Interdisciplinary Innovations and Applications of Bionics and Bioengineering in Kinesiology
1. The Role of Bionics in Enhancing Human Performance and Rehabilitation
2. Bioengineering’s Contributions to Footwear and Equipment Design
3. Biomechanics and Data-Driven Insights in Movement Science
4. Prosthetics and the Future of Bioengineering in Kinesiology
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newell, K.M. Kinesiology: Challenges of multiple agendas. Quest 2007, 59, 5–24. [Google Scholar] [CrossRef]
- Roupa, I.; da Silva, M.R.; Marques, F.; Gonçalves, S.B.; Flores, P.; da Silva, M.T. On the modeling of biomechanical systems for human movement analysis: A narrative review. Arch. Comput. Methods Eng. 2022, 29, 4915–4958. [Google Scholar] [CrossRef]
- Uchida, T.K.; Delp, S.L. Biomechanics of Movement: The Science of Sports, Robotics, and Rehabilitation; MIT Press: Cambridge, MA, USA, 2021. [Google Scholar]
- French, D.; Ronda, L.T. NSCA’s Essentials of Sport Science; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Knudson, D.V.; Brusseau, T.A. Introduction to Kinesiology: Studying Physical Activity; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Button, C.; Seifert, L.; Chow, J.Y.; Davids, K.; Araujo, D. Dynamics of Skill Acquisition: An Ecological Dynamics Approach; Human Kinetics Publishers: Champaign, IL, USA, 2020. [Google Scholar]
- Farina, D.; Vujaklija, I.; Brånemark, R.; Bull, A.M.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.-P.; Huang, H.; Ingvarsson, T. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2023, 7, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Witte, H. The interplay of biomimetics and biomechatronics. Biomimetics 2022, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.-H.; Zhang, R.; Zhao, L. Cutting-Edge Research in Sports Biomechanics: From Basic Science to Applied Technology. Bioengineering 2023, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.-Q.; Yick, K.-L.; Wu, J.; Huang, X.; Tse, C.-Y.; Chan, M.-K. A Scientometric Analysis and Visualization of Prosthetic Foot Research Work: 2000 to 2022. Bioengineering 2023, 10, 1138. [Google Scholar] [CrossRef] [PubMed]
- Casado-Hernández, I.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Soriano-Medrano, A.; López-López, D.; Navarro-Flores, E.; Pérez-Boal, E.; Martínez-Jiménez, E.M. The Effectiveness of Hard Insoles for Plantar Pressure in Cycling: A Crossover Study. Bioengineering 2023, 10, 816. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, K.; Ye, D.; Deng, L.; Wang, J.; Fu, W. Effects of Barefoot and Shod Conditions on the Kinematics and Kinetics of the Lower Extremities in Alternating Jump Rope Skipping—A One-Dimensional Statistical Parameter Mapping Study. Bioengineering 2023, 10, 1154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Niu, W.; Yick, K.-L.; Gu, B.; Sun, Y. Numerical Simulation of the Effect of Different Footwear Midsole Structures on Plantar Pressure Distribution and Bone Stress in Obese and Healthy Children. Bioengineering 2023, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Agius, T.P.; Cerasola, D.; Gauci, M.; Sciriha, A.; Sillato, D.; Formosa, C.; Gatt, A.; Xerri de Caro, J.; Needham, R.; Chockalingam, N. The kinematics of fixed-seat rowing: A structured synthesis. Bioengineering 2023, 10, 774. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shan, G. Insights from a Nine-Segment Biomechanical Model and Its Simulation for Anthropometrical Influence on Individualized Planche Learning and Training in Gymnastics. Bioengineering 2023, 10, 761. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kwon, K.; Yeo, W.-H. Recent advances in wearable exoskeletons for human strength augmentation. Flex. Print. Electron. 2022, 7, 023002. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Q.; Wu, F. Design of wearable hand rehabilitation glove with bionic fiber-reinforced actuator. IEEE J. Transl. Eng. Health Med. 2022, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dalla Gasperina, S.; Roveda, L.; Pedrocchi, A.; Braghin, F.; Gandolla, M. Review on patient-cooperative control strategies for upper-limb rehabilitation exoskeletons. Front. Robot. AI 2021, 8, 745018. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Rahman, M.J.; Cristobal, O.; Saad, M.; Kenné, J.-P.; Archambault, P.S. Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica 2015, 33, 19–39. [Google Scholar] [CrossRef]
- Chinmilli, P.; Redkar, S.; Zhang, W.; Sugar, T. A review on wearable inertial tracking based human gait analysis and control strategies of lower-limb exoskeletons. Int. Robot. Autom. J 2017, 3, 00080. [Google Scholar]
- Firtikiadis, L.; Manavis, A.; Kyratsis, P.; Efkolidis, N. Product Design Trends within the Footwear Industry: A Review. Designs 2024, 8, 49. [Google Scholar] [CrossRef]
- Zhou, Z.; Weng, L.; Tat, T.; Libanori, A.; Lin, Z.; Ge, L.; Yang, J.; Chen, J. Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 2020, 14, 14126–14133. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fernández, A.; Lobo-Prat, J.; Font-Llagunes, J.M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J. Neuroeng. Rehabil. 2021, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zi, B.; Wang, Z.; Qin, L.; Liao, W.-H. Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art. Mech. Mach. Theory 2019, 134, 499–511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, W.-H.; Wu, W.; Yu, H.; Zhang, R. Interdisciplinary Innovations and Applications of Bionics and Bioengineering in Kinesiology. Bioengineering 2024, 11, 1042. https://doi.org/10.3390/bioengineering11101042
Tai W-H, Wu W, Yu H, Zhang R. Interdisciplinary Innovations and Applications of Bionics and Bioengineering in Kinesiology. Bioengineering. 2024; 11(10):1042. https://doi.org/10.3390/bioengineering11101042
Chicago/Turabian StyleTai, Wei-Hsun, Wenjian Wu, Haibin Yu, and Rui Zhang. 2024. "Interdisciplinary Innovations and Applications of Bionics and Bioengineering in Kinesiology" Bioengineering 11, no. 10: 1042. https://doi.org/10.3390/bioengineering11101042
APA StyleTai, W. -H., Wu, W., Yu, H., & Zhang, R. (2024). Interdisciplinary Innovations and Applications of Bionics and Bioengineering in Kinesiology. Bioengineering, 11(10), 1042. https://doi.org/10.3390/bioengineering11101042