The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reconstruction of Geometric Models of Coronary Arteries Based on Medical Images and Mesh Generation
2.2. Development of the 0-3D Multi-Scale Model
2.2.1. Model Configuration
2.2.2. Governing Equations and Numerical Methods
2.2.3. Numerical Algorithm for Coupling the 3D Model to the 0D Models
2.2.4. Modeling of Aortic Valve Disease and Coronary Flow Autoregulation
2.2.5. Parameter Assignment
2.3. Data Analysis
3. Results
3.1. Changes in Cardiac Dynamics and Coronary Blood Flow Velocity Waveform Induced by Aortic Valve Disease
3.2. Influences of Aortic Valve Disease on Wall Shear Stresses and Flow Patterns in the LADs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AVD | aortic valve disease |
CAD | coronary artery disease |
AS | aortic valve stenosis |
AR | aortic valve regurgitation |
LAD | left anterior descending coronary artery |
WSS | wall shear stress |
TAWSS | time-averaged wall shear stress |
OSI | oscillatory shear index |
SA-TAWSS | space-averaged time-averaged wall shear stress |
SA-OSI | space-averaged oscillatory shear index |
0-3D | zero-three dimensional |
CCTA | coronary computed tomographic angiography |
DS | diameter stenosis |
UDFs | user-defined functions |
EOA | the effective orifice area of the aortic valve |
P-Q | pressure–flow rate |
CO | cardiac output |
SBP | systolic blood pressure |
SDP | diastolic blood pressure |
VTIS | time integration of flow velocity in systole |
VTID | time integration of flow velocity in diastole |
S/D ratio | VTIS/VTID |
ICA | internal carotid artery |
References
- Williams, M.C.; Massera, D.; Moss, A.J.; Bing, R.; Bularga, A.; Adamson, P.D.; Hunter, A.; Alam, S.; Shah, A.S.V.; Pawade, T.; et al. Prevalence and clinical implications of valvular calcification on coronary computed tomography angiography. Eur. Heart J.-Cardiovasc. Imaging 2021, 22, 262–270. [Google Scholar] [CrossRef]
- Rapp, A.H.; Hillis, L.D.; Lange, R.A.; Cigarroa, J.E. Prevalence of coronary artery disease in patients with aortic stenosis with and without angina pectoris. Am. J. Cardiol. 2001, 87, 1216–1217. [Google Scholar] [CrossRef]
- Goel, S.S.; Ige, M.; Tuzcu, E.M.; Ellis, S.G.; Stewart, W.J.; Svensson, L.G.; Lytle, B.W.; Kapadia, S.R. Severe Aortic Stenosis and Coronary Artery Disease—Implications for Management in the Transcatheter Aortic Valve Replacement Era. J. Am. Coll. Cardiol. 2013, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lappé, J.M.; Grodin, J.L.; Wu, Y.; Bott-Silverman, C.; Cho, L. Prevalence and Prediction of Obstructive Coronary Artery Disease in Patients Referred for Valvular Heart Surgery. Am. J. Cardiol. 2015, 116, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Otto, C.M.; O’Brien, K.D. Why is there discordance between calcific aortic stenosis and coronary artery disease? Heart 2001, 85, 601–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolandi, M.C.; Wiegerinck, E.M.A.; Casadonte, L.; Yong, Z.-Y.; Koch, K.T.; Vis, M.; Piek, J.J.; Baan, J., Jr.; Spaan, J.A.; Siebes, M. Transcatheter Replacement of Stenotic Aortic Valve Normalizes Cardiac–Coronary Interaction by Restoration of Systolic Coronary Flow Dynamics as Assessed by Wave Intensity Analysis. Circ. Cardiovasc. Interv. 2016, 9, e002356. [Google Scholar] [CrossRef]
- Gould, K.L.; Carabello, B.A. Why Angina in Aortic Stenosis with Normal Coronary Arteriograms? Circulation 2003, 107, 3121–3123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenouth, R.S.; Phelps, N.C.; Neill, W.A. Determinants of left ventricular hypertrophy and oxygen supply in chronic aortic valve disease. Circulation 1976, 53, 644–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suga, H. Cardiac energetics: From Emax to pressure–volume area. Clin. Exp. Pharmacol. Physiol. 2003, 30, 580–585. [Google Scholar] [CrossRef]
- Meimoun, P.; Germain, A.L.; Elmkies, F.; Benali, T.; Boulanger, J.; Espanel, C.; Clerc, J.; Zemir, H.; Luycx-Bore, A.; Tribouilloy, C. Factors associated with noninvasive coronary flow reserve in severe aortic stenosis. J. Am. Soc. Echocardiogr. 2012, 25, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Hongo, M.; Goto, T.; Watanabe, N.; Nakatsuka, T.; Tanaka, M.; Kinoshita, O.; Yamada, H.; Okubo, S.; Sekiguchi, M. Relation of phasic coronary flow velocity profile to clinical and hemodynamic characteristics of patients with aortic valve disease. Circulation 1993, 88, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Wentzel, J.J.; Chatzizisis, Y.S.; Gijsen, F.J.; Giannoglou, G.D.; Feldman, C.L.; Stone, P.H. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: Current understanding and remaining questions. Cardiovasc. Res. 2012, 96, 234–243. [Google Scholar] [CrossRef]
- Stone, P.H.; Saito, S.; Takahashi, S.; Makita, Y.; Nakamura, S.; Kawasaki, T.; Takahashi, A.; Katsuki, T.; Nakamura, S.; Namiki, A.; et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: The PREDICTION Study. Circulation 2012, 126, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Eshtehardi, P.; McDaniel, M.C.; Suo, J.; Dhawan, S.S.; Timmins, L.H.; Binongo, J.N.G.; Golub, L.J.; Corban, M.T.; Finn, A.V.; Oshinsk, J.N.; et al. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J. Am. Heart Assoc. 2012, 1, e002543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatoum, H.; Moore, B.L.; Dasi, L.P. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 2018, 46, 2102–2111. [Google Scholar] [CrossRef] [PubMed]
- Hatoum, H.; Yousefi, A.; Lilly, S.; Maureira, P.; Crestanello, J.; Dasi, L.P. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 2018, 156, 1837–1848. [Google Scholar] [CrossRef]
- Rotman, O.M.; Kovarovic, B.; Bianchi, M.; Slepian, M.J.; Bluestein, D. In-Vitro Durability and Stability Testing of a Novel Polymeric TAVR Valve. ASAIO J. Am. Soc. Artif. Intern. Organs 1992 2020, 66, 190. [Google Scholar] [CrossRef]
- Kivi, A.R.; Sedaghatizadeh, N.; Cazzolato, B.S.; Zander, A.C.; Roberts-Thomson, R.; Nelson, A.J.; Arjomandi, M. Fluid structure interaction modelling of aortic valve stenosis: Effects of valve calcification on coronary artery flow and aortic root hemodynamics. Comput. Methods Programs Biomed. 2020, 196, 105647. [Google Scholar] [CrossRef]
- Wald, S.; Liberzon, A.; Avrahami, I. A numerical study of the hemodynamic effect of the aortic valve on coronary flow. Biomech. Model. Mechanobiol. 2018, 17, 319–338. [Google Scholar] [CrossRef]
- Nobari, S.; Mongrain, R.; Leask, R.; Cartier, R. The effect of aortic wall and aortic leaflet stiffening on coronary hemodynamic: A fluid–structure interaction study. Med. Biol. Eng. Comput. 2013, 51, 923–936. [Google Scholar] [CrossRef]
- Ge, X.; Yin, Z.; Fan, Y.; Vassilevski, Y.; Liang, F. A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3123. [Google Scholar] [CrossRef] [PubMed]
- Paradis, J.-M.; Fried, J.; Nazif, T.; Kirtane, A.; Harjai, K.; Khalique, O.; Grubb, K.; George, I.; Hahn, R.; Williams, M.; et al. Aortic stenosis and coronary artery disease: What do we know? What don’t we know? A comprehensive review of the literature with proposed treatment algorithms. Eur. Heart J. 2014, 35, 2069–2082. [Google Scholar] [CrossRef]
- Lumley, M.; Williams, R.; Asrress, K.N.; Arri, S.; Briceno, N.; Ellis, H.; Rajani, R.; Siebes, M.; Piek, J.; Clapp, B.; et al. Coronary Physiology During Exercise and Vasodilation in the Healthy Heart and in Severe Aortic Stenosis. J. Am. Coll. Cardiol. 2016, 68, 688–697. [Google Scholar] [CrossRef]
- Antonuccio, M.N.; Mariotti, A.; Fanni, B.M.; Capellini, K.; Capelli, C.; Sauvage, E.; Celi, S. Effects of Uncertainty of Outlet Boundary Conditions in a Patient-Specific Case of Aortic Coarctation. Ann. Biomed. Eng. 2021, 49, 3494–3507. [Google Scholar] [CrossRef]
- Bozzi, S.; Morbiducci, U.; Gallo, D.; Ponzini, R.; Rizzo, G.; Bignardi, C.; Passoni, G. Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta. Comput. Methods Biomech. Biomed. Engin. 2017, 20, 1104–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, D.; De Santis, G.; Negri, F.; Tresoldi, D.; Ponzini, R.; Massai, D.; Deriu, M.A.; Segers, P.; Verhegghe, B.; Rizzo, G.; et al. On the Use of In Vivo Measured Flow Rates as Boundary Conditions for Image-Based Hemodynamic Models of the Human Aorta: Implications for Indicators of Abnormal Flow. Ann. Biomed. Eng. 2012, 40, 729–741. [Google Scholar] [CrossRef]
- Mariotti, A.; Boccadifuoco, A.; Celi, S.; Salvetti, M.V. Hemodynamics and stresses in numerical simulations of the thoracic aorta: Stochastic sensitivity analysis to inlet flow-rate waveform. Comput. Fluids 2021, 230, 105123. [Google Scholar] [CrossRef]
- Morbiducci, U.; Ponzini, R.; Gallo, D.; Bignardi, C.; Rizzo, G. Inflow boundary conditions for image-based computational hemodynamics: Impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 2013, 46, 102–109. [Google Scholar] [CrossRef]
- Li, B.; Mao, B.; Feng, Y.; Liu, J.; Zhao, Z.; Duan, M.; Liu, Y. The Hemodynamic Mechanism of FFR-Guided Coronary Artery Bypass Grafting. Front. Physiol. 2021, 12, 503687. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mao, B.; Feng, Y.; Li, B.; Liu, J.; Liu, Y. Closed-loop geometric multi-scale heart-coronary artery model for the numerical calculation of fractional flow reserve. Comput. Methods Programs Biomed. 2021, 208, 106266. [Google Scholar] [CrossRef] [PubMed]
- Esmaily Moghadam, M.; Vignon-Clementel, I.E.; Figliola, R.; Marsden, A.L. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 2013, 244, 63–79. [Google Scholar] [CrossRef]
- Xin, S.; Chen, Y.; Zhao, B.; Liang, F. Combination of Morphological and Hemodynamic Parameters for Assessing the Rupture Risk of Intracranial Aneurysms: A Retrospective Study on Mirror Middle Cerebral Artery Aneurysms. J. Biomech. Eng. 2022, 144, 081006. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Li, X.; Xu, L.; Chen, X.; Liang, F. Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis. Biomech. Model. Mechanobiol. 2019, 18, 883–896. [Google Scholar] [CrossRef]
- Liang, F.; Senzaki, H.; Kurishima, C.; Sughimoto, K.; Inuzuka, R.; Liu, H. Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: A computational model study. Am. J. Physiol.-Heart Circ. Physiol. 2014, 307, H1056–H1072. [Google Scholar] [CrossRef]
- Ge, X.; Liu, Y.; Tu, S.; Simakov, S.; Vassilevski, Y.; Liang, F. Model-based analysis of the sensitivities and diagnostic implications of FFR and CFR under various pathological conditions. Int. J. Numer. Methods Biomed. Eng. 2021, 37, e3257. [Google Scholar] [CrossRef] [PubMed]
- Chiastra, C.; Migliavacca, F.; Martínez, M.; Malvè, M. On the necessity of modelling fluid–structure interaction for stented coronary arteries. J. Mech. Behav. Biomed. Mater. 2014, 34, 217–230. [Google Scholar] [CrossRef]
- Eslami, P.; Tran, J.; Jin, Z.; Karady, J.; Sotoodeh, R.; Lu, M.T.; Hoffmann, U.; Marsden, A. Effect of Wall Elasticity on Hemodynamics and Wall Shear Stress in Patient-Specific Simulations in the Coronary Arteries. J. Biomech. Eng. 2020, 142, 024503. [Google Scholar] [CrossRef]
- Liang, F.; Takagi, S.; Himeno, R.; Liu, H. Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med. Biol. Eng. Comput. 2009, 47, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Sughimoto, K.; Matsuo, K.; Liu, H.; Takagi, S. Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. Int. J. Numer. Methods Biomed. Eng. 2014, 30, 1000–1018. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.Y.; Takagi, S.; Himeno, R.; Liu, H. Biomechanical characterization of ventricular–arterial coupling during aging: A multi-scale model study. J. Biomech. 2009, 42, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Young, D.F.; Tsai, F.Y. Flow characteristics in models of arterial stenoses—II. Unsteady flow. J. Biomech. 1973, 6, 547–559. [Google Scholar] [CrossRef]
- Shalman, E.; Rosenfeld, M.; Dgany, E.; Einav, S. Numerical modeling of the ow in stenosed coronary artery. The relationship between main hemodynamic parameters. Comput. Biol. Med. 2002, 32, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Dole, W.P. Autoregulation of the coronary circulation. Prog. Cardiovasc. Dis. 1987, 29, 293–323. [Google Scholar] [CrossRef]
- Watzinger, N.; Lund, G.K.; Saeed, M.; Reddy, G.P.; Araoz, P.A.; Yang, M.; Schwartz, A.B.; Bedigian, M.; Higgins, C.B. Myocardial blood flow in patients with dilated cardiomyopathy: Quantitative assessment with velocity-encoded cine magnetic resonance imaging of the coronary sinus. J. Magn. Reason. Imaging 2005, 21, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Wieneke, H.; Von Birgelen, C.; Haude, M.; Eggebrecht, H.; Möhlenkamp, S.; Schmermund, A.; Böse, D.; Altmann, C.; Bartel, T.; Erbel, R. Determinants of coronary blood flow in humans: Quantification by intracoronary Doppler and ultrasound. J. Appl. Physiol. 2005, 98, 1076–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Tempel, D.; Van Haperen, R.; Van Der Baan, A.; Grosveld, F.; Daemen, M.; Krams, R.; De Crom, R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 2006, 113, 2744–2753. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, E.; Giglioli, C.; Valente, S.; Lazzeri, C.; Gensini, G.F.; Abbate, R.; Mannini, L. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 2011, 214, 249–256. [Google Scholar] [CrossRef]
