Recent Advancements in Glaucoma Surgery—A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Trabeculectomy
3.1. Incisional Technique
3.2. Closure Technique
4. Glaucoma Drainage Devices
4.1. Modifications to Existing Techniques of GDD Implantation
4.2. Novel Techniques to Manage Surgical Complications and Failure following GDD Implantation
4.3. Modifications to Existing GDDs
4.4. Invention of New GDDs
5. Minimally Invasive Glaucoma Surgery (MIGS)
5.1. Recent Modifications to MIGS Techniques
5.2. Combination MIGS Procedures
5.3. Recent Development of New MIGS
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Trabeculectomy Studies | ||
---|---|---|
Author/Year | Title | Study Type |
Dada 2022 [13] | Trabeculectomy Augmented with Limited Deep Sclerectomy and Cyclodialysis with Use of Scleral Tissue as a Spacer | Case Report |
Dada 2021 [8] | Efficacy of Trabeculectomy Combined with Limited Deep Sclerectomy Versus Trabeculectomy Alone A Randomised-controlled Trial | Randomised Controlled Trial |
Chan 2020 [17] | The Tenons’ Layer Reposition Approach of Trabeculectomy: A Longitudinal Case Series of a Mixed Group of Glaucoma Patients | Non-comparative case series |
Olawoye 2015 [19] | Fornix-based Trabeculectomy with Mitomycin C Using the Horizontal Conjunctival Suture Technique | Non-comparative case series |
Allam R 2020 [15] | Trabeculectomy With Extended Subscleral Tunnel Versus Conventional Trabeculectomy in the Management of POAG: A 1-Year Randomised-controlled Trial | Randomised Controlled Trial |
Kirk 2014 [18] | Modified Wise Closure of the Conjunctival Fornix-Based Trabeculectomy Flap | Retrospective Comparative Study |
Figus M 2016 [22] | Scleral Flap-Everting Suture for Glaucoma-Filtering Surgery | Non-comparative Case Series |
Baykara M 2017 [23] | A Novel Suturing Technique for Filtering Glaucoma Surgery: The Accordion Suture | Non-comparative Case Series |
Glaucoma Drainage Device Studies | ||
Grover 2022 [55] | Clinical Outcomes of Ahmed ClearPath Implantation in Glaucomatous Eyes: A Novel Valveless Glaucoma Drainage Device | Retrospective Case Series |
Nakamura 2022 [120] | Tissue Reactivity to, and Stability of, Glaucoma Drainage Device Materials Placed Under Rabbit Conjunctiva | Animal In Vivo Study |
Gupta 2021 [38] | A Graft-Free Scleral Sleeve Technique of Ahmed Glaucoma Valve Implantation In Refractory Glaucoma—Rising to the Challenge of COVID-19 Pandemic | Case Report |
Gupta 2020 [30] | Pars Plana Placement of Ahmed Glaucoma Valve Tube Through Sclerotomy Port In Refractory Glaucoma: A Novel Surgical Technique | Case Report |
Koh 2020 [53] | Treatment Outcomes Using the PAUL Glaucoma Implant to Control Intraocular Pressure in Eyes with Refractory Glaucoma | Interventional Cohort Study |
Mungale 2019 [41] | A Novel Simplified Method for Managing Inadvertent Tube Cut During Aurolab Aqueous Drainage Implant Surgery For Refractory Glaucoma | Case Report |
Roy 2019 [59] | Initial Clinical Results of the eyeWatch: A New Adjustable Glaucoma Drainage Device Used in Refractory Glaucoma Surgery | Prospective Non-comparative Clinical Trial |
Sastre-Ibanez 2019 [40] | Efficacy of Ologen Matrix Implant in Ahmed Glaucoma Valve Implantation | Prospective Randomised Clinical Trial |
Eslami 2019 [35] | Single Long Scleral Tunnel Technique for Prevention of Ahmed Valve Tube Exposure | Retrospective Case Series |
Vergados 2019 [121] | Ab Interno Tube Ligation for Refractory Hypotony Following Non-valved Glaucoma Drainage Device Implantation | Retrospective Case Series |
Pakravan 2018 [37] | Ahmed Glaucoma Valve Implantation: Graft-Free Short Tunnel Small Flap versus Scleral Patch Graft After 1-Year Follow-up: A Randomised Clinical Trial | Randomised Controlled Trial |
Chiang 2017 [50] | A Novel Method of Extending Glaucoma Drainage Tube: “Tube-in-Tube” Technique | Retrospective Non-comparative Case Series |
Hwang 2017 [42] | Intracameral Air Injection During Ahmed Glaucoma Valve Implantation In Neovascular Glaucoma for the Prevention of Tube Obstruction with Blood Clot: Case Report | Case Report |
Brouzas 2017 [36] | Double Scleral Tunnel In Tandem Technique for Glaucoma Drainage Tube Implants | Case Series |
Dervan 2017 [47] | Intermediate-Term and Long-Term Outcome of Piggyback Drainage: Connecting Glaucoma Drainage Device to a Device In Situ for Improved Intraocular Pressure Control | Retrospective Interventional Cohort Study |
Park 2016 [122] | Polymeric Check Valve With an Elevated Pedestal for Precise Cracking Pressure In a Glaucoma Drainage Device | In Vitro Study |
Kataria 2016 [43] | A Novel Technique of a Transcorneal Suture to Manage an Iris Tuck into the Tube of a Glaucoma Drainage Device | Case Report |
Ahn 2016 [65] | Novel Membrane-Tube Type Glaucoma Shunt Device for Glaucoma Surgery | Retrospective Non-comparative Interventional Case Series |
Gil-Carrasco 2016 [52] | Comparative Study of the Safety and Efficacy of The Ahmed Glaucoma Valve Model M4 (High-Density Po-Rous Polyethene) And the Model S2 (Polypropylene) In Patients With Neovascular Glaucoma | Prospective Comparative Randomised Study |
