Virtual Reality for the Rehabilitation of Acquired Cognitive Disorders: A Narrative Review
Abstract
:1. Introduction
2. The Principles of Virtual Reality in Cognitive Rehabilitation
2.1. Immersion and Presence
2.2. Ecological Validity
2.3. Embodiment and Multisensory Feedback
3. Cognitive Domains in Rehabilitation
3.1. Attention
3.2. Memory
3.3. Executive Functions
3.4. Spatial Skills
3.5. Language
3.6. The Activities of Daily Living and the Instrumental Activities of Daily Living
- The utility of familiarization training before starting real VR training, especially for older people who are less familiar with even simple technological devices.
- Virtual training (VT) should have a sufficient duration, of at least a few weeks, to allow for the re-learning of functional living skills.
- The development of the virtual application should include not only feedback but also error corrections and prompts to help patients to produce the correct responses.
- VT variable scores and/or standard neuropsychological and quality of life measures should be included, as well as questionnaires on agreement, acceptability, and negative side effects.
3.7. A Holistic Approach
3.8. Stress and Cognitive Load
3.9. Multisensory Feedback
4. The Advantages and Limitations of VR-Based Cognitive Rehabilitation
4.1. The Advantages of VR-Based Cognitive Rehabilitation
4.2. The Limitations of VR-Based Cognitive Rehabilitation
5. The Empirical Evidence Supporting VR-Based Cognitive Rehabilitation
5.1. The General Impact of VR Interventions
5.2. Specific Cognitive Domains
5.3. Studies on Mild Cognitive Impairment
5.4. Studies on Functional Living Skills
5.5. Considerations and Future Directions of VR Systems
6. Challenges and Ethical Considerations
7. Future Developments and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, D.; Lan, X.; Zhou, Y.; Li, G.; Hsu, S.H.; Jung, T.P. The Study of Evaluation and Rehabilitation of Patients with Different Cognitive Impairment Phases Based on Virtual Reality and EEG. Front. Aging Neurosci. 2018, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; Maresca, G.; De Luca, R.; Stagnitti, M.C.; Porcari, B.; Ferrera, M.C.; Galletti, F.; Casella, C.; Manuli, A.; Calabro, R.S. The Growing Use of Virtual Reality in Cognitive Rehabilitation: Fact, Fake or Vision? A Scoping Review. J. Natl. Med. Assoc. 2019, 111, 457–463. [Google Scholar] [CrossRef] [PubMed]
- D’Cunha, N.M.; Nguyen, D.; Naumovski, N.; McKune, A.J.; Kellett, J.; Georgousopoulou, E.N.; Frost, J.; Isbel, S. A Mini-Review of Virtual Reality-Based Interventions to Promote Well-Being for People Living with Dementia and Mild Cognitive Impairment. Gerontology 2019, 65, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D.; Gaggioli, A.; Riva, G. Extended Reality for the Clinical, Affective, and Social Neurosciences. Brain Sci. 2020, 10, 922. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Sui, Y.; Shen, Y.; Zhu, Y.; Ali, N.; Guo, C.; Wang, T. Effects of Virtual Reality Intervention on Cognition and Motor Function in Older Adults with Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2021, 13, 586999. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Han, J.; Choi, H.; Prie, Y.; Vigier, T.; Bulteau, S.; Kwon, G.H. Examining the Academic Trends in Neuropsychological Tests for Executive Functions Using Virtual Reality: Systematic Literature Review. JMIR Serious Games 2021, 9, e30249. [Google Scholar] [CrossRef]
- Dores, A.R.; Barbosa, F.; Marques, A.; Carvalho, I.P.; De Sousa, L.; Castro-Caldas, A. Virtual reality and rehabilitation: Why or why not? A systematic literature review. Acta Medica Port. 2012, 25, 414–421. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Tseng, H.Y.; Lin, Y.J.; Wang, C.J.; Hsu, W.C. Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment. Eur. J. Phys. Rehabil. Med. 2020, 56, 47–57. [Google Scholar] [CrossRef]
- Georgiev, D.D.; Georgieva, I.; Gong, Z.; Nanjappan, V.; Georgiev, G.V. Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci. 2021, 11, 221. [Google Scholar] [CrossRef]
