Machine Learning-Based Prediction of Mental Well-Being Using Health Behavior Data from University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Preprocessing
2.3. Feature Selection
2.4. Training Machine Learning Classifiers
2.5. Model Performance Metrics
- Poor agreement: less than 0.20;
- Fair agreement: 0.20–0.40;
- Moderate agreement: 0.40–0.60;
- Good agreement: 0.60–0.80;
- Very good agreement: 0.80–1.
- Outstanding: 0.9–1.0;
- Excellent/good: 0.8–0.9;
- Acceptable/fair: 0.7–0.8;
- Poor: 0.6–0.7;
- No discrimination: 0.5–0.6.
3. Results
3.1. Feature Importance
3.2. Model Evaluation
4. Discussion
4.1. Main Findings
4.2. Limitations
4.3. Recommendations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Agteren, J.; Iasiello, M.; Lo, L.; Bartholomaeus, J.; Kopsaftis, Z.; Carey, M.; Kyrios, M. A systematic review and meta-analysis of psychological interventions to improve mental wellbeing. Nat. Hum. Behav. 2021, 5, 631–652. [Google Scholar] [CrossRef]
- Keyes, C.L.M.; Dhingra, S.S.; Simoes, E.J. Change in Level of Positive Mental Health as a Predictor of Future Risk of Mental Illness. Am. J. Public Health 2010, 100, 2366–2371. [Google Scholar] [CrossRef]
- Srividya, M.; Mohanavalli, S.; Bhalaji, N. Behavioral Modeling for Mental Health using Machine Learning Algorithms. J. Med. Syst. 2018, 42, 88. [Google Scholar] [CrossRef]
- Kessler, R.C.; Bromet, E.J. The Epidemiology of Depression Across Cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef]
- Tan, G.T.H.; Shahwan, S.; Goh, C.M.J.; Ong, W.J.; Wei, K.-C.; Verma, S.K.; Chong, S.A.; Subramaniam, M. Mental illness stigma’s reasons and determinants (MISReaD) among Singapore’s lay public–a qualitative inquiry. BMC Psychiatry 2020, 20, 422. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, A.; Sharma, M. COVID-19 and Mental Well-Being: Guidance on the Application of Behavioral and Positive Well-Being Strategies. Healthcare 2020, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Nagy-Pénzes, G.; Vincze, F.; Bíró, É. Contributing factors in adolescents’ mental well-being—The role of socioeconomic status, social support, and health behavior. Sustainability 2020, 12, 9597. [Google Scholar] [CrossRef]
- Milne-Ives, M.; Lam, C.; De Cock, C.; Van Velthoven, M.H.; Meinert, E. Mobile Apps for Health Behavior Change in Physical Activity, Diet, Drug and Alcohol Use, and Mental Health: Systematic Review. JMIR mHealth uHealth 2020, 8, e17046. [Google Scholar] [CrossRef] [PubMed]
- Linden, B.; Stuart, H. Post-Secondary Stress and Mental Well-Being: A Scoping Review of the Academic Literature. Can. J. Community Ment. Health 2020, 39, 1–32. [Google Scholar] [CrossRef]
- Stein, D.J.; Benjet, C.; Gureje, O.; Lund, C.; Scott, K.M.; Poznyak, V.; Van Ommeren, M. Integrating mental health with other non-communicable diseases. BMJ 2019, 364, l295. [Google Scholar] [CrossRef]
- Secretariat, A. ASEAN Statistical Report on Millennium Development Goals 2017; ASEAN Secr.: Jakarta, Indonesia, 2017. [Google Scholar]
- Metcalf, J.; Crawford, K. Where are human subjects in Big Data research? The emerging ethics divide. Big Data Soc. 2016, 3, 1–14. [Google Scholar] [CrossRef]
- Mutalib, S. Mental health prediction models using machine learning in higher education institution. Turkish. J. Comput. Math. Educ. 2021, 12, 1782–1792. [Google Scholar]
- Shatte, A.; Hutchinson, D.; Teague, S. Machine learning in mental health: A systematic scoping review of methods and applications. Psychol. Med. 2019, 49, 1426–1448. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; McCabe, M.; Dawson, A.; Cyrzon, C.; Shankar, S.; Gerges, N.; Kellett-Renzella, S.; Chye, Y.; Cornish, K. Identifying Predictors of University Students’ Wellbeing during the COVID-19 Pandemic—A Data-Driven Approach. Int. J. Environ. Res. Public Health 2021, 18, 6730. [Google Scholar] [CrossRef]
- Chen, L.; Ruddy, L. Improving Digital Connectivity: Policy Priority for ASEAN Digital Transformation. ERIA Policy Br. 2020, 7, 1–4. [Google Scholar]
- Rahman, H.A.; Amornsriwatanakul, A.; Abdul-Mumin, K.H.; Agustiningsih, D.; Chaiyasong, S.; Chia, M.; Chupradit, S.; Huy, L.Q.; Ivanovitch, K.; Nurmala, I.; et al. Prevalence of Health-Risk Behaviors and Mental Well-Being of ASEAN University Students in COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 8528. [Google Scholar] [CrossRef]
- Zhang, Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann. Transl. Med. 2016, 4, 30. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Naser, M. Mapping functions: A physics-guided, data-driven and algorithm-agnostic machine learning approach to discover causal and descriptive expressions of engineering phenomena. Measurement 2021, 185, 110098. [Google Scholar] [CrossRef]
- Guan, S.; Loew, M. Analysis of generalizability of deep neural networks based on the complexity of decision boundary. In Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020; pp. 101–106. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with theBorutaPackage. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. A Tutorial on Generalized Linear Models. J. Qual. Technol. 1997, 29, 274–291. [Google Scholar] [CrossRef]
- Dinov, I.D. Data Science and Predictive Analytics: Biomedical and Health Applications Using R, 2nd ed.; Springer Series in Applied Machine Learning; Springer: Cham, Switzerland, 2023; Volume 2, pp. 1–918. [Google Scholar]
- Nguyen, C.; Wang, Y.; Nguyen, H.N. Random forest classifier combined with feature selection for breast cancer diagnosis and prognostic. J. Biomed. Sci. Eng. 2013, 06, 551–560. [Google Scholar] [CrossRef]
- Therneau, T.M.; Atkinson, E.J. An Introduction to Recursive Partitioning Using the RPART Routines. Technical Report Mayo Foundation. 1997. Available online: https://stat.ethz.ch/R-manual/R-patched/library/rpart/doc/longintro.pdf (accessed on 1 June 2022).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team. Package ‘caret.’ R J. 2020. Available online: https://cran.radicaldevelop.com/web/packages/caret/caret.pdf (accessed on 1 June 2022).
- Edla, D.R.; Mangalorekar, K.; Dhavalikar, G.; Dodia, S. Classification of EEG data for human mental state analysis using Random Forest Classifier. Procedia Comput. Sci. 2018, 132, 1523–1532. [Google Scholar] [CrossRef]
- Tao, X.; Chi, O.; Delaney, P.J.; Li, L.; Huang, J. Detecting depression using an ensemble classifier based on Quality of Life scales. Brain Inform. 2021, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Terebessy, A.; Czeglédi, E.; Balla, B.C.; Horváth, F.; Balázs, P. Medical students’ health behaviour and self-reported mental health status by their country of origin: A cross-sectional study. BMC Psychiatry 2016, 16, 171. [Google Scholar] [CrossRef]
- Dale, H.; Brassington, L.; King, K. The impact of healthy lifestyle interventions on mental health and wellbeing: A systematic review. Ment. Health Rev. J. 2014, 19, 1–26. [Google Scholar] [CrossRef]
- Woodward, K.; Kanjo, E.; Brown, D.J.; McGinnity, T.M.; Inkster, B.; Macintyre, D.J.; Tsanas, A. Beyond Mobile Apps: A Survey of Technologies for Mental Well-Being. IEEE Trans. Affect. Comput. 2020, 13, 1216–1235. [Google Scholar] [CrossRef]
- Areàn, P.A.; Ly, K.H.; Andersson, G. Mobile technology for mental health assessment. Dialog-Clin. Neurosci. 2016, 18, 163–169. [Google Scholar] [CrossRef]
- Lederman, R.; Wadley, G.; Gleeson, J.; Bendall, S.; Álvarez-Jiménez, M. Moderated online social therapy: Designing and evaluating technology for mental health. ACM Trans. Comput. Interact. 2014, 21, 1–26. [Google Scholar] [CrossRef]
- Aguilera, A. Digital Technology and Mental Health Interventions: Opportunities and Challenges. Arbor 2015, 191, a210. [Google Scholar] [CrossRef]
- Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 2017, 70, 263–286. [Google Scholar] [CrossRef]
Classifier | Accuracy | Kappa | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
Random Forest | 0.901 | 0.801 | 0.980 | 0.815 | 0.966 |
Random forest + text | 0.881 | 0.759 | 0.965 | 0.782 | 0.951 |
Adaptive boosting | 0.893 | 0.785 | 0.951 | 0.828 | 0.959 |
k-nearest neighbor | 0.795 | 0.593 | 0.711 | 0.887 | 0.886 |
Naïve Bayes | 0.702 | 0.399 | 0.775 | 0.621 | 0.678 |
Bagging (Bootstrap Aggregation) | 0.672 | 0.349 | 0.617 | 0.735 | 0.677 |
Recursive partitioning | 0.633 | 0.268 | 0.607 | 0.662 | 0.665 |
Neural Network | 0.615 | 0.231 | 0.597 | 0.633 | 0.674 |
Generalized linear model | 0.603 | 0.201 | 0.673 | 0.527 | 0.653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Rahman, H.; Kwicklis, M.; Ottom, M.; Amornsriwatanakul, A.; H. Abdul-Mumin, K.; Rosenberg, M.; Dinov, I.D. Machine Learning-Based Prediction of Mental Well-Being Using Health Behavior Data from University Students. Bioengineering 2023, 10, 575. https://doi.org/10.3390/bioengineering10050575
Abdul Rahman H, Kwicklis M, Ottom M, Amornsriwatanakul A, H. Abdul-Mumin K, Rosenberg M, Dinov ID. Machine Learning-Based Prediction of Mental Well-Being Using Health Behavior Data from University Students. Bioengineering. 2023; 10(5):575. https://doi.org/10.3390/bioengineering10050575
Chicago/Turabian StyleAbdul Rahman, Hanif, Madeline Kwicklis, Mohammad Ottom, Areekul Amornsriwatanakul, Khadizah H. Abdul-Mumin, Michael Rosenberg, and Ivo D. Dinov. 2023. "Machine Learning-Based Prediction of Mental Well-Being Using Health Behavior Data from University Students" Bioengineering 10, no. 5: 575. https://doi.org/10.3390/bioengineering10050575
APA StyleAbdul Rahman, H., Kwicklis, M., Ottom, M., Amornsriwatanakul, A., H. Abdul-Mumin, K., Rosenberg, M., & Dinov, I. D. (2023). Machine Learning-Based Prediction of Mental Well-Being Using Health Behavior Data from University Students. Bioengineering, 10(5), 575. https://doi.org/10.3390/bioengineering10050575