Ma 2016 [34] | Modified Scleral Tunnel to Prevent Tube Exposure In Patients With Refractory Glaucoma | Retrospective Case Series |
Maldonado-Junyent 2015 [32] | Oculo-Peritoneal Shunt: Draining Aqueous Humour To The Peritoneum | Case Report |
Martino 2015 [123] | Surgical Outcomes of Superior Versus Inferior Glauco-Ma Drainage Device Implantation | Retrospective Case Series |
Schaefer 2015 [44] | Failed Glaucoma Drainage Implant: Long-Term Out-Comes of a Second Glaucoma Drainage Device Versus Cyclophotocoagulation | Non-randomised Retrospective Cohort Study |
Välimäki 2015 [46] | Insertion of Sequential Glaucoma Drainage Implant in a Piggyback Manner | Retrospective Case Series |
Lee 2014 [45] | Efficacy of Additional Glaucoma Drainage Device Insertion in Refractory Glaucoma: Case Series with a Systematic Literature Review and Meta-Analysis | Non-comparative Retrospective Case Series |
Luong 2014 [124] | A New Design and Application of Bioelastomers for Better Control of Intraocular Pressure In a Glaucoma Drainage Device | In Vitro Study |
Grover 2013 [28] | Confirming and Establishing Patency of Glaucoma Drainage Devices Using Trypan Blue | Case Report |
Minimally Invasive Glaucoma Surgery Studies | ||
Geffen 2022 [118] | Minimally Invasive Micro Sclerostomy (MIMS) Procedure: A Novel Glaucoma Filtration Procedure | Prospective Clinical Trial |
Martinez-de-la-casa 2022 [81] | Posterior Chamber Implantation of a Preserflo Microshunt In a Patient With a Compromised Endothelium | Case Report |
New World Medical 2022 [120] | STREAMLINE®SURGICAL SYSTEM Compared to iStent Inject W® in Patients with Open-Angle Glaucoma | Prospective Randomised Controlled Trial |
Lin 2022 [87] | Accurate Identification of the Trabecular Meshwork Under Gonioscopic View in Real Time Using Deep Learning. | Cross-Sectional Study |
Bleeker 2022 [95] | Short-Term Efficacy of Combined ab Interno Canaloplasty and Trabeculotomy in Pseudophakic Eyes with Open-Angle Glaucoma | Retrospective Case Series |
Lazcano-Gomez 2022 [119] | Interim Analysis of STREAMLINE® Surgical System Clinical Outcomes in Eyes with Glaucoma | Prospective Case Series |
Gallardo 2022 [77] | Comparison of Clinical Outcomes Following Gel Stent Implantation via Ab externo and Ab interno Approaches in Patients with Refractory Glaucoma. | Retrospective Case Series |
Tan 2021 [75] | Comparison of Safety and Efficacy Between Ab Interno and Ab Externo Approaches to XEN Gel Stent Placement | Retrospective Case Series |
Do 2021 [76] | Clinical Outcomes with Open Versus Closed Conjunctiva Implantation of the XEN45 Gel Stent | Retrospective Case Series |
Feijoo 2020 [105] | A European Study of the Performance and Safety of MINIject in Patients with Medically Uncontrolled Open-angle Glaucoma (STAR-II) | Prospective Clinical Trial |
Ucar 2020 [78] | Xen Implantation in Patients With Primary Open-Angle Glaucoma: Comparison of Two Different Techniques | Retrospective Comparative Interventional Study |
Vera 2020 [79] | Surgical Approaches for Implanting Xen Gel Stent without Conjunctival Dissection | Expert Opinion |
Ishida 2020 [85] | Observation of Gonio Structures during Microhook Ab Interno Trabeculotomy Using a Novel Digital Microscope with Integrated Intraoperative Optical Coherence Tomography | Retrospective Observational Study |
Bravetti 2020 [99] | Xen-Augmented Baerveldt Drainage Device Implantation in Refractory Glaucoma: 1-Year Outcomes | Retrospective Case Series |
Denis 2019 [100] | A First-in-Human Study of the Efficacy and Safety of MINIject in Patients with Medically Uncontrolled Open-Angle Glaucoma (STAR-I) | Randomised Controlled Trial |
Laroche 2019 [109] | Intra-Scleral Ciliary Sulcus Suprachoroidal Microtube: Making Supraciliary Glaucoma Surgery Affordable | Case Report |
Valimaki 2018 [46] | Xen Gel Stent to Resolve Late Hypotony After Glaucoma Drainage Implant Surgery: A Novel Technique | Case Report |
Yen 2018 [51] | Pars Plana Insertion of Glaucoma Shunt in Eyes With Refractory Neovascular Glaucoma: Case Report | Case Report |
Fili 2018 [104] | The Starflo Glaucoma Implant: Preliminary 12 Months Results | Prospective Case Series |
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Pillunat, L.E.; Erb, C.; Jünemann, A.G.; Kimmich, F. Micro-invasive glaucoma surgery (MIGS): A review of surgical procedures using stents. Clin. Ophthalmol. 2017, 11, 1583–1600. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C.; Kumari, R.; Sinha, B.P.; Ambasta, A.; Kumar, S. Lasers in Glaucoma: An Overview. Int. Ophthalmol. 2021, 41, 1111–1128. [Google Scholar] [CrossRef] [PubMed]
- Sharaawy, T.; Bhartiya, S. Surgical management of glaucoma: Evolving paradigms. Indian J. Ophthalmol. 2011, 59 (Suppl. S1), S123–S130. [Google Scholar] [CrossRef] [PubMed]
- Lim, R. The surgical management of glaucoma: A review. Clin. Exp. Ophthalmol. 2022, 50, 213–231. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Cairns, J.E. Trabeculectomy. Preliminary report of a new method. Am. J. Ophthalmol. 1968, 66, 673–679. [Google Scholar] [CrossRef]