- Yu, D.; Li, X.; Lai, F.H. The effect of virtual reality on executive function in older adults with mild cognitive impairment: A systematic review and meta-analysis. Aging Ment. Health 2023, 27, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Ren, Y.; Lu, A. The effectiveness of virtual reality games in improving cognition, mobility, and emotion in elderly post-stroke patients: A systematic review and meta-analysis. Neurosurg. Rev. 2023, 46, 167. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Mancuso, V.; Cavedoni, S.; Stramba-Badiale, C. Virtual reality in neurorehabilitation: A review of its effects on multiple cognitive domains. Expert Rev. Med. Devices 2020, 17, 1035–1061. [Google Scholar] [CrossRef] [PubMed]
- Devos, H.; Ng, C.; Santos, F.H.; Sood, P.; Hu, X.; Zanwar, P.; Ogawa, E.; Heyn, P. Virtual Reality for Cognitive Rehabilitation: A Beginner’s Guide for Clinicians. Arch. Phys. Med. Rehabil. 2023, 104, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Delrieu, J.; Andrieu, S.; Pahor, M.; Cantet, C.; Cesari, M.; Ousset, P.J.; Voisin, T.; Fougere, B.; Gillette, S.; Carrie, I.; et al. Neuropsychological Profile of “Cognitive Frailty” Subjects in MAPT Study. J. Prev. Alzheimer’s Dis. 2016, 3, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Serino, S.; Barello, S.; Miraglia, F.; Triberti, S.; Repetto, C. Virtual Reality as a Potential Tool to Face Frailty Challenges. Front. Psychol. 2017, 8, 1541. [Google Scholar] [CrossRef] [PubMed]
- Brigola, A.G.; Rossetti, E.S.; Dos Santos, B.R.; Neri, A.L.; Zazzetta, M.S.; Inouye, K.; Pavarini, S.C.I. Relationship between cognition and frailty in elderly: A systematic review. Dement. Neuropsychol. 2015, 9, 110–119. [Google Scholar] [CrossRef]
- Pedroli, E.; Mancuso, V.; Stramba-Badiale, C.; Cipresso, P.; Tuena, C.; Greci, L.; Goulene, K.; Stramba-Badiale, M.; Riva, G.; Gaggioli, A. Brain M-App’s Structure and Usability: A New Application for Cognitive Rehabilitation at Home. Front. Hum. Neurosci. 2022, 16, 898633. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Ventura, S.; Brivio, E.; Riva, G.; Banos, R.M. Immersive Versus Non-immersive Experience: Exploring the Feasibility of Memory Assessment Through 360 degrees Technology. Front. Psychol. 2019, 10, 2509. [Google Scholar] [CrossRef]
- Slater, M.; Sanchez-Vives, M.V. Enhancing Our Lives with Immersive Virtual Reality. Front. Robot. AI 2016, 3, 74. [Google Scholar] [CrossRef]
- Faria, A.L.; Pinho, M.S.; Bermudez, I.B.S. A comparison of two personalization and adaptive cognitive rehabilitation approaches: A randomized controlled trial with chronic stroke patients. J. Neuroeng. Rehabil. 2020, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Neira, C.; Sandin, D.J.; DeFanti, T.A.; Kenyon, R.V.; Hart, J.C. The CAVE: Audio Visual Experience Automatic Virtual Environment. Commun. ACM 1992, 35, 64–72. [Google Scholar] [CrossRef]
- Higuera-Trujillo, J.L.; Lopez-Tarruella Maldonado, J.; Llinares Millan, C. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360 degrees Panoramas, and Virtual Reality. Appl. Ergon. 2017, 65, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.; Appel, E.; Bogler, O.; Wiseman, M.; Cohen, L.; Ein, N.; Abrams, H.B.; Campos, J.L. Older Adults with Cognitive and/or Physical Impairments Can Benefit from Immersive Virtual Reality Experiences: A Feasibility Study. Front. Med. 2019, 6, 329. [Google Scholar] [CrossRef] [PubMed]
- Plechata, A.; Sahula, V.; Fayette, D.; Fajnerova, I. Age-Related Differences with Immersive and Non-immersive Virtual Reality in Memory Assessment. Front. Psychol. 2019, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Rev. Med. Devices 2018, 15, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Panerai, S.; Gelardi, D.; Catania, V.; Rundo, F.; Tasca, D.; Musso, S.; Prestianni, G.; Muratore, S.; Babiloni, C.; Ferri, R. Functional Living Skills: A Non-Immersive Virtual Reality Training for Individuals with Major Neurocognitive Disorders. Sensors 2021, 21, 5751. [Google Scholar] [CrossRef] [PubMed]
- Panerai, S.; Catania, V.; Rundo, F.; Tasca, D.; Musso, S.; Babiloni, C.; Prestianni, G.; Muratore, S.; Ferri, R. Functional Living Skills in Patients with Major Neurocognitive Disorder Due to Degenerative or Non-Degenerative Conditions: Effectiveness of a Non-Immersive Virtual Reality Training. Sensors 2023, 23, 1896. [Google Scholar] [CrossRef]
- Sanchez-Vives, M.V.; Slater, M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 2005, 6, 332–339. [Google Scholar] [CrossRef]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef]
