Machine Learning for Medical Image Translation: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Screening Process
2.3. Data Extraction
3. Results
3.1. Modalities Synthesized
3.2. Year of Publication
3.3. Evaluation
3.4. Motivations
3.5. Deep Learning Used
3.6. Dataset Sizes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MAE | Mean absolute error |
PSNR | Peak signal-to-noise ratio |
SSIM | Structural similarity index measure |
ME | Mean error |
MSE | Mean squared error |
DSC | Dice score |
PCC | Pearson correlation coefficient |
FID | Fréchet inception distance |
RMSE | Root mean squared error |
NCC | Normalized cross correlation |
MAPE | Mean absolute percentage error |
VIF | Visual information fidelity |
BD | Bjøntegaard-Delta |
HD | Hausdorff distance |
HFEN | High-frequency error norm |
MI | Mutual information |
NRMSE | Normalized root mean squared error |
RSMPE | Root mean squared percentage error |
SD | Sharpness difference |
SLPD | Sum of local phase differences |
SWD | Sliced Wasserstein discrepancy |
NMSE | Normalized mean squared error |
References
- Yew, K.S.; Cheng, E. Acute stroke diagnosis. Am. Fam. Physician 2009, 80, 33–40. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2014; Volume 2, pp. 2672–2680. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Into Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Yu, B.; Wang, Y.; Wang, L.; Shen, D.; Zhou, L. Medical Image Synthesis via Deep Learning. In Deep Learning in Medical Image Analysis: Challenges and Applications; Lee, G., Fujita, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 23–44. [Google Scholar]
- Li, J.; Qu, Z.; Yang, Y.; Zhang, F.; Li, M.; Hu, S. TCGAN: A transformer-enhanced GAN for PET synthetic CT. Biomed. Opt. Express 2022, 13, 6003–6018. [Google Scholar] [CrossRef]
- Fujita, S.; Hagiwara, A.; Otsuka, Y.B.; Hori, M.; Takei, N.; Hwang, K.-P.; Irie, R.; Andica, C.; Kamagata, K.; Akashi, T.; et al. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans. Investig. Radiol. 2020, 55, 249–256. [Google Scholar] [CrossRef]
- Pal, S.; Dutta, S.; Maitra, R. Personalized synthetic MR imaging with deep learning enhancements. Magn. Reson. Med. 2022, 89, 1634–1643. [Google Scholar] [CrossRef]
- Schilling, L. Generating Synthetic Brain MR Images Using a Hybrid Combination of Noise-to-Image and Image-to-Image GANs. Master’s Thesis, Linköping University, Linköping, Sweden, 2020; p. 90. [Google Scholar]
- Uzunova, H.; Ehrhardt, J.; Handels, H. Memory-efficient GAN-based domain translation of high resolution 3D medical images. Comput. Med. Imaging Graph. 2020, 86, 101801. [Google Scholar] [CrossRef]
- Kaplan, S.; Perrone, A.; Alexopoulos, D.; Kenley, J.K.; Barch, D.M.; Buss, C.; Elison, J.T.; Graham, A.M.; Neil, J.J.; O’Connor, T.G.; et al. Synthesizing pseudo-T2w images to recapture missing data in neonatal neuroimaging with applications in rs-fMRI. Neuroimage 2022, 253, 119091. [Google Scholar] [CrossRef]
- Nencka, A.S.; Klein, A.; Koch, K.M.; McGarry, S.D.; LaViolette, P.S.; Paulson, E.S.; Mickevicius, N.J.; Muftuler, L.T.; Swearingen, B.; McCrea, M.A. Build-A-FLAIR: Synthetic T2-FLAIR Contrast Generation through Physics Informed Deep Learning. arXiv 2019, arXiv:1901.04871. [Google Scholar]
- Zhu, L.; Xue, Z.; Jin, Z.; Liu, X.; He, J.; Liu, Z.; Yu, L. Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D Brain MRI Synthesis. arXiv 2023, arXiv:2307.10094. [Google Scholar]
- Shin, H.; Kim, H.; Kim, S.; Jun, Y.; Eo, T.; Hwang, D. COSMOS: Cross-modality unsupervised domain adaptation for 3D medical image segmentation based on target-aware domain translation and iterative self-training. arXiv 2022, arXiv:2203.16557. [Google Scholar]
- Raju, J.C.; Gayatri, K.S.; Ram, K.; Rangasami, R.; Ramachandran, R.; Sivaprakasam, M. MIST GAN: Modality Imputation Using Style Transfer for MRI. In Machine Learning in Medical Imaging; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Chen, Y.; Staring, M.; Wolterink, J.M.; Tao, Q. Local Implicit Neural Representations for Multi-Sequence MRI Translation. arXiv 2023, arXiv:2302.01031. [Google Scholar]
- Moya-Sáez, E.; Navarro-González, R.; Cepeda, S.; Pérez-Núñez, A.; de Luis-García, R.; Aja-Fernández, S.; Alberola-López, C. Synthetic MRI improves radiomics-based glioblastoma survival prediction. NMR Biomed. 2022, 35, e4754. [Google Scholar] [CrossRef]
- Hong, K.-T.; Cho, Y.; Kang, C.H.; Ahn, K.-S.; Lee, H.; Kim, J.; Hong, S.J.; Kim, B.H.; Shim, E. Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test. Diagnostics 2022, 12, 530. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Xiong, J.; Xia, J.; Xie, Y. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images. BioMed Res. Int. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Kalantar, R.; Messiou, C.; Winfield, J.M.; Renn, A.; Latifoltojar, A.; Downey, K.; Sohaib, A.; Lalondrelle, S.; Koh, D.-M.; Blackledge, M.D. CT-Based Pelvic T1-Weighted MR Image Synthesis Using UNet, UNet++ and Cycle-Consistent Generative Adversarial Network (Cycle-GAN). Front. Oncol. 2021, 11, 665807. [Google Scholar] [CrossRef]
- Kieselmann, J.P.; Fuller, C.D.; Gurney-Champion, O.J.; Oelfke, U. Cross-modality deep learning: Contouring of MRI data from annotated CT data only. Med. Phys. 2021, 48, 1673–1684. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Qin, W.; Liang, X.; Xu, J.; Xiong, J.; Xie, Y. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy. Quant. Imaging Med. Surg. 2020, 10, 1223–1236. [Google Scholar] [CrossRef]
- Dong, X.; Lei, Y.; Tian, S.; Wang, T.; Patel, P.; Curran, W.J.; Jani, A.B.; Liu, T.; Yang, X. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Radiother. Oncol. 2019, 141, 192–199. [Google Scholar] [CrossRef]
- Dai, X.; Lei, Y.; Wang, T.; Zhou, J.; Roper, J.; McDonald, M.; Beitler, J.J.; Curran, W.J.; Liu, T.; Yang, X. Automated delineation of head and neck organs at risk using synthetic MRI-aided mask scoring regional convolutional neural network. Med. Phys. 2021, 48, 5862–5873. [Google Scholar] [CrossRef]
- McNaughton, J.; Holdsworth, S.; Chong, B.; Fernandez, J.; Shim, V.; Wang, A. Synthetic MRI Generation from CT Scans for Stroke Patients. BioMedInformatics 2023, 3, 791–816. [Google Scholar] [CrossRef]
- Rubin, J.; Abulnaga, S.M. CT-To-MR Conditional Generative Adversarial Networks for Ischemic Stroke Lesion Segmentation. In Proceedings of the 2019 IEEE International Conference on Healthcare Informatics, Xi’an, China, 10–13 June 2019; pp. 1–7. [Google Scholar]
- Feng, E.; Qin, P.; Chai, R.; Zeng, J.; Wang, Q.; Meng, Y.; Wang, P. MRI Generated From CT for Acute Ischemic Stroke Combining Radiomics and Generative Adversarial Networks. IEEE J. Biomed. Health Inform. 2022, 26, 6047–6057. [Google Scholar] [CrossRef]
- Paavilainen, P.; Akram, S.U.; Kannala, J. Bridging the gap between paired and unpaired medical image translation. In Proceedings of the MICCAI Workshop on Deep Generative Models, Strasbourg, France, 1 October 2021; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Ahangari, S.; Olin, A.B.; Federspiel, M.K.; Jakoby, B.; Andersen, T.L.; Hansen, A.E.; Fischer, B.M.; Andersen, F.L. A deep learning-based whole-body solution for PET/MRI attenuation correction. EJNMMI Phys. 2022, 9, 55. [Google Scholar] [CrossRef]
- Morbée, L.; Chen, M.; Herregods, N.; Pullens, P.; Jans, L.B. MRI-based synthetic CT of the lumbar spine: Geometric measurements for surgery planning in comparison with CT. Eur. J. Radiol. 2021, 144, 109999. [Google Scholar] [CrossRef]
- Morbee, L.; Chen, M.; Van Den Berghe, T.; Schiettecatte, E.; Gosselin, R.; Herregods, N.; Jans, L.B.O. MRI-based synthetic CT of the hip: Can it be an alternative to conventional CT in the evaluation of osseous morphology? Eur. Radiol. 2022, 32, 3112–3120. [Google Scholar] [CrossRef]
- Jans, L.; Chen, M.; Elewaut, D.; Van den Bosch, F.; Carron, P.; Jacques, P.; Wittoek, R.; Jaremko, J.; Herregods, N. MRI-Based Synthetic CT in the Detection of Structural Lesions in Patients with Suspected Sacroiliitis: Comparison with MRI. Radiology 2021, 298, 343–349. [Google Scholar] [CrossRef]
- Florkow, M.C.; Willemsen, K.; Zijlstra, F.; Foppen, W.; Wal, B.C.H.; van Zyp, J.R.N.V.; Viergever, M.A.; Castelein, R.M.; Weinans, H.; Stralen, M.; et al. MRI-based synthetic CT shows equivalence to conventional CT for the morphological assessment of the hip joint. J. Orthop. Res. 2022, 40, 954–964. [Google Scholar] [CrossRef]
- Arbabi, S.; Foppen, W.; Gielis, W.P.; van Stralen, M.; Jansen, M.; Arbabi, V.; de Jong, P.A.; Weinans, H.; Seevinck, P. MRI-based synthetic CT in the detection of knee osteoarthritis: Comparison with CT. J. Orthop. Res. 2023, 1–10. [Google Scholar] [CrossRef]
- Zhao, S.; Geng, C.; Guo, C.; Tian, F.; Tang, X. SARU: A self-attention ResUNet to generate synthetic CT images for MR-only BNCT treatment planning. Med. Phys. 2023, 50, 117–127. [Google Scholar] [CrossRef]
- Kazemifar, S.; Montero, A.M.B.; Souris, K.; Rivas, S.T.; Timmerman, R.; Park, Y.K.; Jiang, S.; Geets, X.; Sterpin, E.; Owrangi, A. Dosimetric evaluation of synthetic CT generated with GANs for MRI-only proton therapy treatment planning of brain tumors. J. Appl. Clin. Med. Phys. 2020, 21, 76–86. [Google Scholar] [CrossRef]
- Zimmermann, L.; Knäusl, B.; Stock, M.; Lütgendorf-Caucig, C.; Georg, D.; Kuess, P. An MRI sequence independent convolutional neural network for synthetic head CT generation in proton therapy. Z. Med. Phys. 2022, 32, 218–227. [Google Scholar] [CrossRef]