- Dada, T.; Sharma, A.; Midha, N.; Angmo, D.; Gupta, S.; Sihota, R. Efficacy of Trabeculectomy Combined With Limited Deep Sclerectomy Versus Trabeculectomy Alone: A Randomized-controlled Trial. J. Glaucoma 2021, 30, 1065–1073. [Google Scholar] [CrossRef]
- Yu-Wai-Man, C.; Khaw, P.T. Developing novel anti-fibrotic therapeutics to modulate post-surgical wound healing in glaucoma: Big potential for small molecules. Expert Rev. Ophthalmol. 2015, 10, 65–76. [Google Scholar] [CrossRef]
- Khaw, P.T.; Chiang, M.; Shah, P.; Sii, F.; Lockwood, A.; Khalili, A. Enhanced Trabeculectomy: The Moorfields Safer Surgery System. Dev. Ophthalmol. 2017, 59, 15–35. [Google Scholar]
- Vijaya, L.; Manish, P.; Ronnie, G.; Shantha, B. Management of complications in glaucoma surgery. Indian J. Ophthalmol. 2011, 59 (Suppl. S1), S131–S140. [Google Scholar] [CrossRef] [PubMed]
- Figus, M.; Posarelli, C.; Passani, A.; Albert, T.G.; Oddone, F.; Sframeli, A.T.; Nardi, M. The supraciliary space as a suitable pathway for glaucoma surgery: Ho-hum or home run? Surv. Ophthalmol. 2017, 62, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Dada, T.; Shakrawal, J.; Ramesh, P.; Sethi, A. Trabeculectomy Augmented with Limited Deep Sclerectomy and Cyclodialysis with Use of Scleral Tissue as a Spacer. J. Ophthalmic. Vis. Res. 2022, 17, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Saleh, S. Modified trabeculectomy with an extended subscleral tunnel: Could it be a secure way toward successful glaucoma surgery? J. Egypt. Ophthalmol. Soc. 2014, 107, 97–105. [Google Scholar] [CrossRef]
- Allam, R.; Raafat, K.A.; Abdel-Hamid, R.M. Trabeculectomy With Extended Subscleral Tunnel Versus Conventional Trabeculectomy in the Management of POAG: A 1-Year Randomized-controlled Trial. J. Glaucoma 2020, 29, 473–478. [Google Scholar] [CrossRef]
- Feyi-Waboso, A.; Ejere, H.O. Needling for encapsulated trabeculectomy filtering blebs. Cochrane Database Syst. Rev. 2012, 2012, Cd003658. [Google Scholar] [CrossRef]
- Chan, P.P.; Wong, L.Y.N.; Chan, T.C.Y.; Lai, G.; Baig, N. The Tenons’ Layer Reposition Approach of Trabeculectomy: A Longitudinal Case Series of a Mixed Group of Glaucoma Patients. J. Glaucoma 2020, 29, 386–392. [Google Scholar] [CrossRef]
- Kirk, T.Q.; Condon, G.P. Modified Wise closure of the conjunctival fornix-based trabeculectomy flap. J. Cataract. Refract. Surg. 2014, 40, 349–353. [Google Scholar] [CrossRef]
- Olawoye, O.; Lee, M.; Kuwayama, Y.; Kee, C. Fornix-based Trabeculectomy With Mitomycin C Using the Horizontal Conjunctival Suture Technique. J. Glaucoma 2015, 24, 455–459. [Google Scholar] [CrossRef]
- Wise, J.B. Mitomycin-Compatible Suture Technique for Fornix-Based Conjunctival Flaps in Glaucoma Filtration Surgery. Arch. Ophthalmol. 1993, 111, 992–997. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.E.; Nauheim, J.; Nayak Kolomeyer, N.; Pro, M.J. Fornix-Based Trabeculectomy Conjunctival Closure: Winged Sutures versus Modified Wise Closure. Ophthalmol. Glaucoma 2019, 2, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Figus, M.; Posarelli, C.; Nasini, F.; Casini, G.; Martinelli, P.; Nardi, M. Scleral Flap-Everting Suture for Glaucoma-filtering Surgery. J. Glaucoma 2016, 25, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Baykara, M.; Can Ermerak, B.; Sabur, H.; Genc, S. A novel suturing technique for filtering glaucoma surgery: The accordion suture. Int. J. Ophthalmol. 2017, 10, 1931–1934. [Google Scholar]
- Aref, A.A.; Gedde, S.J.; Budenz, D.L. Glaucoma Drainage Implant Surgery. Dev. Ophthalmol. 2017, 59, 43–52. [Google Scholar]
- Schwartz, K.S.; Lee, R.K.; Gedde, S.J. Glaucoma drainage implants: A critical comparison of types. Curr. Opin. Ophthalmol. 2006, 17, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Gedde, S.J.; Schiffman, J.C.; Feuer, W.J.; Herndon, L.W.; Brandt, J.D.; Budenz, D.L. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am. J. Ophthalmol. 2012, 153, 789–803.e782. [Google Scholar] [CrossRef]
- Ashburn, F.S.; Netland, P.A. The Evolution of Glaucoma Drainage Implants. J. Ophthalmic. Vis. Res. 2018, 13, 498–500. [Google Scholar]
- Grover, D.S.; Fellman, R.L. Confirming and establishing patency of glaucoma drainage devices using trypan blue. J. Glaucoma 2013, 22, e1–e2. [Google Scholar] [CrossRef]
- van Dooren, B.T.; Beekhuis, W.H.; Pels, E. Biocompatibility of trypan blue with human corneal cells. Arch. Ophthalmol. 2004, 122, 736–742. [Google Scholar] [CrossRef]
- Gupta, R.; Varshney, A. Pars plana placement of Ahmed glaucoma valve tube through sclerotomy port in refractory glaucoma: A novel surgical technique. Indian J. Ophthalmol. 2020, 68, 234–236. [Google Scholar] [CrossRef]