- Lo Priore, C.; Castelnuovo, G.; Liccione, D.; Liccione, D. Experience with V-STORE: Considerations on presence in virtual environments for effective neuropsychological rehabilitation of executive functions. Cyberpsychology Behav. Impact Internet Multimed. Virtual Real. Behav. Soc. 2003, 6, 281–287. [Google Scholar] [CrossRef]
- Thurley, K. Naturalistic neuroscience and virtual reality. Front. Syst. Neurosci. 2022, 16, 896251. [Google Scholar] [CrossRef] [PubMed]
- Minderer, M.; Harvey, C.D.; Donato, F.; Moser, E.I. Neuroscience: Virtual reality explored. Nature 2016, 533, 324–325. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [PubMed]
- Bell, I.H.; Nicholas, J.; Alvarez-Jimenez, M.; Thompson, A.; Valmaggia, L. Virtual reality as a clinical tool in mental health research and practice. Dialogues Clin. Neurosci. 2020, 22, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Kilteni, K.; Groten, R.; Slater, M. The Sense of Embodiment in Virtual Reality. Presence Teleoper. Virtual Environ. 2012, 21, 373–387. [Google Scholar] [CrossRef]
- Slater, M.; Perez-Marcos, D.; Ehrsson, H.H.; Sanchez-Vives, M.V. Inducing illusory ownership of a virtual body. Front. Neurosci. 2009, 3, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.C.M.; Andringa, G. The Potential of Immersive Virtual Reality for Cognitive Training in Elderly. Gerontology 2020, 66, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, L.J.; Palermo, M.A.; Mastrogiovanni, D.; Read, M.S.; Rosenberg-Pitonyak, E.; Rizzo, A.A.; Coslett, H.B. Assessment of spatial attention and neglect with a virtual wheelchair navigation task. J. Clin. Exp. Neuropsychol. 2008, 30, 650–660. [Google Scholar] [CrossRef]
- Cox, D.J.; Davis, M.; Singh, H.; Barbour, B.; Nidiffer, F.D.; Trudel, T.; Mourant, R.; Moncrief, R. Driving rehabilitation for military personnel recovering from traumatic brain injury using virtual reality driving simulation: A feasibility study. Mil. Med. 2010, 175, 411–416. [Google Scholar] [CrossRef]
- Amjad, I.; Toor, H.; Niazi, I.K.; Pervaiz, S.; Jochumsen, M.; Shafique, M.; Haavik, H.; Ahmed, T. Xbox 360 Kinect Cognitive Games Improve Slowness, Complexity of EEG, and Cognitive Functions in Subjects with Mild Cognitive Impairment: A Randomized Control Trial. Games Health J. 2019, 8, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.Y.; Chen, I.H.; Lin, Y.J.; Chen, Y.; Hsu, W.C. Effects of Virtual Reality-Based Physical and Cognitive Training on Executive Function and Dual-Task Gait Performance in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial. Front. Aging Neurosci. 2019, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Jung, Y.J.; Lee, G. Virtual Reality-Based Cognitive-Motor Rehabilitation in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Study on Motivation and Cognitive Function. Healthcare 2020, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Maier, M.; Ballester, B.R.; Leiva Banuelos, N.; Duarte Oller, E.; Verschure, P. Adaptive conjunctive cognitive training (ACCT) in virtual reality for chronic stroke patients: A randomized controlled pilot trial. J. Neuroeng. Rehabil. 2020, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.M.; Rose, F.D. The use of virtual reality in memory rehabilitation: Current findings and future directions. NeuroRehabilitation 2003, 18, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Matheis, R.J.; Schultheis, M.T.; Tiersky, L.A.; DeLuca, J.; Millis, S.R.; Rizzo, A. Is learning and memory different in a virtual environment? Clin. Neuropsychol. 2007, 21, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Tuena, C.; Serino, S.; Pedroli, E.; Stramba-Badiale, M.; Riva, G.; Repetto, C. Building Embodied Spaces for Spatial Memory Neurorehabilitation with Virtual Reality in Normal and Pathological Aging. Brain Sci. 2021, 11, 1067. [Google Scholar] [CrossRef] [PubMed]
- Man, D.W.; Chung, J.C.; Lee, G.Y. Evaluation of a virtual reality-based memory training programme for Hong Kong Chinese older adults with questionable dementia: A pilot study. Int. J. Geriatr. Psychiatry 2012, 27, 513–520. [Google Scholar] [CrossRef]
