Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Hallux Valgus Deformity Model
2.2. Various Osteotomy and Fixation Strategies
2.3. Finite Element Models
3. Results
3.1. Numerical Convergence
3.2. Fixation Stability
3.3. Maximum Stress of First Metatarsal Bone
3.4. Maximum Stress of Fixation Implant
3.5. Average Contact Pressure on Osteotomy Surface
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niczyporuk, M.; Pupek, P.; Masłowska, J.; Knaś, M. The knowledge of beauty salon clients about hallux valgus therapy. Preliminary study. Pract. Health Sci. 2019, 1, 65–69. [Google Scholar] [CrossRef]
- Menz, H.B.; Lim, P.Q.; Hurn, S.E.; Mickle, K.J.; Buldt, A.K.; Cotchett, M.P.; Roddy, E.; Wluka, A.E.; Erbas, B.; Munteanu, S.E. Footwear, foot orthoses and strengthening exercises for the non-surgical management of hallux valgus: Protocol for a randomised pilot and feasibility trial. J. Foot Ankle Res. 2022, 15, 45. [Google Scholar] [CrossRef]
- Alimy, A.R.; Polzer, H.; Ocokoljic, A.; Ray, R.; Lewis, T.L.; Rolvien, T.; Waizy, H. Does Minimally Invasive Surgery Provide Better Clinical or Radiographic Outcomes Than Open Surgery in the Treatment of Hallux Valgus Deformity? A Systematic Review and Meta-analysis. Clin. Orthop. Relat. Res. 2022, 10, 1097. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, H.D.; Khan, S.; Lashgari, Y.; Ziegler, A. Hallux valgus correction utilising a modified short scarf osteotomy with a magnesium biodegradable or titanium compression screws—A comparative study of clinical outcomes. BMC Musculoskelet. Disord. 2019, 20, 334. [Google Scholar] [CrossRef]
- Tonogai, I.; Sairyo, K. Temporary Kirschner wire fixation of the first metatarsophalangeal joint before osteotomy for hallux valgus. Int. J. Surg. Case Rep. 2021, 84, 106104. [Google Scholar] [CrossRef] [PubMed]
- Malagelada, F.; Sahirad, C.; Dalmau-Pastor, M.; Vega, J.; Bhumbra, R.; Manzanares-Céspedes, M.C.; Laffenêtre, O. Minimally invasive surgery for hallux valgus: A systematic review of current surgical techniques. Int. Orthop. (SICOT) 2019, 43, 625–637. [Google Scholar] [CrossRef]
- Biz, C.; Crimi, A.; Fantoni, I.; Tagliapietra, J.; Ruggieri, P. Functional and Radiographic Outcomes of Minimally Invasive Intramedullary Nail Device (MIIND) for Moderate to Severe Hallux Valgus. Foot Ankle Int. 2021, 42, 409–424. [Google Scholar] [CrossRef]
- Choo, J.T.; Lai, S.W.H.; Tang, C.Q.Y.; Thevendran, G. Magnesium-based bioabsorbable screw fixation for hallux valgus surgery—A suitable alternative to metallic implants. Foot Ankle Surg. 2019, 25, 727–732. [Google Scholar] [CrossRef]
- Kasparek, M.F.; Benca, E.; Hirtler, L.; Willegger, M.; Boettner, F.; Zandieh, S.; Holinka, J.; Windhager, R.; Schuh, R. Biomechanical evaluation of the proximal chevron osteotomy in comparison to the Lapidus arthrodesis for the correction of hallux valgus deformities. Int. Orthop. (SICOT) 2022, 46, 2257–2264. [Google Scholar] [CrossRef]
- Klauser, H. Internal fixation of three-dimensional distal metatarsal I osteotomies in the treatment of hallux valgus deformities using biodegradable magnesium screws in comparison to titanium screws. Foot Ankle Surg. 2019, 25, 398–405. [Google Scholar] [CrossRef]
- Liu, C.; Huang, L.; Zhang, H.; Chang, F.; Li, S.; Ma, S.; Zhang, Y.; Ren, L. Biomechanical comparison between bioabsorbable and medical titanium screws in distal chevron osteotomy of first metatarsal in hallux valgus treatment. J. Mech. Behav. Biomed. Mater. 2022, 131, 105260. [Google Scholar] [CrossRef]
- Al-Abassi, A.; Papini, M.; Towler, M. Review of Biomechanical Studies and Finite Element Modeling of Sternal Closure Using Bio-Active Adhesives. Bioengineering 2022, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Alaneme, K.K.; Kareem, S.A.; Olajide, J.L.; Sadiku, R.E.; Bodunrin, M.O. Computational biomechanical and biodegradation integrity assessment of Mg-based biomedical devices for cardiovascular and orthopedic applications: A review. Int. J. Lightweight Mater. Manuf. 2022, 5, 251–266. [Google Scholar] [CrossRef]
- Zhu, J.; Forman, J. A Review of Finite Element Models of Ligaments in the Foot and Considerations for Practical Application. J. Biomech. Eng. 2022, 144, 080801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Y.; Huang, J.; Teo, E.C.; Gu, Y. Effect of Displacement Degree of Distal Chevron Osteotomy on Metatarsal Stress: A Finite Element Method. Biology 2022, 11, 127. [Google Scholar] [CrossRef]