- Schlote, T.; Ziemssen, F.; Bartz-Schmidt, K.U. Pars plana-modified Ahmed Glaucoma Valve for treatment of refractory glaucoma: A pilot study. Graefes. Arch. Clin. Exp. Ophthalmol. 2006, 244, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Junyent, A.; Maldonado-Bas, A.; Gonzalez, A.; Pueyrredón, F.; Maldonado-Junyent, M.; Maldonado-Junyent, A.; Rodriguez, D.; Bulacio, M. Oculo-peritoneal shunt: Draining aqueous humor to the peritoneum. Arq. Bras. Oftalmol. 2015, 78, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Chaku, M.; Netland, P.A.; Ishida, K.; Rhee, D.J. Risk factors for tube exposure as a late complication of glaucoma drainage implant surgery. Clin. Ophthalmol. 2016, 10, 547–553. [Google Scholar] [PubMed]
- Ma, X.-h.; Du, X.-j.; Liu, B.; Bi, H.-S. Modified scleral tunnel to prevent tube exposure in patients with refractory glaucoma. J. Glaucoma 2016, 25, 883–885. [Google Scholar] [CrossRef] [PubMed]
- Eslami, Y.; Azaripour, E.; Mohammadi, M.; Kiarudi, M.Y.; Fakhraie, G.; Zarei, R.; Alizadeh, Y.; Moghimi, S. Single long scleral tunnel technique for prevention of Ahmed valve tube exposure. Eur. J. Ophthalmol. 2019, 29, 52–56. [Google Scholar] [CrossRef]
- Brouzas, D.; Dettoraki, M.; Andreanos, K.; Nomikarios, N.; Koutsandrea, C.; Moschos, M.M. “Double scleral tunnel in tandem” technique for glaucoma drainage tube implants. Int. Ophthalmol. 2018, 38, 2349–2356. [Google Scholar]
- Pakravan, M.; Hatami, M.; Esfandiari, H.; Yazdani, S.; Doozandeh, A.; Samaeili, A.; Kheiri, B.; Conner, I. Ahmed glaucoma valve implantation: Graft-free short tunnel small flap versus scleral patch graft after 1-Year follow-up: A randomized clinical trial. Ophthalmol. Glaucoma 2018, 1, 206–212. [Google Scholar] [CrossRef]
- Gupta, R. A graft-free scleral sleeve technique of Ahmed Glaucoma Valve implantation in refractory glaucoma- Rising to the challenge of COVID-19 pandemic. Indian J. Ophthalmol. 2021, 69, 1623–1625. [Google Scholar] [CrossRef]
- Amoozgar, B.; Lin, S.C.; Han, Y.; Kuo, J. A role for antimetabolites in glaucoma tube surgery: Current evidence and future directions. Curr. Opin. Ophthalmol. 2016, 27, 164–169. [Google Scholar] [CrossRef]
- Sastre-Ibáñez, M.; Cabarga, C.; Canut, M.I.; Pérez-Bartolomé, F.; Urcelay-Segura, J.L.; Cordero-Ros, R.; García-Feijóo, J.; Martínez-de-la-Casa, J.M. Efficacy of Ologen matrix implant in Ahmed Glaucoma Valve Implantation. Sci. Rep. 2019, 9, 3178. [Google Scholar] [CrossRef]
- Mungale, S.; Dave, P. A novel simplified method for managing inadvertent tube cut during aurolab aqueous drainage implant surgery for refractory glaucoma. Indian J. Ophthalmol. 2019, 67, 694. [Google Scholar] [PubMed]
- Hwang, S.H.; Yoo, C.; Kim, Y.Y.; Lee, D.Y.; Nam, D.H.; Lee, J.Y. Intracameral air injection during Ahmed glaucoma valve implantation in neovascular glaucoma for the prevention of tube obstruction with blood clot: Case Report. Medicine 2017, 96, e9092. [Google Scholar] [CrossRef] [PubMed]
- Kataria, P.; Kaushik, S.; Singh, S.R.; Pandav, S.S. A Novel Technique of a Transcorneal Suture to Manage an Iris Tuck into the Tube of a Glaucoma Drainage Device. J. Glaucoma 2016, 25, e731–e733. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.L.; Levine, M.A.; Martorana, G.; Koenigsman, H.; Smith, M.F.; Sherwood, M.B. Failed glaucoma drainage implant: Long-term outcomes of a second glaucoma drainage device versus cyclophotocoagulation. Br. J. Ophthalmol. 2015, 99, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Hwang, H.B.; Oh, S.H.; Park, C.K. Efficacy of Additional Glaucoma Drainage Device Insertion in Refractory Glaucoma: Case Series with a Systematic Literature Review and Meta-Analysis. Semin. Ophthalmol. 2015, 30, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Välimäki, J. Insertion of sequential glaucoma drainage implant in a piggyback manner. Eye 2015, 29, 1329–1334. [Google Scholar] [CrossRef]
- Dervan, E.; Lee, E.; Giubilato, A.; Khanam, T.; Maghsoudlou, P.; Morgan, W.H. Intermediate-term and long-term outcome of piggyback drainage: Connecting glaucoma drainage device to a device in-situ for improved intraocular pressure control. Clin. Exp. Ophthalmol. 2017, 45, 803–811. [Google Scholar] [CrossRef]
- Burgoyne, J.K.; WuDunn, D.; Lakhani, V.; Cantor, L.B. Outcomes of sequential tube shunts in complicated glaucoma. Ophthalmology 2000, 107, 309–314. [Google Scholar] [CrossRef]
- Shah, A.A.; WuDunn, D.; Cantor, L.B. Shunt revision versus additional tube shunt implantation after failed tube shunt surgery in refractory glaucoma. Am. J. Ophthalmol. 2000, 129, 455–460. [Google Scholar] [CrossRef]
- Chiang, M.Y.-M.; Camuglia, J.E.; Khaw, P.T. A novel method of extending glaucoma drainage tube:“Tube-in-Tube” technique. J. Glaucoma 2017, 26, 93–95. [Google Scholar] [CrossRef]
- Yen, C.Y.; Tseng, G.L. Pars plana insertion of glaucoma shunt in eyes with refractory neovascular glaucoma: Case report. Medicine 2018, 97, e10977. [Google Scholar] [CrossRef] [PubMed]
- Gil-Carrasco, F.; Jiménez-Román, J.; Turati-Acosta, M.; Portillo, H.B.-L.; Isida-Llerandi, C. Comparative study of the safety and efficacy of the Ahmed glaucoma valve model M4 (high density porous polyethylene) and the model S2 (polypropylene) in patients with neovascular glaucoma. Arch. Soc. Española Oftalmol. 2016, 91, 409–414. [Google Scholar] [CrossRef]