- Maspero, M.; Bentvelzen, L.G.; Savenije, M.H.; Guerreiro, F.; Seravalli, E.; Janssens, G.O.; Berg, C.A.v.D.; Philippens, M.E. Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. Radiother. Oncol. 2020, 153, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Peng, Y.; Qin, A.; Liu, Y.; Zhao, C.; Deng, X.; Deraniyagala, R.; Stevens, C.; Ding, X. MR-based synthetic CT image for intensity-modulated proton treatment planning of nasopharyngeal carcinoma patients. Acta Oncol. 2022, 61, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lei, Y.; Wang, Y.; Wang, T.; Ren, L.; Lin, L.; McDonald, M.; Curran, W.J.; Liu, T.; Zhou, J.; et al. MRI-based treatment planning for proton radiotherapy: Dosimetric validation of a deep learning-based liver synthetic CT generation method. Phys. Med. Biol. 2019, 64, 145015. [Google Scholar] [CrossRef] [PubMed]
- Touati, R.; Le, W.T.; Kadoury, S. A feature invariant generative adversarial network for head and neck MRI/CT image synthesis. Phys. Med. Biol. 2021, 66, 095001. [Google Scholar] [CrossRef]
- Bahrami, A.; Karimian, A.; Fatemizadeh, E.; Arabi, H.; Zaidi, H. A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI. Med. Phys. 2020, 47, 5158–5171. [Google Scholar] [CrossRef]
- Bahrami, A.; Karimian, A.; Arabi, H. Comparison of different deep learning architectures for synthetic CT generation from MR images. Phys. Med. 2021, 90, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, A.; Shi, H.; Huang, S.; Zheng, W.; Liu, Z.; Zhang, Q.; Yang, X. CT synthesis from MRI using multi-cycle GAN for head-and-neck radiation therapy. Computerized medical imaging and graphics. Off. J. Comput. Med. Imaging Soc. 2021, 91, 101953. [Google Scholar]
- Yoo, G.S.; Luu, H.M.; Kim, H.; Park, W.; Pyo, H.; Han, Y.; Park, J.Y.; Park, S.-H. Feasibility of Synthetic Computed Tomography Images Generated from Magnetic Resonance Imaging Scans Using Various Deep Learning Methods in the Planning of Radiation Therapy for Prostate Cancer. Cancers 2021, 14, 40. [Google Scholar] [CrossRef]
- Ranjan, A.; Lalwani, D.; Misra, R. GAN for synthesizing CT from T2-weighted MRI data towards MR-guided radiation treatment. Magn. Reson. Mater. Phys. Biol. Med. 2021, 35, 449–457. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, Y.; Wang, T.; Kayode, O.; Tian, S.; Liu, T.; Patel, P.; Curran, W.J.; Ren, L.; Yang, X. MRI-based treatment planning for liver stereotactic body radiotherapy: Validation of a deep learning-based synthetic CT generation method. Br. J. Radiol. 2019, 92, 20190067. [Google Scholar] [CrossRef]
- Kazemifar, S.; McGuire, S.; Timmerman, R.; Wardak, Z.; Nguyen, D.; Park, Y.; Jiang, S.; Owrangi, A. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Radiother. Oncol. 2019, 136, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Olin, A.B.; Thomas, C.; Hansen, A.E.; Rasmussen, J.H.; Krokos, G.; Urbano, T.G.; Michaelidou, A.; Jakoby, B.; Ladefoged, C.N.; Berthelsen, A.K.; et al. Robustness and Generalizability of Deep Learning Synthetic Computed Tomography for Positron Emission Tomography/Magnetic Resonance Imaging–Based Radiation Therapy Planning of Patients With Head and Neck Cancer. Adv. Radiat. Oncol. 2021, 6, 100762. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.G.; Fau, P.; Wojak, J.; Mailleux, H.; Benkreira, M.; Rapacchi, S.; Adel, M. Synthetic computed tomography generation for abdominal adaptive radiotherapy using low-field magnetic resonance imaging. Phys. Imaging Radiat. Oncol. 2023, 25, 100425. [Google Scholar] [CrossRef] [PubMed]
- Dinkla, A.; Florkow, M.; Maspero, M.; Savenije, M.; Zijlstra, F.; Doornaert, P.; van Stralen, M.; Philippens, M.; van den Berg, C.; Seevinck, P. Dosimetric Evaluation of Synthetic CT for Head and Neck Radiotherapy Generated by a Patch-Based Three-Dimensional Convolutional Neural Network. Med. Phys. 2019, 46, 4095–4104. [Google Scholar] [PubMed]
- Tang, B.; Wu, F.; Fu, Y.; Wang, X.; Wang, P.; Orlandini, L.C.; Li, J.; Hou, Q. Dosimetric evaluation of synthetic CT image generated using a neural network for MR-only brain radiotherapy. J. Appl. Clin. Med. Phys. 2021, 22, 55–62. [Google Scholar] [CrossRef]
- Cusumano, D.; Lenkowicz, J.; Votta, C.; Boldrini, L.; Placidi, L.; Catucci, F.; Dinapoli, N.; Antonelli, M.V.; Romano, A.; De Luca, V.; et al. A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiother. Oncol. 2020, 153, 205–212. [Google Scholar] [CrossRef]
- Gupta, D.; Kim, M.; Vineberg, K.A.; Balter, J.M. Generation of Synthetic CT Images From MRI for Treatment Planning and Patient Positioning Using a 3-Channel U-Net Trained on Sagittal Images. Front. Oncol. 2019, 9, 964. [Google Scholar] [CrossRef]
- Parrella, G.; Vai, A.; Nakas, A.; Garau, N.; Meschini, G.; Camagni, F.; Baroni, G. Synthetic CT in Carbon Ion Radiotherapy of the Abdominal Site. Bioengineering 2023, 10, 250. [Google Scholar] [CrossRef]