- Shih, K.S.; Hsu, C.C.; Lin, T.W.; Huang, K.T.; Hou, S.M. Biomechanical evaluation of different hallux valgus treatment with plate fixations using single first metatarsal bone model and musculoskeletal lower extremity model. J. Biomech. Sci. Eng. 2021, 16, 21-00073. [Google Scholar] [CrossRef]
- Brilakis, E.V.; Kaselouris, E.; Markatos, K.; Mastrokalos, D.; Provatidis, C.; Efstathopoulos, N.; Chronopoulos, E. Mitchell’s osteotomy augmented with bio-absorbable pins for the treatment of hallux valgus: A comparative finite element study. J. Musculoskelet. Neuronal Interact. 2019, 19, 234–244. [Google Scholar]
- Xiang, L.; Mei, Q.; Wang, A.; Shim, V.; Fernandez, J.; Gu, Y. Evaluating function in the hallux valgus foot following a 12-week minimalist footwear intervention: A pilot computational analysis. J. Biomech. 2022, 132, 110941. [Google Scholar] [CrossRef]
- Nakajima, K. Sliding oblique metatarsal osteotomy fixated with a K-wire without cheilectomy for hallux rigidus. J. Foot Ankle Surg. 2022, 61, 279–285. [Google Scholar] [CrossRef]
- Bİlgİn, E.; KeÇecİ, T.; Turgut, A.; Adiyeke, L.; Kİlİnc, B.E. Comparison of Clinical and Radiological Results of Two Fixation Materials after Distal Chevron Osteotomy for Hallux Valgus?–Two Kirschner Wires versus Single Screw Fixation. Acta Chir. Orthop. Traumatol. Cech. 2020, 87, 350–355. [Google Scholar]
- Baig, M.N.; Baig, U.; Tariq, A.; Din, R. A prospective study of distal metatarsal chevron osteotomies with K-wire fixations to treat hallux valgus deformities. Cureus 2017, 9, e1704. [Google Scholar] [CrossRef] [PubMed]
- Opsomer, G.; Deleu, P.-A.; Bevernage, B.D.; Leemrijse, T. Cortical Thickness of the Second Metatarsal After Correction of Hallux Valgus. Foot Ankle Int. 2010, 31, 770–776. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, M.S.; Park, K.S.; Lee, G.W. Importance of postoperative sesamoid reduction on the outcomes of proximal chevron osteotomy for moderate to severe hallux valgus deformity. Foot Ankle Surg. 2019, 25, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Clemente, P.; Mariscal, G.; Barrios, C. Distal chevron osteotomy versus different operative procedures for hallux valgus correction: A meta-analysis. J. Orthop. Surg. Res. 2022, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Won Hur, J.; Ngissah, R.; Soo Suh, J.; Choi, J.Y. Hallux Valgus Deformity Correction using Proximal Transverse Derotational Metatarsal Osteotomy: A Report of 3 Cases. Glob. J. Orthop. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Shih, K.S.; Hsu, C.C. Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis. J. Med. Biol. Eng. 2022, 42, 436–444. [Google Scholar] [CrossRef]
- Hollander, K.; Zech, A.; Rahlf, A.L.; Orendurff, M.S.; Stebbins, J.; Heidt, C. The relationship between foot posture and running biomechanics: A systematic review and meta-analysis. Gait Posture 2019, 72, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Morales-Orcajo, E.; Bayod, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.; Doblare, M. Influence of first proximal phalanx geometry on hallux valgus deformity: A finite element analysis. Med. Biol. Eng. Comput. 2015, 53, 645–653. [Google Scholar] [CrossRef]
- Wong, D.W.-C.; Zhang, M.; Yu, J.; Leung, A.K.-L. Biomechanics of first ray hypermobility: An investigation on joint force during walking using finite element analysis. Med. Eng. Phys. 2014, 36, 1388–1393. [Google Scholar] [CrossRef]
- Tsouknidas, A.; Giannopoulos, D.; Savvakis, S.; Michailidis, N.; Lympoudi, E.; Fytanidis, D.; Pissiotis, A.; Michalakis, K. The Influence of Bone Quality on the Biomechanical Behavior of a Tooth-Implant Fixed Partial Denture: A Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implants 2016, 31, e143–e154. [Google Scholar] [CrossRef]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Borges, A.L.S.; Souza, R.O.A.E.; Bottino, M.A. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent. Mater. 2018, 34, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.C.; Wang, Y.; Zhang, M.; Leung, A.K.L. Functional restoration and risk of non-union of the first metatarsocuneiform arthrodesis for hallux valgus: A finite element approach. J. Biomech. 2015, 48, 3142–3148. [Google Scholar] [CrossRef]
- Pan, C.S.; Wang, X.; Ding, L.Z.; Zhu, X.P.; Xu, W.F.; Huang, L.X. The best position of bone grafts in the medial open-wedge high tibial osteotomy: A finite element analysis. Comput. Methods Programs Biomed. 2023, 228, 107253. [Google Scholar] [CrossRef]
- Miranda, M.A.M.; Martins, C.; Cortegana, I.M.; Campos, G.; Pérez, M.F.M.; Oliva, X.M. Complications on percutaneous hallux valgus surgery: A systematic review. J. Foot Ankle Surg. 2021, 60, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Easley, M.E.; