Multiscale Thermal Technologies: Exploring Hot and Cold Potentials in Biomedical Applications
Funding
Conflicts of Interest
References
- Parihar, A.; Kumar, A.; Panda, U.; Khan, R.; Parihar, D.S.; Khan, R. Cryopreservation: A comprehensive overview, challenges, and future perspectives. Adv. Biol. 2023, 7, 2200285. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; He, X.; Yarmush, M.L. Advanced technologies for the preservation of mammalian biospecimens. Nat. Biomed. Eng. 2021, 5, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.A.; Gibson, M.I. Chemical approaches to cryopreservation. Nat. Rev. Chem. 2022, 6, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Whaley, D.; Damyar, K.; Witek, R.P.; Mendoza, A.; Alexander, M.; Lakey, J.R.T. Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplant. 2021, 30, 0963689721999617. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Zhao, G. Ice inhibition for cryopreservation: Materials, strategies, and challenges. Adv. Sci. 2021, 8, 2002425. [Google Scholar] [CrossRef] [PubMed]
- Dou, M.; Lu, C.; Liu, J.; Rao, W. Liquid Helium Enhanced Vitrification Efficiency of Human Bone-Derived Mesenchymal Stem Cells and Human Embryonic Stem Cells. Bioengineering 2021, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.; Benson, J.D. Technologies for Vitrification Based Cryopreservation. Bioengineering 2023, 10, 508. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Hall, C.; Das, S.; Devireddy, R. Freezing of Solute-Laden Aqueous Solutions: Kinetics of Crystallization and Heat- and Mass-Transfer-Limited Model. Bioengineering 2022, 9, 540. [Google Scholar] [CrossRef] [PubMed]
- Cheepa, F.F.; Liu, H.; Zhao, G. The Natural Cryoprotectant Honey for Fertility Cryopreservation. Bioengineering 2022, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.R.; Pais, A.S.; Almeida-Santos, T.; Pires, V.M.R.; Pessa, P.; Marques, C.C.; Nolasco, S.; Castelo-Branco, P.; Prates, J.A.M.; Lopes-Da-Costa, L.; et al. Medical grade honey as a promising treatment to improve ovarian tissue transplantation. Bioengineering 2022, 9, 357. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Dang, W.; He, X.; Xu, F.; Huang, H. Biomolecular Pathways of Cryoinjuries in Low-Temperature Storage for Mammalian Specimens. Bioengineering 2022, 9, 545. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, X.; Zhou, J.; Zhang, L.; Xue, J.; Tao, W. Non-invasive thermal therapy for tissue engineering and regenerative medicine. Small 2022, 18, 2107705. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Li, Z.; An, K.; Niu, L.; Huang, H.; Xu, F. Thermo-Chemical Resistance to Combination Therapy of Glioma Depends on Cellular Energy Level. ACS Appl. Mater. Interfaces 2023, 15, 39053–39063. [Google Scholar] [CrossRef] [PubMed]
- Alamdari, S.G.; Amini, M.; Jalilzadeh, N.; Baradaran, B.; Mohammadzadeh, R.; Mokhtarzadeh, A.; Oroojalian, F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J. Control. Release 2022, 349, 269–303. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, B.; Alizadeh, E.; Bani, F.; Davaran, S.; Akbarzadeh, A.; Rabiee, N.; Bahadori, A.; Ziaei, M.; Bagherzadeh, M.; Saeb, M.R.; et al. Nanomaterials for photothermal and photodynamic cancer therapy. Appl. Phys. Rev. 2022, 9, 011317. [Google Scholar] [CrossRef]
- Dai, Q.; Cao, B.; Zhao, S.; Zhang, A. Synergetic thermal therapy for cancer: State-of-the-art and the future. Bioengineering 2022, 9, 474. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.L.; Wilson, R.E.; Amrhein, K.D.; Huang, X. Gold nanorod-assisted photothermal therapy and improvement strategies. Bioengineering 2022, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; He, Y.; Chen, Y.; Wang, Y.; Long, L. Integrated Thermofluid Lumped Parameter Model for Analyzing Hemodynamics in Human Fatigue State. Bioengineering 2023, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, S.; Zou, J.; Zhang, A. A New Conformal Penetrating Heating Strategy for Atherosclerotic Plaque. Bioengineering 2023, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Campelo, S.N.; Jacobs, E.J.; Aycock, K.N.; Davalos, R.V. Real-time temperature rise estimation during irreversible electroporation treatment through state-space modeling. Bioengineering 2022, 9, 499. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Huang, H. Multiscale Thermal Technologies: Exploring Hot and Cold Potentials in Biomedical Applications. Bioengineering 2024, 11, 1028. https://doi.org/10.3390/bioengineering11101028
Yu B, Huang H. Multiscale Thermal Technologies: Exploring Hot and Cold Potentials in Biomedical Applications. Bioengineering. 2024; 11(10):1028. https://doi.org/10.3390/bioengineering11101028
Chicago/Turabian StyleYu, Bangrui, and Haishui Huang. 2024. "Multiscale Thermal Technologies: Exploring Hot and Cold Potentials in Biomedical Applications" Bioengineering 11, no. 10: 1028. https://doi.org/10.3390/bioengineering11101028
APA StyleYu, B., & Huang, H. (2024). Multiscale Thermal Technologies: Exploring Hot and Cold Potentials in Biomedical Applications. Bioengineering, 11(10), 1028. https://doi.org/10.3390/bioengineering11101028