Automated Segmentation of Levator Ani Muscle from 3D Endovaginal Ultrasound Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Pre-Processing
2.3. Training and Testing Data Preparation
2.4. DL Model Configuration
2.5. Evaluation Metrics of the Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gowda, S.N.; Bordoni, B. Anatomy, Abdomen and Pelvis: Levator Ani Muscle. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK556078/ (accessed on 13 April 2023).
- Dietz, H.P.; Moegni, F.; Shek, K.L. Diagnosis of levator avulsion injury: A comparison of three methods: Diagnosis of levator avulsion. Ultrasound Obstet. Gynecol. 2012, 40, 693–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammers, K.; Prokop, M.; Vierhout, M.E.; Kluivers, K.B.; Fütterer, J.J. A pictorial overview of pubovisceral muscle avulsions on pelvic floor magnetic resonance imaging. Insights Imaging 2013, 4, 431–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Hansen, H.H.; Hendriks, G.A.; Noort, F.V.D.; Manzini, C.; van der Vaart, C.H.; de Korte, C.L. 3D Ultrasound Strain Imaging of Puborectalis Muscle. Ultrasound Med. Biol. 2021, 47, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, I.; Barber, M.D.; Burgio, K.L.; Kenton, K.; Meikle, S.; Schaffer, J.; Spino, C.; Whitehead, W.E.; Wu, J.; Brody, D.J.; et al. Prevalence of Symptomatic Pelvic Floor Disorders in US Women. JAMA 2008, 300, 1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, N.K.L.; Cheung, R.Y.K.; Lee, L.L.; Wan, O.Y.K.; Choy, K.W.; Chan, S.S.C. Women with advanced pelvic organ prolapse and levator ani muscle avulsion would significantly benefit from mesh repair surgery. Ultrasound Obstet. Gynecol. 2021, 57, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ren, Y.; Lin, X.; Huang, Z.; Zheng, Z.; Zhang, X. Development and validation of a composite AI model for the diagnosis of levator ani muscle avulsion. Eur. Radiol. 2022, 32, 5898–5906. [Google Scholar] [CrossRef] [PubMed]
- Baușic, A.; Coroleucă, C.; Coroleucă, C.; Comandașu, D.; Matasariu, R.; Manu, A.; Frîncu, F.; Mehedințu, C.; Brătilă1, E. Transvaginal Ultrasound vs. Magnetic Resonance Imaging (MRI) Value in Endometriosis Diagnosis. Diagnostics 2022, 12, 1767. [Google Scholar] [CrossRef]
- Bonmati, E.; Hu, Y.; Sindhwani, N.; Dietz, H.P.; D’Hooge, J.; Barratt, D.; Deprest, J.; Vercauteren, T. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network. J. Med. Imaging 2018, 5, 021206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenblatt, R.A. Physicians and rural America. West. J. Med. 2000, 173, 348–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warshaw, R. Health Disparities Affect Millions in Rural U.S. Communities. Association of American Medical Colleges; 31 October 2017. Available online: https://www.aamc.org/news-insights/health-disparities-affect-millions-rural-us-communities (accessed on 13 April 2023).
- Asif, Z.; Tomashev, R.; Peterkin, V.; Wei, Q.; Alshiek, J.; Yael, B.; Shobeiri, S.A. Levator ani muscle volume and architecture in normal vs. muscle damage patients using 3D endovaginal ultrasound: A pilot study. Int. Urogynecol. J. 2022. [Google Scholar] [CrossRef] [PubMed]
- Bodhisattwa Chakraborty. Concave_Hull_Generation. 27 June 2017. Available online: https://github.com/bodhisattwa-chakraborty/Concave_Hull_Generation (accessed on 13 April 2023).