- Chourak, H.; Barateau, A.; Tahri, S.; Cadin, C.; Lafond, C.; Nunes, J.-C.; Boue-Rafle, A.; Perazzi, M.; Greer, P.B.; Dowling, J.; et al. Quality assurance for MRI-only radiation therapy: A voxel-wise population-based methodology for image and dose assessment of synthetic CT generation methods. Front. Oncol. 2022, 12, 968689. [Google Scholar] [CrossRef]
- Fu, J.; Singhrao, K.; Cao, M.; Yu, V.Y.; Santhanam, A.P.; Yang, Y.; Guo, M.; Raldow, A.C.; Ruan, D.; Lewis, J.H. Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy. Biomed. Phys. Eng. Express 2020, 6, 015033. [Google Scholar] [CrossRef]
- Lenkowicz, J.; Votta, C.; Nardini, M.; Quaranta, F.; Catucci, F.; Boldrini, L.; Vagni, M.; Menna, S.; Placidi, L.; Romano, A.; et al. A deep learning approach to generate synthetic CT in low field MR-guided radiotherapy for lung cases. Radiother. Oncol. 2022, 176, 31–38. [Google Scholar] [CrossRef]
- Wang, J.; Yan, B.; Wu, X.; Jiang, X.; Zuo, Y.; Yang, Y. Development of an unsupervised cycle contrastive unpaired translation network for MRI-to-CT synthesis. J. Appl. Clin. Med. Phys. 2022, 23, e13775. [Google Scholar] [CrossRef]
- Yuan, J.; Fredman, E.; Jin, J.-Y.; Choi, S.; Mansur, D.; Sloan, A.; Machtay, M.; Zheng, Y. Monte Carlo Dose Calculation Using MRI Based Synthetic CT Generated by Fully Convolutional Neural Network for Gamma Knife Radiosurgery. Technol. Cancer Res. Treat. 2021, 20, 15330338211046433. [Google Scholar] [CrossRef] [PubMed]
- Boni, K.N.D.B.; Klein, J.; Gulyban, A.; Reynaert, N.; Pasquier, D. Improving generalization in MR-to-CT synthesis in radiotherapy by using an augmented cycle generative adversarial network with unpaired data. Med. Phys. 2021, 48, 3003–3010. [Google Scholar] [CrossRef] [PubMed]
- Boni, K.N.D.B.; Klein, J.; Vanquin, L.; Wagner, A.; Lacornerie, T.; Pasquier, D.; Reynaert, N. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network. Phys. Med. Biol. 2020, 65, 075002. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Johansson, A.; Cao, Y.; Dow, J.; Lawrence, T.S.; Balter, J.M. Abdominal synthetic CT generation from MR Dixon images using a U-net trained with ‘semi-synthetic’ CT data. Phys. Med. Biol. 2020, 65, 125001. [Google Scholar] [CrossRef]
- Song, L.; Li, Y.; Dong, G.; Lambo, R.; Qin, W.; Wang, Y.; Zhang, G.; Liu, J.; Xie, Y. Artificial intelligence-based bone-enhanced magnetic resonance image—A computed tomography/magnetic resonance image composite image modality in nasopharyngeal carcinoma radiotherapy. Quant. Imaging Med. Surg. 2021, 11, 4709–4720. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.M.; Choi, J.H.; Dowling, J.A.; Warren-Forward, H.; Martin, J.; Greer, P.B. Comparison of Synthetic Computed Tomography Generation Methods, Incorporating Male and Female Anatomical Differences, for Magnetic Resonance Imaging-Only Definitive Pelvic Radiotherapy. Front. Oncol. 2022, 12, 822687. [Google Scholar] [CrossRef]
- Lerner, M.; Medin, J.; Gustafsson, C.J.; Alkner, S.; Siversson, C.; Olsson, L.E. Clinical validation of a commercially available deep learning software for synthetic CT generation for brain. Radiat. Oncol. 2021, 16, 66. [Google Scholar] [CrossRef]
- Lerner, M.; Medin, J.; Gustafsson, C.J.; Alkner, S.; Olsson, L.E. Prospective Clinical Feasibility Study for MRI-Only Brain Radiotherapy. Front. Oncol. 2021, 11, 812643. [Google Scholar] [CrossRef]
- Maspero, M.; Savenije, M.H.F.; Dinkla, A.M.; Seevinck, P.R.; Intven, M.P.W.; Juergenliemk-Schulz, I.M.; Kerkmeijer, L.G.W.; Berg, C.A.T.v.D. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys. Med. Biol. 2018, 63, 185001. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Li, Y.; Wu, A.; Jia, Q.; Li, B.; Sun, W.; Dai, Z.; Lu, X.; Zhou, L.; Deng, X.; et al. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy. Med. Phys. 2020, 47, 1880–1894. [Google Scholar] [CrossRef] [PubMed]
- Florkow, M.C.; Zijlstra, F.; Willemsen, K.; Maspero, M.; van den Berg, C.A.T.; Kerkmeijer, L.G.W.; Castelein, R.M.; Weinans, H.; Viergever, M.A.; van Stralen, M.; et al. Deep learning-based MR-to-CT synthesis: The influence of varying gradient echo-based MR images as input channels. Magn. Reson. Med. 2020, 83, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Farjam, R.; Nagar, H.; Kathy Zhou, X.; Ouellette, D.; Chiara Formenti, S.; DeWyngaert, J.K. Deep learning-based synthetic CT generation for MR-only radiotherapy of prostate cancer patients with 0.35T MRI linear accelerator. J. Appl. Clin. Med. Phys. 2021, 22, 93–104. [Google Scholar] [CrossRef]
- Olberg, S.; Zhang, H.; Kennedy, W.R.; Chun, J.; Rodriguez, V.; Zoberi, I.; Thomas, M.A.; Kim, J.S.; Mutic, S.; Green, O.L.; et al. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Med. Phys. 2019, 46, 4135–4147. [Google Scholar] [CrossRef]
- Hsu, S.-H.; Han, Z.; Leeman, J.E.; Hu, Y.-H.; Mak, R.H.; Sudhyadhom, A. Synthetic CT generation for MRI-guided adaptive radiotherapy in prostate cancer. Front. Oncol. 2022, 12, 969463. [Google Scholar] [CrossRef]