- Koh, V.; Chew, P.; Triolo, G.; Lim, K.S.; Barton, K. Treatment Outcomes Using the PAUL Glaucoma Implant to Control Intraocular Pressure in Eyes with Refractory Glaucoma. Ophthalmol. Glaucoma 2020, 3, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.C.J.; Choy, H.Y.C.; Koh Teck Chang, V.; Aquino, M.C.; Sng, C.C.A.; Lim, D.K.A.; Loon, S.C.; Chew Tec Kuan, P. Two-Year Outcomes of the Paul Glaucoma Implant for Treatment of Glaucoma. J. Glaucoma 2022, 31, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Grover, D.S.; Kahook, M.Y.; Seibold, L.K.; Singh, I.P.; Ansari, H.; Butler, M.R.; Smith, O.U.; Sawhney, G.K.; Van Tassel, S.H.; Dorairaj, S. Clinical Outcomes of Ahmed ClearPath Implantation in Glaucomatous Eyes: A Novel Valveless Glaucoma Drainage Device. J. Glaucoma 2022, 31, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Chang, P. Early surgeon experience with a new valveless glaucoma drainage device. In Proceedings of the American Glaucoma Society Annual Meeting, National Harbor, MD, USA, 27 February–1 March 2020. [Google Scholar]
- Olson, J.L.; Groman-Lupa, S. Design and performance of a large lumen glaucoma drainage device. Eye 2017, 31, 152–156. [Google Scholar] [CrossRef]
- Villamarin, A.; Roy, S.; Bigler, S.; Stergiopulos, N. A New Adjustable Glaucoma Drainage Device. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1848–1852. [Google Scholar] [CrossRef]
- Roy, S.; Villamarin, A.; Stergiopulos, C.; Bigler, S.; Guidotti, J.; Stergiopulos, N.; Kniestedt, C.; Mermoud, A. Initial Clinical Results of the eyeWatch: A New Adjustable Glaucoma Drainage Device Used in Refractory Glaucoma Surgery. J. Glaucoma 2019, 28, 452–458. [Google Scholar] [CrossRef]
- Roy, S.; Villamarin, A.; Stergiopulos, C.; Bigler, S.; Stergiopulos, N.; Wachtl, J.; Mermoud, A.; Kniestedt, C. Comparison Between the eyeWatch Device and the Ahmed Valve in Refractory Glaucoma. J. Glaucoma 2020, 29, 401–405. [Google Scholar] [CrossRef]
- Sahiner, N.; Kravitz, D.J.; Qadir, R.; Blake, D.A.; Haque, S.; John, V.T.; Margo, C.E.; Ayyala, R.S. Creation of a drug-coated glaucoma drainage device using polymer technology: In vitro and in vivo studies. Arch. Ophthalmol. 2009, 127, 448–453. [Google Scholar] [CrossRef]
- Hovakimyan, M.; Siewert, S.; Schmidt, W.; Sternberg, K.; Reske, T.; Stachs, O.; Guthoff, R.; Wree, A.; Witt, M.; Schmitz, K.P.; et al. Development of an Experimental Drug Eluting Suprachoroidal Microstent as Glaucoma Drainage Device. Transl. Vis. Sci. Technol. 2015, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, L.; Weinreb, R.N.; Cheng, H. Wearable electronic devices for glaucoma monitoring and therapy. Mater. Des. 2021, 212, 110183. [Google Scholar] [CrossRef]
- Cvenkel, B.; Kolko, M. Devices and Treatments to Address Low Adherence in Glaucoma Patients: A Narrative Review. J. Clin. Med. 2022, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.H.; Hwang, Y.H.; Han, J.C. Novel membrane-tube type glaucoma shunt device for glaucoma surgery. Clin. Exp. Ophthalmol. 2016, 44, 776–782. [Google Scholar] [CrossRef]
- Saheb, H.; Ahmed, I.I. Micro-invasive glaucoma surgery: Current perspectives and future directions. Curr. Opin. Ophthalmol. 2012, 23, 96–104. [Google Scholar] [CrossRef]
- Pereira, I.C.F.; van de Wijdeven, R.; Wyss, H.M.; Beckers, H.J.M.; den Toonder, J.M.J. Conventional glaucoma implants and the new MIGS devices: A comprehensive review of current options and future directions. Eye 2021, 35, 3202–3221. [Google Scholar] [CrossRef]
- Xin, C.; Wang, H.; Wang, N. Minimally Invasive Glaucoma Surgery: What Do We Know? Where Should We Go? Transl. Vis. Sci. Technol. 2020, 9, 15. [Google Scholar] [CrossRef]
- Yook, E.; Vinod, K.; Panarelli, J.F. Complications of micro-invasive glaucoma surgery. Curr. Opin. Ophthalmol. 2018, 29, 147–154. [Google Scholar] [CrossRef]
- Vinod, K.; Gedde, S.J. Safety profile of minimally invasive glaucoma surgery. Curr. Opin. Ophthalmol. 2021, 32, 160–168. [Google Scholar] [CrossRef]
- Grover, D.S.; Flynn, W.J.; Bashford, K.P.; Lewis, R.A.; Duh, Y.J.; Nangia, R.S.; Niksch, B. Performance and Safety of a New Ab Interno Gelatin Stent in Refractory Glaucoma at 12 Months. Am. J. Ophthalmol. 2017, 183, 25–36. [Google Scholar] [CrossRef]
- Betzler, B.K.; Lim, S.Y.; Lim, B.A.; Yip, V.C.H.; Ang, B.C.H. Complications and post-operative interventions in XEN45 gel stent implantation in the treatment of open angle glaucoma-a systematic review and meta-analysis. Eye 2022, 37, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Arnljots, T.S.; Kasina, R.; Bykov, V.J.N.; Economou, M.A. Needling With 5-Fluorouracil (5-FU) After XEN Gel Stent Implantation: 6-Month Outcomes. J. Glaucoma 2018, 27, 893–899. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. 510(k) Premarket Notification—XEN Glaucoma Treatment System. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf16/k161457.pdf (accessed on 21 November 2016).
