G.; Ross, S.E. Effect of Task Constraints on Neurobiological Systems Involved in Postural Control in Individuals with and without Chronic Ankle Instability. Bioengineering 2024, 11, 956. https://doi.org/10.3390/bioengineering11100956
Sugimoto YA, McKeon PO, Rhea CK, Mattacola CG, Ross SE. Effect of Task Constraints on Neurobiological Systems Involved in Postural Control in Individuals with and without Chronic Ankle Instability. Bioengineering. 2024; 11(10):956. https://doi.org/10.3390/bioengineering11100956
Chicago/Turabian StyleSugimoto, Yuki A., Patrick O. McKeon, Christopher K. Rhea, Carl G. Mattacola, and Scott E. Ross. 2024. "Effect of Task Constraints on Neurobiological Systems Involved in Postural Control in Individuals with and without Chronic Ankle Instability" Bioengineering 11, no. 10: 956. https://doi.org/10.3390/bioengineering11100956
APA StyleSugimoto, Y. A., McKeon, P. O., Rhea, C. K., Mattacola, C. G., & Ross, S. E. (2024). Effect of Task Constraints on Neurobiological Systems Involved in Postural Control in Individuals with and without Chronic Ankle Instability. Bioengineering, 11(10), 956. https://doi.org/10.3390/bioengineering11100956