- Park, S.H.; Choi, D.M.; Jung, I.-H.; Chang, K.W.; Kim, M.J.; Jung, H.H.; Chang, J.W.; Kim, H.; Chang, W.S. Clinical application of deep learning-based synthetic CT from real MRI to improve dose planning accuracy in Gamma Knife radiosurgery: A proof of concept study. Biomed. Eng. Lett. 2022, 12, 359–367. [Google Scholar] [CrossRef]
- Kang, S.K.; An, H.J.; Jin, H.; Kim, J.-I.; Chie, E.K.; Park, J.M.; Lee, J.S. Synthetic CT generation from weakly paired MR images using cycle-consistent GAN for MR-guided radiotherapy. Biomed. Eng. Lett. 2021, 11, 263–271. [Google Scholar] [CrossRef]
- Bourbonne, V.; Jaouen, V.; Hognon, C.; Boussion, N.; Lucia, F.; Pradier, O.; Bert, J.; Visvikis, D.; Schick, U. Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy. Cancers 2021, 13, 1082. [Google Scholar] [CrossRef]
- Han, X. MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 2017, 44, 1408–1419. [Google Scholar] [CrossRef]
- Liu, X.; Emami, H.; Nejad-Davarani, S.P.; Morris, E.; Schultz, L.; Dong, M.; Glide-Hurst, C.K. Performance of deep learning synthetic CTs for MR-only brain radiation therapy. J. Appl. Clin. Med. Phys. 2021, 22, 308–317. [Google Scholar] [CrossRef]
- Lei, Y.; Harms, J.; Wang, T.; Liu, Y.; Shu, H.; Jani, A.B.; Curran, W.J.; Mao, H.; Liu, T.; Yang, X. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med. Phys. 2019, 46, 3565–3581. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, Y.; Wang, Y.; Shafai-Erfani, G.; Wang, T.; Tian, S.; Yang, X. Evaluation of a Deep Learning-Based Pelvic Synthetic CT Generation Technique for MRI-Based Prostate Proton Treatment Planning. Phys. Med. Biol. 2019, 64, 205022. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Chen, S.; Qin, A.; Chen, M.; Gao, X.; Liu, Y.; Miao, J.; Gu, H.; Zhao, C.; Deng, X.; et al. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Radiother. Oncol. 2020, 150, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, C.; Zhang, X.; Deng, W. Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN). Front. Oncol. 2019, 9, 1333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, H.; Yu, C.; Court, L.E.; Wang, X.; Wang, Q.; Pan, T.; Ding, Y.; Phan, J.; Yang, J. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy. Med. Phys. 2023, 50, 4399–4414. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, E.M.; Santhanam, A.; Ruan, D.; O’Connor, D.; Cao, M.; Sheng, K. Multimodality image registration in the head-and-neck using a deep learning-derived synthetic CT as a bridge. Med. Phys. 2020, 47, 1094–1104. [Google Scholar] [CrossRef]
- Willemsen, K.; Ketel, M.H.M.; Zijlstra, F.; Florkow, M.C.; Kuiper, R.J.A.; van der Wal, B.C.H.; Weinans, H.; Pouran, B.; Beekman, F.J.; Seevinck, P.R.; et al. 3D-printed saw guides for lower arm osteotomy, a comparison between a synthetic CT and CT-based workflow. 3D Print. Med. 2021, 7, 13. [Google Scholar] [CrossRef]
- Bambach, S.; Ho, M.-L. Deep Learning for Synthetic CT from Bone MRI in the Head and Neck. Am. J. Neuroradiol. 2022, 43, 1172–1179. [Google Scholar] [CrossRef]
- Yang, H.; Qian, P.; Fan, C. An Indirect Multimodal Image Registration and Completion Method Guided by Image Synthesis. Comput. Math. Methods Med. 2020, 2020, 2684851. [Google Scholar] [CrossRef]
- Masoudi, S.; Anwar, S.M.; Harmon, S.A.; Choyke, P.L.; Turkbey, B.; Bagci, U. Adipose Tissue Segmentation in Unlabeled Abdomen MRI using Cross Modality Domain Adaptation. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1624–1628. [Google Scholar]
- Roy, S.; Butman, J.A.; Pham, D.L. Synthesizing CT from Ultrashort Echo-Time MR Images via Convolutional Neural Networks; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Emami, H.; Dong, M.; Glide-Hurst, C.K. Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 11–13 August 2020; pp. 188–193. [Google Scholar]
- Lyu, Q.; Wang, G. Conversion between ct and mri images using diffusion and score-matching models. arXiv 2022, arXiv:2209.12104. [Google Scholar]
- Kläser, K.; Markiewicz, P.; Ranzini, M.; Li, W.; Modat, M.; Hutton, B.F.; Atkinson, D.; Thielemans, K.; Cardoso, M.J.; Ourselin, S. Deep Boosted Regression for MR to CT Synthesis; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Wolterink, J.M.; Dinkla, A.M.; Savenije, M.H.; Seevinck, P.R.; van den Berg, C.A.; Isgum, I. Deep MR to CT synthesis using unpaired data. In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging, Quebec City, QC, Canada, 10 September 2017; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Yang, H.; Sun, J.; Carass, A.; Zhao, C.; Lee, J.; Xu, Z.; Prince, J. Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; DLMIA ML-CDS 2018; Lecture Notes in Computer Science Book Series; Springer: Cham, Switzerland, 2018; Volume 11045. [Google Scholar] [CrossRef]
- Shi, Z.; Mettes, P.; Zheng, G.; Snoek, C. Frequency-Supervised MR-to-CT Image Synthesis; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Olberg, S.; Chun, J.; Choi, B.S.; Park, I.; Kim, H.; Kim, T.; Kim, J.S.; Green, O.; Park, J.C. Abdominal synthetic CT reconstruction with intensity projection prior for MRI-only adaptive radiotherapy. Phys. Med. Biol. 2021, 66, 204001. [Google Scholar] [CrossRef] [PubMed]
- Nijskens, L.; Berg, C.A.v.D.; Verhoeff, J.J.; Maspero, M. Exploring contrast generalisation in deep learning-based brain MRI-to-CT synthesis. Phys. Med. 2023, 112, 102642. [Google Scholar] [CrossRef] [PubMed]
- Kläser, K.; Varsavsky, T.; Markiewicz, P.; Vercauteren, T.; Atkinson, D.; Thielemans, K.; Hutton, B.; Cardoso, M.J.; Ourselin, S. Improved MR to CT Synthesis for PET/MR Attenuation Correction Using Imitation Learning; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Gholamiankhah, F.; Mostafapour, S.; Arabi, H. Deep learning-based synthetic CT generation from MR images: Comparison of generative adversarial and residual neural networks. Int. J. Radiat. Res. 2022, 20, 121–130. [Google Scholar] [CrossRef]
- Rajagopal, A.; Natsuaki, Y.; Wangerin, K.; Hamdi, M.; An, H.; Sunderland, J.J.; Laforest, R.; Kinahan, P.E.; Larson, P.E.; Hope, T.A. Synthetic PET via Domain Translation of 3-D MRI. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 7, 333–343. [Google Scholar] [CrossRef]
- Hussein, R.; Zhao, M.Y.; Shin, D.; Guo, J.; Chen, K.T.; Armindo, R.D.; Davidzon, G.; Moseley, M.; Zaharchuk, G. Multi-task Deep Learning for Cerebrovascular Disease Classification and MRI-to-PET Translation. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 4306–4312. [Google Scholar]
- Sikka, A.; Virk, J.S.; Bathula, D.R. MRI to PET Cross-Modality Translation using Globally and Locally Aware GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer’s Disease. arXiv 2021, arXiv:2108.02160. [Google Scholar]
- Li, Q.; Zhu, X.; Zou, S.; Zhang, N.; Liu, X.; Yang, Y.; Zheng, H.; Liang, D.; Hu, Z. Eliminating CT radiation for clinical PET examination using deep learning. Eur. J. Radiol. 2022, 154, 110422. [Google Scholar] [CrossRef]
- Cohen, J.P.; Luck, M.; Honari, S. Distribution Matching Losses Can Hallucinate Features in Medical Image Translation; Springer: Cham, Switzerland, 2018; pp. 529–536. [Google Scholar]
Category | Search Terms |
---|---|
Machine Learning | machine learning, GAN, generative adversarial network, convolutional neural network, artificial intelligence, deep learning |
Image Generation | synth*, generat*, pseudo*, transform* |
Medical Imaging | MRI, MR, CT, PET |
Extracted Variable | Categories | Description |
---|---|---|
Synthesis Type | CT to MRI | Using a CT to generate an MRI |
MRI to CT | Using an MRI to generate a CT | |
Cross MRI | Using one MRI sequence to generate a different MRI modality. For example, using a T1w MRI to generate a T2w MRI. | |
MRI to PET | Using an MRI to generate a PET | |
PET to CT | Using a PET to generate a CT | |
Motivations | Aid Diagnosis | Synthesizing unobtained scans to provide extra information for diagnosis |
Missing Data | Improving paired datasets by synthesizing missing scans | |
Memory Efficiency | Improving the memory efficiency of synthesis models so that high quality scans can be synthesized | |
Attenuation Correction | Synthesizing scans of a modality which can aid in attenuation correction of PETs | |
Multimodal Registration | Synthesizing scans of a modality which is simpler to register to the target. | |
MRI-only Radiation Therapy | Synthesizing a CT so that a patient only requires an MRI before radiation therapy | |
Reduce Radiation | Synthesizing a scan which would otherwise expose the patient to radiation | |
Segmentation | Synthesizing scans of a modality which can help segmentation models either in training or in segmenting the scan |
Paper | Year | Synthesis Type | Motivations | Body Part | Model Framework | Number of Patients | Evaluation Methods |
---|---|---|---|---|---|---|---|
[5] | 2020 | Cross MRI | Aid Diagnosis | Brain | GAN | 274 | SSIM, PSNR, NMSE |
[6] | 2022 | Cross MRI | Aid Diagnosis | Brain | GAN, CNN | Unspecified | SSIM, MSE, PSNR, VIF, FID |
[7] | 2020 | Cross MRI | Aid Diagnosis | Brain | CNN | 15 | PSNR, SSIM, HFEN |
[8] | 2022 | Cross MRI | Aid Diagnosis | Brain | CNN | Unspecified | MAPE, RSMPE, SSIM |
[9] | 2020 | Cross MRI | Increase Data | Brain | GAN | 1113 | Estimated Divergence |
[10] | 2020 | Cross MRI | Memory Efficiency | Brain | GAN | 274 | SSIM, MAE, PSNR, MSE |
[11] | 2022 | Cross MRI | Aid Diagnosis, Increase Data | Brain | GAN | 127 | MAE, SSIM, PSNR, MI |
[12] | 2019 | Cross MRI | Aid Diagnosis | Brain | CNN | 15 | SSIM |
[13] | 2023 | Cross MRI | Aid Diagnosis | Brain | GAN | 128 | MAE, SSIM, PSNR |
[14] | 2022 | Cross MRI | Segmentation | Brain | GAN | 210 | DSC, ASSD |
[15] | 2022 | Cross MRI | Aid Diagnosis | Brain | GAN | 285 | SSIM, PSNR, Experts |
[16] | 2023 | Cross MRI | Increase Data | Brain | GAN | 372 | MSE, SSIM |
[17] | 2021 | Cross MRI | Increase Data | Brain | GAN | 199 | MSE, SSIM, PSNR |
[18] | 2022 | CT to MRI | Aid Diagnosis | Lumbar | GAN | 285 | SSIM, PSNR, Experts |
[19] | 2020 | CT to MRI | Increase Data | Brain | GAN, CNN | 34 | MAE, SSIM, PSNR |
[20] | 2021 | CT to MRI | Increase Data | Pelvis | GAN, CNN | 17 | PSNR, SSIM, Experts, DSC |
[21] | 2021 | CT to MRI | Increase Data | Head and Neck | GAN | 202 | Segmentation |
[22] | 2020 | CT to MRI | Multimodal Registration, Aid Diagnosis | Brain | GAN, CNN | 34 | MAE, MSE, SSIM, PSNR |
[23] | 2019 | CT to MRI | Segmentation | Pelvis | GAN | 140 | Segmentation |
[24] | 2021 | CT to MRI | Segmentation | Head and Neck | GAN | 118 | Segmentation |
[25] | 2023 | CT to MRI | Aid Diagnosis, Multimodal Registration | Brain | GAN, CNN | 181 | MAE, MSE, PSNR, SSIM, Registration, DSC |
[26] | 2019 | CT to MRI | Segmentation, Aid Diagnosis | Brain | GAN | 94 | DSC, HD |
[27] | 2022 | CT to MRI | Aid Diagnosis | Brain | GAN | 103 | Experts |
[28] | 2021 | CT to MRI, MRI to CT | Aid Diagnosis | Prostate | GAN | 271 | KID, FID, DSC |
[29] | 2022 | MRI to CT | Attenuation Correction | Whole Body | CNN | 46 | MAE, Regional Analysis, Correlation |
[30] | 2021 | MRI to CT | Aid Diagnosis | Lumbar | CNN | 30 | Regional Analysis |
[31] | 2022 | MRI to CT | Aid Diagnosis | Hip | CNN | 27 | Regional Analysis |
[32] | 2021 | MRI to CT | Aid Diagnosis | Sacroiliac Joint | CNN | 30 | Diagnostic Accuracy |
[33] | 2022 | MRI to CT | Aid Diagnosis | Hip | CNN | 30 | Regional Analysis |
[34] | 2023 | MRI to CT | Aid Diagnosis | Knee | CNN | 69 | Diagnostic Accuracy |
[35] | 2023 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN, CNN | 104 | MAE, Dosimetric |
[36] | 2020 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 77 | MAE |
[37] | 2022 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | CNN | 47 | MAE, SSIM, Dosimetric |
[38] | 2020 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 60 | MAE, Dosimetric |
[39] | 2022 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | GAN | 206 | MAE, Dosimetric |
[40] | 2019 | MRI to CT | MRI-only Radiation Therapy | Liver | GAN | 21 | MAE, Dosimetric |
[41] | 2021 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | GAN | 56 | MAE, SSIM, PCC, FID, SWD, BD, PSNR, DSC |
[42] | 2020 | MRI to CT | MRI-only Radiation Therapy | Pelvis | CNN | 15 | ME, MAE, SSIM, PSNR, PCC |
[43] | 2021 | MRI to CT | MRI-only Radiation Therapy | Pelvis | GAN, CNN | 20 | ME, MAE, PCC, SSIM, PSNR |
[44] | 2021 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | GAN, CNN | 164 | MAE, ME, PSNR |
[45] | 2021 | MRI to CT | MRI-only Radiation Therapy | Prostate | GAN | 113 | ME, MAE, PSNR |
[46] | 2021 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN, CNN | 18 | MAE, MSE, PSNR, SSIM, PCC |
[47] | 2019 | MRI to CT | MRI-only Radiation Therapy | Liver | GAN, CNN | 21 | NCC, MAE, PSNR |
[48] | 2019 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 77 | MAE, DSC |
[49] | 2021 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | CNN | 23 | MAE, Dosimetric |
[50] | 2023 | MRI to CT | MRI-only Radiation Therapy | Abdomen | GAN, CNN | 76 | Dosimetric |
[51] | 2019 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | CNN | 34 | MAE, ME, Dosimetric |
[52] | 2021 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 37 | Dosimetric |
[53] | 2020 | MRI to CT | MRI-only Radiation Therapy | Pelvis | GAN | 120 | Dosimetric |
[54] | 2019 | MRI to CT | MRI-only Radiation Therapy | Brain | CNN | 60 | MAE |
[55] | 2023 | MRI to CT | MRI-only Radiation Therapy | Abdomen | CNN | 39 | MAE, Dosimetric |
[56] | 2022 | MRI to CT | MRI-only Radiation Therapy | Prostate | GAN | 39 | MAE, ME, MAPE, DSC |
[57] | 2020 | MRI to CT | MRI-only Radiation Therapy | Abdomen | GAN | 12 | MAE, Dosimetric |
[58] | 2022 | MRI to CT | MRI-only Radiation Therapy | Thorax | GAN | 60 | MAE, ME, Dosimetric |
[59] | 2022 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 24 | MAE, PSNR, SSIM |
[60] | 2021 | MRI to CT | MRI-only Radiation Therapy | Brain | CNN | 30 | ME, MAE, MSE |
[61] | 2021 | MRI to CT | MRI-only Radiation Therapy | Pelvis | GAN | 38 | MAE, Dosimetric |
[62] | 2020 | MRI to CT | MRI-only Radiation Therapy | Pelvis | GAN | 19 | MAE |
[63] | 2020 | MRI to CT | MRI-only Radiation Therapy | Abdomen | CNN | 31 | MAE, Dosimetric |
[64] | 2021 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | CNN, GAN | 35 | MAE, SSIM, PSNR |
[65] | 2022 | MRI to CT | MRI-only Radiation Therapy | Pelvis | GAN | 40 | Dosimetric |
[66] | 2021 | MRI to CT | MRI-only Radiation Therapy | Brain | CNN | 20 | MAE, Dosimetric |