- Tan, N.E.; Tracer, N.; Terraciano, A.; Parikh, H.A.; Panarelli, J.F.; Radcliffe, N.M. Comparison of safety and efficacy between ab interno and ab externo approaches to XEN gel stent placement. Clin. Ophthalmol. 2021, 15, 299. [Google Scholar] [CrossRef] [PubMed]
- Do, A.; McGlumphy, E.; Shukla, A.; Dangda, S.; Schuman, J.S.; Boland, M.V.; Yohannan, J.; Panarelli, J.F.; Craven, E.R. Comparison of Clinical Outcomes with Open Versus Closed Conjunctiva Implantation of the XEN45 Gel Stent. Ophthalmol. Glaucoma 2021, 4, 343–349. [Google Scholar] [CrossRef]
- Gallardo, M.J.; Vincent, L.R.; Porter, M. Comparison of Clinical Outcomes Following Gel Stent Implantation via Ab-Externo and Ab-Interno Approaches in Patients with Refractory Glaucoma. Clin. Ophthalmol. 2022, 16, 2187–2197. [Google Scholar] [CrossRef]
- Ucar, F.; Cetinkaya, S. Xen implantation in patients with primary open-angle glaucoma: Comparison of two different techniques. Int. Ophthalmol. 2020, 40, 2487–2494. [Google Scholar] [CrossRef]
- Vera, V.; Gagne, S.; Myers, J.S.; Ahmed, I.I.K. Surgical Approaches for Implanting Xen Gel Stent without Conjunctival Dissection. Clin. Ophthalmol. 2020, 14, 2361–2371. [Google Scholar] [CrossRef]
- Ibarz-Barberá, M.; Morales-Fernández, L.; Corroto-Cuadrado, A.; Martinez-Galdón, F.; Tañá-Rivero, P.; Gómez de Liaño, R.; Teus, M.A. Corneal Endothelial Cell Loss After PRESERFLO™ MicroShunt Implantation in the Anterior Chamber: Anterior Segment OCT Tube Location as a Risk Factor. Ophthalmol. Ther. 2022, 11, 293–310. [Google Scholar] [CrossRef]
- Martinez-de-la-Casa, J.M.; Saenz-Frances, F.; Morales Fernandez, L.; García-Feijoo, J. Posterior chamber implantation of a Preserflo Microshunt in a patient with a compromised endothelium. Arch. Soc. Esp. Oftalmol. 2022, 97, 161–164. [Google Scholar] [CrossRef]
- Titiyal, J.S.; Kaur, M.; Nair, S.; Sharma, N. Intraoperative optical coherence tomography in anterior segment surgery. Surv. Ophthalmol. 2021, 66, 308–326. [Google Scholar] [CrossRef]
- Ang, B.C.H.; Lim, S.Y.; Dorairaj, S. Intra-operative optical coherence tomography in glaucoma surgery—A systematic review. Eye 2020, 34, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Junker, B.; Jordan, J.F.; Framme, C.; Pielen, A. Intraoperative optical coherence tomography and ab interno trabecular meshwork surgery with the Trabectome. Clin. Ophthalmol. 2017, 11, 1755–1760. [Google Scholar] [CrossRef]
- Ishida, A.; Sugihara, K.; Shirakami, T.; Tsutsui, A.; Manabe, K.; Tanito, M. Observation of Gonio Structures during Microhook Ab Interno Trabeculotomy Using a Novel Digital Microscope with Integrated Intraoperative Optical Coherence Tomography. J. Ophthalmol. 2020, 2020, 9024241. [Google Scholar] [CrossRef]
- Thakur, A.; Goldbaum, M.; Yousefi, S. Predicting Glaucoma before Onset Using Deep Learning. Ophthalmol. Glaucoma 2020, 3, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.Y.; Urban, G.; Yang, M.C.; Lee, L.C.; Lu, D.W.; Alward, W.L.M.; Baldi, P. Accurate Identification of the Trabecular Meshwork under Gonioscopic View in Real Time Using Deep Learning. Ophthalmol. Glaucoma 2022, 5, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, T.W.; Sarkisian Jr, S.R.; Lubeck, D.M.; Stiles, M.C.; Duh, Y.-J.; Romo, E.A.; Giamporcaro, J.E.; Hornbeak, D.M.; Katz, L.J.; Bartlett, W. Prospective, randomized, controlled pivotal trial of an ab interno implanted trabecular micro-bypass in primary open-angle glaucoma and cataract: Two-year results. Ophthalmology 2019, 126, 811–821. [Google Scholar] [CrossRef]
- Samuelson, T.W.; Singh, I.P.; Williamson, B.K.; Falvey, H.; Lee, W.C.; Odom, D.; McSorley, D.; Katz, L.J. Quality of Life in Primary Open-Angle Glaucoma and Cataract: An Analysis of VFQ-25 and OSDI From the iStent inject® Pivotal Trial. Am. J. Ophthalmol. 2021, 229, 220–229. [Google Scholar] [CrossRef]
- Paletta Guedes, R.A.; Gravina, D.M.; Paletta Guedes, V.M.; Chaoubah, A. Standalone Implantation of 2-3 Trabecular Micro-Bypass Stents (iStent inject ± iStent) as an Alternative to Trabeculectomy for Moderate-to-Severe Glaucoma. Ophthalmol. Ther. 2022, 11, 271–292. [Google Scholar] [CrossRef]
- Sarkisian, S.R., Jr.; Grover, D.S.; Gallardo, M.; Brubaker, J.W.; Giamporcaro, J.E.; Hornbeak, D.M.; Katz, L.J.; Navratil, T. Effectiveness and Safety of iStent infinite Trabecular Micro-Bypass For Uncontrolled Glaucoma. J. Glaucoma 2022, 32, 9–18. [Google Scholar] [CrossRef]
- Khaimi, M.A.; Dvorak, J.D.; Ding, K. An Analysis of 3-Year Outcomes Following Canaloplasty for the Treatment of Open-Angle Glaucoma. J. Ophthalmol. 2017, 2017, 2904272. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. 510(k) Premarket Notification—OMNI Surgical System. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf20/K202678.pdf (accessed on 1 March 2021).