- Rikhtegar, F.; Knight, J.A.; Olgac, U.; Saur, S.C.; Poulikakos, D.; Marshall, W.; Cattin, P.C.; Alkadhi, H.; Kurtcuoglu, V. Choosing the optimal wall shear parameter for the prediction of plaque location—A patient-specific computational study in human left coronary arteries. Atherosclerosis 2012, 221, 432–437. [Google Scholar] [CrossRef]
- Davies, P.F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 2009, 6, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Thondapu, V.; Mamon, C.; Poon, E.K.W.; Kurihara, O.; Kim, H.O.; Russo, M.; Araki, M.; Shinohara, H.; Yamamoto, E.; Dijkstra, J.; et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc. Res. 2021, 117, 1974–1985. [Google Scholar] [CrossRef]
- Alexopoulos, D.; Kolovou, G.; Kyriakidis, M.; Antonopoulos, A.; Adamopoulos, S.; Sleight, P.; Toutouzas, P. Angina and Coronary Artery Disease in Patients with Aortic valve Disease. Angiology 1993, 44, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Emren, Z.Y.; Emren, S.V.; Kılıçaslan, B.; Solmaz, H.; Susam, I.; Sayın, A.; Abud, B.; Aydın, M.; Bayturan, O. Evaluation of the prevalence of coronary artery disease in patients with valvular heart disease. J. Cardiothorac. Surg. 2014, 9, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Zheng, J.; Bach, R.; Tang, D. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery. Biomed. Eng. Online 2015, 14 (Suppl. 1). [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Zhang, J.; Zhao, W. Effects of the inlet conditions and blood models on accurate prediction of hemodynamics in the stented coronary arteries. AIP Adv. 2015, 5, 057109. [Google Scholar] [CrossRef]
- Xu, L.; Liang, F.; Zhao, B.; Wan, J.; Liu, H. Influence of aging-induced flow waveform variation on hemodynamics in aneurysms present at the internal carotid artery: A computational model-based study. Comput. Biol. Med. 2018, 101, 51–60. [Google Scholar] [CrossRef] [PubMed]
In Vivo Measurement | Simulation | |
---|---|---|
CO (L/min) | 5.19 ± 0.83 [44] | 4.9 |
SBP (mmHg) | 113.0 ± 5.0 [44] | 115.3 |
DBP (mmHg) | 74.0 ± 8.0 [44] | 76.5 |
QLAD (mL/s) | 1.27 ± 0.56 [45] | 1.25 |
QRCA (mL/s) | 1.14 ± 1.28 [45] | 1.13 |
QLCX (mL/s) | 0.91 ± 0.41 [45] | 0.89 |
Control | AS | AR | ||||
---|---|---|---|---|---|---|
MEAS [11] | SIM | MEAS [11] | SIM | MEAS [11] | SIM | |
VTIS (cm) | 4.0 ± 1.0 | 3.08 ± 0.2 | 3.8 ± 1.4 | 2.06 ± 0.1 | 10.8 ± 3.2 | 6.31 ± 0.3 |
VTID (cm) | 13.3 ± 3.6 | 11.74 ± 3.1 | 14.6 ± 3.7 | 15.94 ± 3.3 | 17.1 ± 4.5 | 13.63 ± 3.1 |
S/D ratio | 0.30 ± 0.03 | 0.26 ± 0.04 | 0.26 ± 0.05 | 0.13 ± 0.02 | 0.63 ± 0.10 | 0.46 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Simakov, S.; Liu, Y.; Liu, T.; Wang, Y.; Liang, F. The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study. Bioengineering 2023, 10, 709. https://doi.org/10.3390/bioengineering10060709
Li X, Simakov S, Liu Y, Liu T, Wang Y, Liang F. The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study. Bioengineering. 2023; 10(6):709. https://doi.org/10.3390/bioengineering10060709
Chicago/Turabian StyleLi, Xuanyu, Sergey Simakov, Youjun Liu, Taiwei Liu, Yue Wang, and Fuyou Liang. 2023. "The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study" Bioengineering 10, no. 6: 709. https://doi.org/10.3390/bioengineering10060709
APA StyleLi, X., Simakov, S., Liu, Y., Liu, T., Wang, Y., & Liang, F. (2023). The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study. Bioengineering, 10(6), 709. https://doi.org/10.3390/bioengineering10060709