[67] | 2022 | MRI to CT | MRI-only Radiation Therapy | Brain | CNN | 21 | Dosimetric |
[68] | 2018 | MRI to CT | MRI-only Radiation Therapy | Pelvis | GAN | 91 | Dosimetric |
[69] | 2020 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | GAN, CNN | 45 | MAE, SSIM, PSNR, DSC, Dosimetric |
[70] | 2020 | MRI to CT | MRI-only Radiation Therapy | Pelvis | CNN | 23 | MAE, ME, DSC, Regional Analysis, PSNR |
[71] | 2021 | MRI to CT | MRI-only Radiation Therapy | Prostate | CNN | 30 | MAE |
[72] | 2019 | MRI to CT | MRI-only Radiation Therapy | Thorax | GAN | 60 | RMSE, SSIM, PSNR, Dosimetric |
[73] | 2022 | MRI to CT | MRI-only Radiation Therapy | Prostate | GAN | 57 | MAE, PSNR, SSIM, Dosimetric |
[74] | 2022 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 54 | MAE, SSIM, Dosimetric |
[75] | 2021 | MRI to CT | MRI-only Radiation Therapy | Pelvis | GAN, CNN | 30 | MAE, RMSE, PSNR, SSIM |
[76] | 2021 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 184 | Dosimetric |
[77] | 2017 | MRI to CT | MRI-only Radiation Therapy | Brain | CNN | 18 | MAE, MSE, PCC |
[78] | 2021 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 12 | Dosimetric, Registration |
[79] | 2019 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 24 | MAE, PSNR, NCC |
[80] | 2019 | MRI to CT | MRI-only Radiation Therapy | Prostate | GAN | 17 | MAE, Dosimetric |
[81] | 2020 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | GAN | 173 | MAE, Dosimetric |
[82] | 2019 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | CNN | 33 | MAE, ME |
[83] | 2023 | MRI to CT | MRI-only Radiation Therapy | Head and Neck | GAN | 79 | MAE, PSNR, SSIM |
[75] | 2021 | MRI to CT | MRI-only Radiation Therapy | Thorax | GAN, CNN | 30 | MAE, RMSE, PSNR, SSIM |
[75] | 2021 | MRI to CT | MRI-only Radiation Therapy | Abdomen | GAN, CNN | 30 | MAE, RMSE, PSNR, SSIM |
[79] | 2019 | MRI to CT | MRI-only Radiation Therapy | Pelvis | GAN | 20 | MAE, PSNR, NCC |
[19] | 2020 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN, CNN | 34 | MAE, SSIM, PSNR |
[84] | 2021 | MRI to CT | Multimodal Registration | Head and Neck | GAN | 25 | Registration |
[85] | 2021 | MRI to CT | Reduce Radiation | Lower Arm | GAN | 8 | Surgical Planning Errors |
[86] | 2022 | MRI to CT | Reduce Radiation | Head and Neck | CNN | 39 | MAE, MSE |
[87] | 2020 | MRI to CT | Multimodal Registration | Head and Neck | GAN, CNN | 9 | MAE, PCC, SLPD |
[88] | 2022 | MRI to CT | Segmentation | Abdomen | GAN | 34 | Segmentation |
[89] | 2018 | MRI to CT | Attenuation Correction | Brain | CNN | 7 | PSNR, Correlation |
[90] | 2020 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 15 | MAE |
[91] | 2022 | MRI to CT | Aid Diagnosis | Pelvis | GAN, CNN | 19 | SSIM |
[92] | 2018 | MRI to CT | Attenuation Correction | Brain | CNN | 20 | MAE, PET Reconstruction |
[93] | 2017 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 24 | MAE, PSNR |
[94] | 2018 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 45 | MAE, PSNR, SSIM |
[95] | 2021 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 45 | MAE, PSNR, SSIM |
[96] | 2021 | MRI to CT | MRI-only Radiation Therapy | Abdomen | GAN | 89 | MAE, DSC |
[97] | 2023 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN | 95 | MAE, GPR |
[98] | 2019 | MRI to CT | Attenuation Correction | Brain | CNN | 400 | MAE, PET Reconstruction |
[99] | 2021 | MRI to CT | MRI-only Radiation Therapy | Brain | GAN, CNN | 86 | MAE, SSIM, PSNR |
[100] | 2021 | MRI to PET | Increase Data | Whole Body | CNN | 56 | AC |
[101] | 2022 | MRI to PET | Aid Diagnosis | Brain | CNN | 120 | PSNR, SSIM |
[102] | 2021 | MRI to PET | Aid Diagnosis | Brain | GAN | 481 | MAE, SSIM, PSNR |
[103] | 2022 | PET to CT | Reduce Radiation, Attenuation Correction | Whole Body | GAN | 34 | NRMSE, PSNR, PCC, SSIM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNaughton, J.; Fernandez, J.; Holdsworth, S.; Chong, B.; Shim, V.; Wang, A. Machine Learning for Medical Image Translation: A Systematic Review. Bioengineering 2023, 10, 1078. https://doi.org/10.3390/bioengineering10091078
McNaughton J, Fernandez J, Holdsworth S, Chong B, Shim V, Wang A. Machine Learning for Medical Image Translation: A Systematic Review. Bioengineering. 2023; 10(9):1078. https://doi.org/10.3390/bioengineering10091078
Chicago/Turabian StyleMcNaughton, Jake, Justin Fernandez, Samantha Holdsworth, Benjamin Chong, Vickie Shim, and Alan Wang. 2023. "Machine Learning for Medical Image Translation: A Systematic Review" Bioengineering 10, no. 9: 1078. https://doi.org/10.3390/bioengineering10091078
APA StyleMcNaughton, J., Fernandez, J., Holdsworth, S., Chong, B., Shim, V., & Wang, A. (2023). Machine Learning for Medical Image Translation: A Systematic Review. Bioengineering, 10(9), 1078. https://doi.org/10.3390/bioengineering10091078