- Vold, S.D.; Williamson, B.K.; Hirsch, L.; Aminlari, A.E.; Cho, A.S.; Nelson, C.; Dickerson, J.E., Jr. Canaloplasty and Trabeculotomy with the OMNI System in Pseudophakic Patients with Open-Angle Glaucoma: The ROMEO Study. Ophthalmol. Glaucoma 2021, 4, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Bleeker, A.R.; Litchfield, W.R.; Ibach, M.J.; Greenwood, M.D.; Ristvedt, D.; Berdahl, J.P.; Terveen, D.C. Short-Term Efficacy of Combined ab Interno Canaloplasty and Trabeculotomy in Pseudophakic Eyes with Open-Angle Glaucoma. Clin. Ophthalmol. 2022, 16, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Klabe, K.; Kaymak, H. Standalone Trabeculotomy and Viscodilation of Schlemm’s Canal and Collector Channels in Open-Angle Glaucoma Using the OMNI Surgical System: 24-Month Outcomes. Clin. Ophthalmol. 2021, 15, 3121–3129. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, K.; Arimura, S.; Takihara, Y.; Takamura, Y.; Inatani, M. Prospective cohort study of corneal endothelial cell loss after Baerveldt glaucoma implantation. PLoS ONE 2018, 13, e0201342. [Google Scholar] [CrossRef]
- D’Alessandro, E.; Guidotti, J.M.; Mansouri, K.; Mermoud, A. XEN-augmented Baerveldt: A New Surgical Technique for Refractory Glaucoma. J. Glaucoma 2017, 26, e90–e92. [Google Scholar] [CrossRef]
- Bravetti, G.E.; Mansouri, K.; Gillmann, K.; Rao, H.L.; Mermoud, A. XEN-augmented Baerveldt drainage device implantation in refractory glaucoma: 1-year outcomes. Graefes. Arch. Clin. Exp. Ophthalmol. 2020, 258, 1787–1794. [Google Scholar] [CrossRef]
- Denis, P.; Hirneiß, C.; Reddy, K.P.; Kamarthy, A.; Calvo, E.; Hussain, Z.; Ahmed, I.I.K. A First-in-Human Study of the Efficacy and Safety of MINIject in Patients with Medically Uncontrolled Open-Angle Glaucoma (STAR-I). Ophthalmol. Glaucoma 2019, 2, 290–297. [Google Scholar] [CrossRef]
- Gigon, A.; Shaarawy, T. The suprachoroidal route in glaucoma surgery. J. Curr. Glaucoma Pract. 2016, 10, 13. [Google Scholar]
- Reiss, G.; Clifford, B.; Vold, S.; He, J.; Hamilton, C.; Dickerson, J.; Lane, S. Safety and Effectiveness of CyPass Supraciliary Micro-Stent in Primary Open-Angle Glaucoma: 5-Year Results from the COMPASS XT Study. Am. J. Ophthalmol. 2019, 208, 219–225. [Google Scholar] [CrossRef]
- Hueber, A.; Roters, S.; Jordan, J.F.; Konen, W. Retrospective analysis of the success and safety of Gold Micro Shunt Implantation in glaucoma. BMC Ophthalmol. 2013, 13, 35. [Google Scholar] [CrossRef]
- Fili, S.; Wölfelschneider, P.; Kohlhaas, M. The STARflo glaucoma implant: Preliminary 12 months results. Graefes. Arch. Clin. Exp. Ophthalmol. 2018, 256, 773–781. [Google Scholar] [CrossRef] [PubMed]
- García Feijoó, J.; Denis, P.; Hirneiß, C.; Aptel, F.; Perucho González, L.; Hussain, Z.; Lorenz, K.; Pfeiffer, N. A European Study of the Performance and Safety of MINIject in Patients With Medically Uncontrolled Open-angle Glaucoma (STAR-II). J. Glaucoma 2020, 29, 864–871. [Google Scholar] [CrossRef] [PubMed]
- MINIject in Patients With Open Angle Glaucoma Using Single Operator Delivery Tool. Available online: https://ClinicalTrials.gov/show/NCT03996200 (accessed on 10 March 2023).
- Denis, P.; Hirneiß, C.; Durr, G.M.; Reddy, K.P.; Kamarthy, A.; Calvo, E.; Hussain, Z.; Ahmed, I.K. Two-year outcomes of the MINIject drainage system for uncontrolled glaucoma from the STAR-I first-in-human trial. Br. J. Ophthalmol. 2022, 106, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Evaluate the Safety and Effectiveness of iSTAR Medical’s MINIject™ Implant for Lowering Intraocular Pressure (IOP) in Subjects With Primary Open-angle Glaucoma. Available online: https://ClinicalTrials.gov/show/NCT05024695 (accessed on 10 March 2023).