- Park, J.H.; Liao, Y.; Kim, D.R.; Song, S.; Lim, J.H.; Park, H.; Lee, Y.; Park, K.W. Feasibility and Tolerability of a Culture-Based Virtual Reality (VR) Training Program in Patients with Mild Cognitive Impairment: A Randomized Controlled Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 3030. [Google Scholar] [CrossRef]
- Oliveira, J.; Gamito, P.; Souto, T.; Conde, R.; Ferreira, M.; Corotnean, T.; Fernandes, A.; Silva, H.; Neto, T. Virtual Reality-Based Cognitive Stimulation on People with Mild to Moderate Dementia due to Alzheimer’s Disease: A Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 5290. [Google Scholar] [CrossRef]
- Tomaszewski Farias, S.; Cahn-Weiner, D.A.; Harvey, D.J.; Reed, B.R.; Mungas, D.; Kramer, J.H.; Chui, H. Longitudinal changes in memory and executive functioning are associated with longitudinal change in instrumental activities of daily living in older adults. Clin. Neuropsychol. 2009, 23, 446–461. [Google Scholar] [CrossRef]
- Hall, J.R.; Vo, H.T.; Johnson, L.A.; Barber, R.C.; O’Bryant, S.E. The Link between Cognitive Measures and ADLs and IADL Functioning in Mild Alzheimer’s: What Has Gender Got to Do with It? Int. J. Alzheimer’s Dis. 2011, 2011, 276734. [Google Scholar] [CrossRef] [PubMed]
- Moro, V.; Condoleo, M.T.; Valbusa, V.; Broggio, E.; Moretto, G.; Gambina, G. Cognitive stimulation of executive functions in mild cognitive impairment: Specific efficacy and impact in memory. Am. J. Alzheimer’s Dis. Other Dement. 2015, 30, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, M.; Averbuch, S.; Sacher, Y.; Katz, N.; Weiss, P.L.; Kizony, R. Effectiveness of executive functions training within a virtual supermarket for adults with traumatic brain injury: A pilot study. IEEE Trans. Neural Syst. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc. 2013, 21, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Nir-Hadad, S.Y.; Weiss, P.L.; Waizman, A.; Schwartz, N.; Kizony, R. A virtual shopping task for the assessment of executive functions: Validity for people with stroke. Neuropsychol. Rehabil. 2017, 27, 808–833. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D.; McMahan, T. An initial validation of the Virtual Environment Grocery Store. J. Neurosci. Methods 2017, 291, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Rand, D.; Katz, N.; Shahar, M.; Kizony, R.; Weiss, P.L. The virtual mall: A functional virtual environment for stroke rehabilitation. Annu. Rev. Cybertherapy Telemed. A Decade VR 2005, 3, 193–198. [Google Scholar]
- Kizony, R.; Josman, N.; Katz, N.; Rand, D.; Weiss, P.L. Virtual reality and the rehabilitation of executive functions: An annotated bibliography. Isr. J. Occup. Ther. 2008, 17, E47–E61. [Google Scholar]
- Raspelli, S.; Carelli, L.; Morganti, F.; Poletti, B.; Corra, B.; Silani, V.; Riva, G. Implementation of the multiple errands test in a NeuroVR-supermarket: A possible approach. Stud. Health Technol. Inform. 2010, 154, 115–119. [Google Scholar]
- Raspelli, S.; Pallavicini, F.; Carelli, L.; Morganti, F.; Poletti, B.; Corra, B.; Silani, V.; Riva, G. Validation of a Neuro Virtual Reality-based version of the Multiple Errands Test for the assessment of executive functions. Stud. Health Technol. Inform. 2011, 167, 92–97. [Google Scholar]
- Renison, B.; Ponsford, J.; Testa, R.; Richardson, B.; Brownfield, K. The ecological and construct validity of a newly developed measure of executive function: The Virtual Library Task. J. Int. Neuropsychol. Soc. JINS 2012, 18, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Jovanovski, D.; Zakzanis, K.; Campbell, Z.; Erb, S.; Nussbaum, D. Development of a novel, ecologically oriented virtual reality measure of executive function: The Multitasking in the City Test. Appl. Neuropsychol. Adult 2012, 19, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Tarnanas, I.; Schlee, W.; Tsolaki, M.; Muri, R.; Mosimann, U.; Nef, T. Ecological validity of virtual reality daily living activities screening for early dementia: Longitudinal study. JMIR Serious Games 2013, 1, e1. [Google Scholar] [CrossRef] [PubMed]
- Jansari, A.; Agnew, R.; Akesson, K.; Murphy, L. The use of virtual reality to assess and predict real-world executive dysfunction: Can VR help for work-placement rehabilitation? Brain Impair. 2004, 5, 110. [Google Scholar]
- Chicchi Giglioli, I.A.; Bermejo Vidal, C.; Alcaniz Raya, M. A Virtual Versus an Augmented Reality Cooking Task Based-Tools: A Behavioral and Physiological Study on the Assessment of Executive Functions. Front. Psychol. 2019, 10, 2529. [Google Scholar] [CrossRef] [PubMed]
- Campbell, Z.; Zakzanis, K.K.; Jovanovski, D.; Joordens, S.; Mraz, R.; Graham, S.J. Utilizing virtual reality to improve the ecological validity of clinical neuropsychology: An FMRI case study elucidating the neural basis of planning by comparing the Tower of London with a three-dimensional navigation task. Appl. Neuropsychol. 2009, 16, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Borgnis, F.; Baglio, F.; Pedroli, E.; Rossetto, F.; Isernia, S.; Uccellatore, L.; Riva, G.; Cipresso, P. EXecutive-Functions Innovative Tool (EXIT 360 degrees): A Usability and User Experience Study of an Original 360 degrees-Based Assessment Instrument. Sensors 2021, 21, 5867. [Google Scholar] [CrossRef] [PubMed]
- Borgnis, F.; Borghesi, F.; Rossetto, F.; Pedroli, E.; Lavorgna, L.; Riva, G.; Baglio, F.; Cipresso, P. Psychometric Calibration of a Tool Based on 360 Degree Videos for the Assessment of Executive Functions. J. Clin. Med. 2023, 12, 1645. [Google Scholar] [CrossRef]
- Faria, A.L.; Andrade, A.; Soares, L.; Sb, I.B. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients. J. Neuroeng. Rehabil. 2016, 13, 96. [Google Scholar] [CrossRef]
- Manera, V.; Petit, P.D.; Derreumaux, A.; Orvieto, I.; Romagnoli, M.; Lyttle, G.; David, R.; Robert, P.H. ‘Kitchen and cooking’, a serious game for mild cognitive impairment and Alzheimer’s disease: A pilot study. Front. Aging Neurosci. 2015, 7, 24. [Google Scholar] [CrossRef]
- Son, C.; Park, J.H. Ecological Effects of VR-Based Cognitive Training on ADL and IADL in MCI and AD patients: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 15875. [Google Scholar] [CrossRef] [PubMed]
- Fasilis, T.; Patrikelis, P.; Siatouni, A.; Alexoudi, A.; Veretzioti, A.; Zachou, L.; Gatzonis, S.S. A pilot study and brief overview of rehabilitation via virtual environment in patients suffering from dementia. Psychiatr. Psychiatr. 2018, 29, 42–51. [Google Scholar] [CrossRef]
- Park, J.H. Does the virtual shopping training improve executive function and instrumental activities of daily living of patients with mild cognitive impairment? Asian J. Psychiatry 2022, 69, 102977. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.T. Exergaming Executive Functions: An Immersive Virtual Reality-Based Cognitive Training for Adults Aged 50 and Older. Cyberpsychology Behav. Soc. Netw. 2020, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Shochat, G.; Maoz, S.; Stark-Inbar, A.; Blumenfeld, B.; Rand, D.; Preminger, S.; Sacher, Y. Motion-based virtual reality cognitive training targeting executive functions in acquired brain injury community-dwelling individuals: A feasibility and initial efficacy pilot. In Proceedings of the 2017 International Conference on Virtual Rehabilitation (ICVR), Montreal, QC, Canada, 19–22 June 2017; pp. 1–8. [Google Scholar]
- Araujo, H.; Souza, R.J.; da Silva, T.C.O.; Nascimento, T.S.; Terra, M.B.; Smaili, S.M. Immediate Effect of Augmented Reality, Virtual Reality, and Neurofunctional Physiotherapy on Postural Control and Executive Function of Individuals with Parkinson’s Disease. Games Health J. 2023, 12, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Montana, J.I.; Tuena, C.; Serino, S.; Cipresso, P.; Riva, G. Neurorehabilitation of Spatial Memory Using Virtual Environments: A Systematic Review. J. Clin. Med. 2019, 8, 1516. [Google Scholar] [CrossRef] [PubMed]
- Koenig, S.T.; Crucian, G.P.; Dalrymple-Alford, J.C.; Dunser, A. Virtual reality rehabilitation of spatial abilities after brain damage. Stud. Health Technol. Inform. 2009, 144, 105–107. [Google Scholar]
- Martelli, D.; Prado, A.; Xia, B.; Verghese, J.; Agrawal, S.K. Development of a Virtual Floor Maze Test—Effects of Distal Visual Cues and Correlations with Executive Function in Healthy Adults. IEEE Trans. Neural Syst. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc. 2019, 27, 2229–2236. [Google Scholar] [CrossRef]
- Maggio, M.G.; Latella, D.; Maresca, G.; Sciarrone, F.; Manuli, A.; Naro, A.; De Luca, R.; Calabro, R.S. Virtual Reality and Cognitive Rehabilitation in People with Stroke: An Overview. J. Neurosci. Nurs. J. Am. Assoc. Neurosci. Nurses 2019, 51, 101–105. [Google Scholar] [CrossRef]