- Avendi, M.; Kheradvar, A.; Jafarkhani, H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 2016, 30, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Jia, F.; Hu, Q. Automatic Segmentation of Liver Tumor in CT Images with Deep Convolutional Neural Networks. J. Comput. Commun. 2015, 3, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Hamwood, J.; Schmutz, B.; Collins, M.J.; Allenby, M.C.; Alonso-Caneiro, D. A deep learning method for automatic segmentation of the bony orbit in MRI and CT images. Sci. Rep. 2021, 11, 13693. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hong, Y.; Kong, D.; Zhang, X. Automatic segmentation of levator hiatus from ultrasound images using U-net with dense connections. Phys. Med. Biol. 2019, 64, 075015. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Ashton-Miller, J.A.; DeLancey, J.O.L.; Luo, J. Convolutional neural network-based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse. Med. Phys. 2020, 47, 4281–4293. [Google Scholar] [CrossRef] [PubMed]
- Noort, F.V.D.; Grob, A.T.M.; Slump, C.H.; Van Der Vaart, C.H.; Van Stralen, M. Automatic segmentation of puborectalis muscle on three-dimensional transperineal ultrasound. Ultrasound Obstet. Gynecol. 2018, 52, 97–102. [Google Scholar] [CrossRef] [Green Version]
- van den Noort, F.; Sirmacek, B.; Slump, C.H. Recurrent U-Net for Automatic Pelvic Floor Muscle Segmentation on 3D Ultrasound. arXiv 29 July 2021. Available online: http://arxiv.org/abs/2107.13833 (accessed on 29 August 2022).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 18 May 2015. Available online: http://arxiv.org/abs/1505.04597 (accessed on 30 March 2023).
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar] [CrossRef]
- Guan, S.; Khan, A.A.; Sikdar, S.; Chitnis, P.V. Fully Dense UNet for 2D Sparse Photoacoustic Tomography Artifact Removal. IEEE J. Biomed. Health Inform. 2020, 24, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Chaitanya, K.; Karani, N.; Baumgartner, C.F.; Erdil, E.; Becker, A.; Donati, O.; Konukoglu, E. Semi-supervised task-driven data augmentation for medical image segmentation. Med. Image Anal. 2021, 68, 101934. [Google Scholar] [CrossRef] [PubMed]
- Noort, F.v.D.; Manzini, C.; van der Vaart, C.H.; van Limbeek, M.A.J.; Slump, C.H.; Grob, A.T.M. Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes. Ultrasound Obstet. Gynecol. 2022, 60, 570–576. [Google Scholar] [CrossRef] [PubMed]
Number of Participants | Number of Images | Percentage | |
---|---|---|---|
Healthy | 14 | 504 | 50.3% |
Defective | 13 | 511 | 49.7% |
Total | 27 | 1015 | 100% |
Healthy LAM | Defective LAM | Total | Percentage | |
---|---|---|---|---|
Number of Images in Training Set | 434 | 428 | 862 | 85% |
Number of Images in Test Set | 77 | 76 | 153 | 15% |
Total Number of Images | 511 | 504 | 1015 | 100% |
U-Net | Attention U-Net | FD-UNet | Dense-UNet | |
---|---|---|---|---|
Epochs | 50 | 50 | 50 | 50 |
Activation Function | ReLU and Softmax | ReLU, Softmax, and Sigmoid | ReLU and Softmax | ReLU and Softmax |
Loss Function | Categorical Loss Entropy | Categorical Loss Entropy | Categorical Loss Entropy | Categorical Loss Entropy |
Optimizer | Adam | Adam | Adam | Adam |
Training Accuracy (N = 862) | Testing Accuracy (N = 153) | ||
---|---|---|---|
U-Net | IoU (mean± SD) | 0.86 ± 0.06 | 0.76 ± 0.11 |
Dice (mean± SD) | 0.92 ± 0.04 | 0.86 ± 0.08 | |
Attention U-Net | IoU (mean± SD) | 0.84 ± 0.07 | 0.75 ± 0.11 |
Dice (mean± SD) | 0.91 ± 0.05 | 0.85 ± 0.08 | |
FD-UNet | IoU (mean± SD) | 0.84 ± 0.09 | 0.74 ± 0.12 |
Dice (mean± SD) | 0.91 ± 0.06 | 0.84 ± 0.10 | |
Dense-UNet | IoU (mean± SD) | 0.78 ± 0.11 | 0.69 ± 0.13 |
Dice (mean± SD) | 0.87 ± 0.08 | 0.81 ± 0.10 |
Sensitivity (Mean ± SD) | Specificity (Mean ± SD) | FP Rate (Mean ± SD) | FN Rate (Mean ± SD) | |
---|---|---|---|---|
U-Net | 0.84 ± 0.10 | 0.99 ± 0.00 | 0.01 ± 0.00 | 0.16 ± 0.10 |
Attention U-Net | 0.84 ± 0.11 | 0.99 ± 0.01 | 0.01 ± 0.01 | 0.16 ± 0.11 |
FD-UNet | 0.89 ± 0.09 | 0.99 ± 0.11 | 0.01 ± 0.01 | 0.11 ± 0.09 |
Dense-UNet | 0.82 ± 0.13 | 0.99 ± 0.01 | 0.01 ± 0.01 | 0.18 ± 0.13 |
Training Accuracy (N = 434) | Testing Accuracy (N = 77) | |
---|---|---|
IoU (mean± SD) | 0.85 ± 0.07 | 0.73 ± 0.13 |
Dice (mean± SD) | 0.91 ± 0.04 | 0.83 ± 0.10 |
Training Accuracy (N = 434) | Testing Accuracy (N = 77) | |
---|---|---|
IoU (mean ± SD) | 0.96 ± 0.02 | 0.73 ± 0.13 |
Dice (mean ± SD) | 0.98 ± 0.01 | 0.84 ± 0.10 |
Study | Imaging Modality | Segmentation Region | Number of Images | Segmentation Method | Mean Dice | Mean IoU |
---|---|---|---|---|---|---|
Ours | EVUS | LAM | 1015 | U-Net, Attention U-Net, FD-Unet, and Dense-UNet | >0.84 | >0.69 |
Noort et al. [20] | TPUS | LAM | 100 | Recurrent U-Net | 0.65 | - |
Feng et al. [18] | MRI | LAM | 528 | CNN + MRFP | ~0.61 | - |
Noort et al. [19] | TPUS | Puborectalis | 50 | Active appearance model | ~0.6 | - |
Bonmati et al. [9] | TPUS | Levator Hiatus | 91 | CNN | ~0.90 | ~0.82 |
Li et al. [17] | 2D US | Levator Hiatus | 1130 | Dense U-Net | ~0.96 | ~0.95 |
Noort et al. [25] | TPUS | Urogenital Hiatus | 373 | CNN | 0.94 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabbat, N.; Qureshi, A.; Hsu, K.-T.; Asif, Z.; Chitnis, P.; Shobeiri, S.A.; Wei, Q. Automated Segmentation of Levator Ani Muscle from 3D Endovaginal Ultrasound Images. Bioengineering 2023, 10, 894. https://doi.org/10.3390/bioengineering10080894
Rabbat N, Qureshi A, Hsu K-T, Asif Z, Chitnis P, Shobeiri SA, Wei Q. Automated Segmentation of Levator Ani Muscle from 3D Endovaginal Ultrasound Images. Bioengineering. 2023; 10(8):894. https://doi.org/10.3390/bioengineering10080894
Chicago/Turabian StyleRabbat, Nada, Amad Qureshi, Ko-Tsung Hsu, Zara Asif, Parag Chitnis, Seyed Abbas Shobeiri, and Qi Wei. 2023. "Automated Segmentation of Levator Ani Muscle from 3D Endovaginal Ultrasound Images" Bioengineering 10, no. 8: 894. https://doi.org/10.3390/bioengineering10080894
APA StyleRabbat, N., Qureshi, A., Hsu, K. -T., Asif, Z., Chitnis, P., Shobeiri, S. A., & Wei, Q. (2023). Automated Segmentation of Levator Ani Muscle from 3D Endovaginal Ultrasound Images. Bioengineering, 10(8), 894. https://doi.org/10.3390/bioengineering10080894