- Laroche, D.; Anugo, D.; Ng, C.; Ishikawa, H. Intra-Scleral Ciliary Sulcus Suprachoroidal Microtube: Making Supraciliary Glaucoma Surgery Affordable. J. Natl. Med. Assoc. 2019, 111, 427–435. [Google Scholar] [CrossRef]
- Newman-Casey, P.A.; Robin, A.L.; Blachley, T.; Farris, K.; Heisler, M.; Resnicow, K.; Lee, P.P. The Most Common Barriers to Glaucoma Medication Adherence: A Cross-Sectional Survey. Ophthalmology 2015, 122, 1308–1316. [Google Scholar] [CrossRef]
- Belamkar, A.; Harris, A.; Zukerman, R.; Siesky, B.; Oddone, F.; Verticchio Vercellin, A.; Ciulla, T.A. Sustained release glaucoma therapies: Novel modalities for overcoming key treatment barriers associated with topical medications. Ann. Med. 2022, 54, 343–358. [Google Scholar] [CrossRef]
- Clinical Study Comparing Two Models of a Travoprost Intraocular Implant. Available online: https://ClinicalTrials.gov/show/NCT03868124 (accessed on 10 March 2023).
- Randomized Study Comparing Two Models of a Travoprost Intraocular Implant to Timolol Maleate Ophthalmic Solution, 0.5%. Available online: https://ClinicalTrials.gov/show/NCT03519386 (accessed on 10 March 2023).
- Lewis, C. Glaukos Announces Positive Topline Outcomes for Both Phase 3 Pivotal Trials of iDose TR, Achieving Primary Efficacy Endpoints and Demonstrating Favorable Tolerability and Safety Profiles; Business Wire: San Francisco, CA, USA, 2022. [Google Scholar]
- Schultz, T.; Schojai, M.; Kersten-Gomez, I.; Matthias, E.; Boecker, J.; Dick, H.B. Ab externo device for the treatment of glaucoma: Direct flow from the anterior chamber to the ocular surface. J. Cataract. Refract. Surg. 2020, 46, 941–943. [Google Scholar] [CrossRef]
- Early Evaluation of the Beacon Aqueous Microshunt in Patients Refractory to Drug Therapy in the European Union. Available online: https://ClinicalTrials.gov/show/NCT03634319 (accessed on 10 March 2023).
- Geffen, N.; Kumar, D.A.; Barayev, E.; Gershoni, A.; Rotenberg, M.; Zahavi, A.; Glovinsky, Y.; Agarwal, A. Minimally Invasive Micro Sclerostomy (MIMS) Procedure: A Novel Glaucoma Filtration Procedure. J. Glaucoma 2022, 31, 191–200. [Google Scholar] [CrossRef]
- Lazcano-Gomez, G.; Garg, S.J.; Yeu, E.; Kahook, M.Y. Interim Analysis of STREAMLINE(®) Surgical System Clinical Outcomes in Eyes with Glaucoma. Clin. Ophthalmol. 2022, 16, 1313–1320. [Google Scholar] [CrossRef]
- STREAMLINE®SURGICAL SYSTEM Compared to iStent Inject W® in Patients With Open-Angle Glaucoma (VENICE). Available online: https://clinicaltrials.gov/ct2/show/NCT05280366 (accessed on 10 March 2023).
- Nakamura, K.; Fujimoto, T.; Okada, M.; Maki, K.; Shimazaki, A.; Kato, M.; Inoue, T. Tissue Reactivity to, and Stability of, Glaucoma Drainage Device Materials Placed Under Rabbit Conjunctiva. Transl. Vis. Sci. Technol. 2022, 11, 9. [Google Scholar] [CrossRef]
- Vergados, A.; Mohite, A.A.; Sung, V.C.T. Ab interno tube ligation for refractory hypotony following non-valved glaucoma drainage device implantation. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 2271–2278. [Google Scholar] [CrossRef]
- Park, C.J.; Yang, D.-S.; Cha, J.-J.; Lee, J.-H. Polymeric check valve with an elevated pedestal for precise cracking pressure in a glaucoma drainage device. Biomed. Microdevices 2016, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Martino, A.Z.; Iverson, S.; Feuer, W.J.; Greenfield, D.S. Surgical outcomes of superior versus inferior glaucoma drainage device implantation. J. Glaucoma 2015, 24, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Luong, Q.M.; Shang, L.; Ang, M.; Kong, J.F.; Peng, Y.; Wong, T.T.; Venkatraman, S.S. A new design and application of bioelastomers for better control of intraocular pressure in a glaucoma drainage device. Adv. Healthc. Mater. 2014, 3, 205–213. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, B.C.H.; Lim, S.Y.; Betzler, B.K.; Wong, H.J.; Stewart, M.W.; Dorairaj, S. Recent Advancements in Glaucoma Surgery—A Review. Bioengineering 2023, 10, 1096. https://doi.org/10.3390/bioengineering10091096
Ang BCH, Lim SY, Betzler BK, Wong HJ, Stewart MW, Dorairaj S. Recent Advancements in Glaucoma Surgery—A Review. Bioengineering. 2023; 10(9):1096. https://doi.org/10.3390/bioengineering10091096
Chicago/Turabian StyleAng, Bryan Chin Hou, Sheng Yang Lim, Bjorn Kaijun Betzler, Hon Jen Wong, Michael W. Stewart, and Syril Dorairaj. 2023. "Recent Advancements in Glaucoma Surgery—A Review" Bioengineering 10, no. 9: 1096. https://doi.org/10.3390/bioengineering10091096
APA StyleAng, B. C. H., Lim, S. Y., Betzler, B. K., Wong, H. J., Stewart, M. W., & Dorairaj, S. (2023). Recent Advancements in Glaucoma Surgery—A Review. Bioengineering, 10(9), 1096. https://doi.org/10.3390/bioengineering10091096