- Kober, S.E.; Wood, G.; Hofer, D.; Kreuzig, W.; Kiefer, M.; Neuper, C. Virtual reality in neurologic rehabilitation of spatial disorientation. J. Neuroeng. Rehabil. 2013, 10, 17. [Google Scholar] [CrossRef]
- Castegnaro, A.; Howett, D.; Li, A.; Harding, E.; Chan, D.; Burgess, N.; King, J. Assessing mild cognitive impairment using object-location memory in immersive virtual environments. Hippocampus 2022, 32, 660–678. [Google Scholar] [CrossRef]
- Coughlan, G.; Puthusseryppady, V.; Lowry, E.; Gillings, R.; Spiers, H.; Minihane, A.M.; Hornberger, M. Test-retest reliability of spatial navigation in adults at-risk of Alzheimer’s disease. PLoS ONE 2020, 15, e0239077. [Google Scholar] [CrossRef]
- White, P.J.; Moussavi, Z. Neurocognitive Treatment for a Patient with Alzheimer’s Disease Using a Virtual Reality Navigational Environment. J. Exp. Neurosci. 2016, 10, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Mrakic-Sposta, S.; Di Santo, S.G.; Franchini, F.; Arlati, S.; Zangiacomi, A.; Greci, L.; Moretti, S.; Jesuthasan, N.; Marzorati, M.; Rizzo, G.; et al. Effects of Combined Physical and Cognitive Virtual Reality-Based Training on Cognitive Impairment and Oxidative Stress in MCI Patients: A Pilot Study. Front. Aging Neurosci. 2018, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Huang, X.; Zhang, B.; Kranz, G.S.; Zhang, D.; Li, X.; Chang, J. Effects of virtual reality in post-stroke aphasia: A systematic review and meta-analysis. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2021, 42, 5249–5259. [Google Scholar] [CrossRef] [PubMed]
- Devane, N.; Behn, N.; Marshall, J.; Ramachandran, A.; Wilson, S.; Hilari, K. The use of virtual reality in the rehabilitation of aphasia: A systematic review. Disabil. Rehabil. 2023, 45, 3803–3822. [Google Scholar] [CrossRef] [PubMed]
- Giachero, A.; Calati, M.; Pia, L.; La Vista, L.; Molo, M.; Rugiero, C.; Fornaro, C.; Marangolo, P. Conversational Therapy through Semi-Immersive Virtual Reality Environments for Language Recovery and Psychological Well-Being in Post Stroke Aphasia. Behav. Neurol. 2020, 2020, 2846046. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Booth, T.; Devane, N.; Galliers, J.; Greenwood, H.; Hilari, K.; Talbot, R.; Wilson, S.; Woolf, C. Evaluating the Benefits of Aphasia Intervention Delivered in Virtual Reality: Results of a Quasi-Randomised Study. PLoS ONE 2016, 11, e0160381. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Devane, N.; Talbot, R.; Caute, A.; Cruice, M.; Hilari, K.; MacKenzie, G.; Maguire, K.; Patel, A.; Roper, A.; et al. A randomised trial of social support group intervention for people with aphasia: A Novel application of virtual reality. PLoS ONE 2020, 15, e0239715. [Google Scholar] [CrossRef]
- Wall, K.J.; Cumming, T.B.; Koenig, S.T.; Pelecanos, A.M.; Copland, D.A. Using technology to overcome the language barrier: The Cognitive Assessment for Aphasia App. Disabil. Rehabil. 2018, 40, 1333–1344. [Google Scholar] [CrossRef]
- Brassel, S.; Brunner, M.; Power, E.; Campbell, A.; Togher, L. Speech-Language Pathologists’ Views of Using Virtual Reality for Managing Cognitive-Communication Disorders Following Traumatic Brain Injury. Am. J. Speech-Lang. Pathol. 2023, 32, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Borgnis, F.; Baglio, F.; Pedroli, E.; Rossetto, F.; Uccellatore, L.; Oliveira, J.A.G.; Riva, G.; Cipresso, P. Available Virtual Reality-Based Tools for Executive Functions: A Systematic Review. Front. Psychol. 2022, 13, 833136. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.; Rosler, A.; Schwarz, W.; Muller-Spahn, F.; Krauchi, K.; Hock, C.; Seifritz, E. Interactive computer-training as a therapeutic tool in Alzheimer’s disease. Compr. Psychiatry 2003, 44, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Van Schaik, P.; Martyr, A.; Blackman, T.; Robinson, J. Involving persons with dementia in the evaluation of outdoor environments. Cyberpsychology Behav. Impact Internet Multimed. Virtual Real. Behav. Soc. 2008, 11, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Foloppe, D.A.; Richard, P.; Yamaguchi, T.; Etcharry-Bouyx, F.; Allain, P. The potential of virtual reality-based training to enhance the functional autonomy of Alzheimer’s disease patients in cooking activities: A single case study. Neuropsychol. Rehabil. 2018, 28, 709–733. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Foloppe, D.A.; Richard, P.; Richard, E.; Allain, P. A Dual-Modal Virtual Reality Kitchen for (Re)Learning of Everyday Cooking Activities in Alzheimer’s Disease. Presence 2012, 21, 43–57. [Google Scholar] [CrossRef]
