Advances in Fracture Healing Research
Conflicts of Interest
References
- Gao, H.; Huang, J.; Wei, Q.; He, C. Advances in Animal Models for Studying Bone Fracture Healing. Bioengineering 2023, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Deluca, A.; Wagner, A.; Faustini, B.; Weissenbacher, N.; Deininger, C.; Wichlas, F.; Tempfer, H.; Mueller, E.J.; Traweger, A. Development of a Metaphyseal Non-Union Model in the Osteoporotic Rat Femur. Bioengineering 2023, 10, 338. [Google Scholar] [CrossRef]
- Saul, D.; Menger, M.M.; Ehnert, S.; Nüssler, A.K.; Histing, T.; Laschke, M.W. Bone Healing Gone Wrong: Pathological Fracture Healing and Non-Unions—Overview of Basic and Clinical Aspects and Systematic Review of Risk Factors. Bioengineering 2023, 10, 85. [Google Scholar] [CrossRef]
- Menger, M.M.; Manuschewski, R.; Ehnert, S.; Rollmann, M.F.; Maisenbacher, T.C.; Tobias, A.L.; Menger, M.D.; Laschke, M.W.; Histing, T. Radiographic, Biomechanical and Histological Characterization of Femoral Fracture Healing in Aged CD-1 Mice. Bioengineering 2023, 10, 275. [Google Scholar] [CrossRef] [PubMed]
- Bundkirchen, K.; Ye, W.; Nowak, A.J.; Lienenklaus, S.; Welke, B.; Relja, B.; Neunaber, C. Fracture Healing in Elderly Mice and the Effect of an Additional Severe Blood Loss: A Radiographic and Biomechanical Murine Study. Bioengineering 2023, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Rinderknecht, H.; Histing, T.; Kolbenschlag, J.; Nussler, A.K.; Ehnert, S. Establishment of an In Vitro Scab Model for Investigating Different Phases of Wound Healing. Bioengineering 2022, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Manon, J.; Evrard, R.; Fievé, L.; Bouzin, C.; Magnin, D.; Xhema, D.; Darius, T.; Bonaccorsi-Riani, E.; Gianello, P.; Docquier, P.-L.; et al. A New Osteogenic Membrane to Enhance Bone Healing: At the Crossroads between the Periosteum, the Induced Membrane, and the Diamond Concept. Bioengineering 2023, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.J.; Jeong, S.; Lee, K.-B. Bone Morphogenetic Protein 2 Promotes Bone Formation in Bone Defects in Which Bone Remodeling Is Suppressed by Long-Term and High-Dose Zoledronic Acid. Bioengineering 2023, 10, 86. [Google Scholar] [CrossRef]
- Puts, R.; Khaffaf, A.; Shaka, M.; Zhang, H.; Raum, K. Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells. Bioengineering 2023, 10, 387. [Google Scholar] [CrossRef] [PubMed]
- Helaehil, J.V.; Helaehil, L.V.; Alves, L.F.; Huang, B.; Santamaria-Jr, M.; Bartolo, P.; Caetano, G.F. Electrical Stimulation Therapy and HA/TCP Composite Scaffolds Modulate the Wnt Pathways in Bone Regeneration of Critical-Sized Defects. Bioengineering 2023, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Milborne, B.; Murrell, L.; Cardillo-Zallo, I.; Titman, J.; Briggs, L.; Scotchford, C.; Thompson, A.; Layfield, R.; Ahmed, I. Developing Porous Ortho- and Pyrophosphate-Containing Glass Microspheres; Structural and Cytocompatibility Characterisation. Bioengineering 2022, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Passos, M.; Zankovic, S.; Minas, G.; Klüver, E.; Baltzer, M.; Schmal, H.; Seidenstuecker, M. About 3D Printability of Thermoplastic Collagen for Biomedical Applications. Bioengineering 2022, 9, 780. [Google Scholar] [CrossRef] [PubMed]
- Upson, S.J.; Benning, M.J.; Fulton, D.A.; Corbett, I.P.; Dalgarno, K.W.; German, M.J. Bond Strength and Adhesion Mechanisms of Novel Bone Adhesives. Bioengineering 2023, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Helmholz, H.; Willumeit-Römer, R. Multicolor Histochemical Staining for Identification of Mineralized and Non-Mineralized Musculoskeletal Tissue: Immunohistochemical and Radiological Validation in Decalcified Bone Samples. Bioengineering 2022, 9, 488. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Nussler, A.K.; Reumann, M.K.; Augat, P.; Menger, M.M.; Ghallab, A.; Hengstler, J.G.; Histing, T.; Ehnert, S. Contribution to the 3R Principle: Description of a Specimen-Specific Finite Element Model Simulating 3-Point-Bending Tests in Mouse Tibiae. Bioengineering 2022, 9, 337. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehnert, S.; Histing, T. Advances in Fracture Healing Research. Bioengineering 2024, 11, 67. https://doi.org/10.3390/bioengineering11010067
Ehnert S, Histing T. Advances in Fracture Healing Research. Bioengineering. 2024; 11(1):67. https://doi.org/10.3390/bioengineering11010067
Chicago/Turabian StyleEhnert, Sabrina, and Tina Histing. 2024. "Advances in Fracture Healing Research" Bioengineering 11, no. 1: 67. https://doi.org/10.3390/bioengineering11010067
APA StyleEhnert, S., & Histing, T. (2024). Advances in Fracture Healing Research. Bioengineering, 11(1), 67. https://doi.org/10.3390/bioengineering11010067