- Panerai, S.; Catania, V.; Rundo, F.; Bevilacqua, V.; Brunetti, A.; De Meo, C.; Gelardi, D.; Babiloni, C.; Ferri, R. Feasibility of a Non-immersive Virtual Reality Training on Functional Living Skills Applied to Person with Major Neurocognitive Disorder. In Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science; Huang, D.S., Huang, Z.K., Hussain, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 11645. [Google Scholar]
- Allain, P.; Foloppe, D.A.; Besnard, J.; Yamaguchi, T.; Etcharry-Bouyx, F.; Le Gall, D.; Nolin, P.; Richard, P. Detecting everyday action deficits in Alzheimer’s disease using a nonimmersive virtual reality kitchen. J. Int. Neuropsychol. Soc. JINS 2014, 20, 468–477. [Google Scholar] [CrossRef]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Validation of the Virtual Reality Everyday Assessment Lab (VR-EAL): An Immersive Virtual Reality Neuropsychological Battery with Enhanced Ecological Validity. J. Int. Neuropsychol. Soc. JINS 2021, 27, 181–196. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.J.; Kim, S.; Chung, W.H.; Park, K.A.; Kim, J.D.K.; Kim, D.; Kim, M.J.; Kim, K.; Jeon, H.J. Effect of Virtual Reality on Stress Reduction and Change of Physiological Parameters Including Heart Rate Variability in People with High Stress: An Open Randomized Crossover Trial. Front. Psychiatry 2021, 12, 614539. [Google Scholar] [CrossRef]
- Collins, J.; Regenbrecht, H.; Langlotz, T.; Can, Y.S.; Ersoy, C.; Butson, R. Measuring cognitive load and insight: A methodology exemplified in a virtual reality learning context. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Beijing, China, 14–18 October 2019; pp. 351–362. [Google Scholar]
- Luddecke, R.; Felnhofer, A. Virtual Reality Biofeedback in Health: A Scoping Review. Appl. Psychophysiol. Biofeedback 2022, 47, 1–5. [Google Scholar] [CrossRef]
- So, B.P.; Lai, D.K.; Cheung, D.S.; Lam, W.K.; Cheung, J.C.; Wong, D.W. Virtual Reality-Based Immersive Rehabilitation for Cognitive- and Behavioral-Impairment-Related Eating Disorders: A VREHAB Framework Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 5821. [Google Scholar] [CrossRef]
- Kwan, R.Y.C.; Liu, J.Y.W.; Fong, K.N.K.; Qin, J.; Leung, P.K.; Sin, O.S.K.; Hon, P.Y.; Suen, L.W.; Tse, M.K.; Lai, C.K. Feasibility and Effects of Virtual Reality Motor-Cognitive Training in Community-Dwelling Older People with Cognitive Frailty: Pilot Randomized Controlled Trial. JMIR Serious Games 2021, 9, e28400. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Technological Competence Is a Pre-condition for Effective Implementation of Virtual Reality Head Mounted Displays in Human Neuroscience: A Technological Review and Meta-Analysis. Front. Hum. Neurosci. 2019, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, R.; Maranesi, E.; Riccardi, G.R.; Donna, V.D.; Pelliccioni, P.; Luzi, R.; Lattanzio, F.; Pelliccioni, G. Non-Immersive Virtual Reality for Rehabilitation of the Older People: A Systematic Review into Efficacy and Effectiveness. J. Clin. Med. 2019, 8, 1882. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, C.; Imbimbo, I.; Tranchita, E.; Minganti, C.; Ricciardi, D.; Lo Monaco, R.; Parisi, A.; Padua, L. Comparison of virtual reality rehabilitation and conventional rehabilitation in Parkinson’s disease: A randomised controlled trial. Physiotherapy 2020, 106, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, T.; Voinescu, A.; Petrini, K.; Stanton Fraser, D. Efficacy and Moderators of Virtual Reality for Cognitive Training in People with Dementia and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. JAD 2022, 88, 1341–1370. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Marra, A.; Pollicino, P.; Buda, M.; Mucari, M.; Bonanno, M.; Torregrossa, W.; Caminiti, A.; Rifici, C.; Calabro, R.S. Advances in neuroRehabilitation of TREM2-related dementia: A case report on a novel multimodal approach using virtual reality. Medicine 2022, 101, e29470. [Google Scholar] [CrossRef]
- Moreno, A.; Wall, K.J.; Thangavelu, K.; Craven, L.; Ward, E.; Dissanayaka, N.N. A systematic review of the use of virtual reality and its effects on cognition in individuals with neurocognitive disorders. Alzheimers Dement (N. Y.) 2019, 5, 834–850. [Google Scholar] [CrossRef]
- Appel, L.; Ali, S.; Narag, T.; Mozeson, K.; Pasat, Z.; Orchanian-Cheff, A.; Campos, J.L. Virtual reality to promote wellbeing in persons with dementia: A scoping review. J. Rehabil. Assist. Technol. Eng. 2021, 8, 20556683211053952. [Google Scholar] [CrossRef]
- Walden, A.; Feliciano, L. A Virtual Reality Intervention to Reduce Dementia-Related Agitation Using Single-Case Design. Clin. Gerontol. 2022, 45, 1044–1054. [Google Scholar] [CrossRef]
- Ho, K.Y.; Cheung, P.M.; Cheng, T.W.; Suen, W.Y.; Ho, H.Y.; Cheung, D.S.K. Virtual Reality Intervention for Managing Apathy in People with Cognitive Impairment: Systematic Review. JMIR Aging 2022, 5, e35224. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Zhang, Q.; He, B.; Huang, M.; Lin, R.; Li, H. Immersive Virtual Reality-Based Cognitive Intervention for the Improvement of Cognitive Function, Depression, and Perceived Stress in Older Adults with Mild Cognitive Impairment and Mild Dementia: Pilot Pre-Post Study. JMIR Serious Games 2022, 10, e32117. [Google Scholar] [CrossRef] [PubMed]
- Thapa, N.; Park, H.J.; Yang, J.G.; Son, H.; Jang, M.; Lee, J.; Kang, S.W.; Park, K.W.; Park, H. The Effect of a Virtual Reality-Based Intervention Program on Cognition in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial. J. Clin. Med. 2020, 9, 1283. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.F.; Flatt, J.D.; Fu, B.; Butters, M.A.; Chang, C.C.; Ganguli, M. Interactive video gaming compared with health education in older adults with mild cognitive impairment: A feasibility study. Int. J. Geriatr. Psychiatry 2014, 29, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.C.; Yang, Y.H. The Long-term Effects of Immersive Virtual Reality Reminiscence in People with Dementia: Longitudinal Observational Study. JMIR Serious Games 2022, 10, e36720. [Google Scholar] [CrossRef] [PubMed]
- Zajac-Lamparska, L.; Wilkosc-Debczynska, M.; Wojciechowski, A.; Podhorecka, M.; Polak-Szabela, A.; Warchol, L.; Kedziora-Kornatowska, K.; Araszkiewicz, A.; Izdebski, P. Effects of virtual reality-based cognitive training in older adults living without and with mild dementia: A pretest-posttest design pilot study. BMC Res. Notes 2019, 12, 776. [Google Scholar] [CrossRef] [PubMed]
- Arlati, S.; Colombo, V.; Spoladore, D.; Greci, L.; Pedroli, E.; Serino, S.; Cipresso, P.; Goulene, K.; Stramba-Badiale, M.; Riva, G.; et al. A Social Virtual Reality-Based Application for the Physical and Cognitive Training of the Elderly at Home. Sensors 2019, 19, 261. [Google Scholar] [CrossRef]
- Gomes, G.C.V.; Simoes, M.D.S.; Lin, S.M.; Bacha, J.M.R.; Viveiro, L.A.P.; Varise, E.M.; Carvas Junior, N.; Lange, B.; Jacob Filho, W.; Pompeu, J.E. Feasibility, safety, acceptability, and functional outcomes of playing Nintendo Wii Fit PlusTM for frail older adults: A randomized feasibility clinical trial. Maturitas 2018, 118, 20–28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catania, V.; Rundo, F.; Panerai, S.; Ferri, R. Virtual Reality for the Rehabilitation of Acquired Cognitive Disorders: A Narrative Review. Bioengineering 2024, 11, 35. https://doi.org/10.3390/bioengineering11010035
Catania V, Rundo F, Panerai S, Ferri R. Virtual Reality for the Rehabilitation of Acquired Cognitive Disorders: A Narrative Review. Bioengineering. 2024; 11(1):35. https://doi.org/10.3390/bioengineering11010035
Chicago/Turabian StyleCatania, Valentina, Francesco Rundo, Simonetta Panerai, and Raffaele Ferri. 2024. "Virtual Reality for the Rehabilitation of Acquired Cognitive Disorders: A Narrative Review" Bioengineering 11, no. 1: 35. https://doi.org/10.3390/bioengineering11010035
APA StyleCatania, V., Rundo, F., Panerai, S., & Ferri, R. (2024). Virtual Reality for the Rehabilitation of Acquired Cognitive Disorders: A Narrative Review. Bioengineering, 11(1), 35. https://doi.org/10.3390/bioengineering11010035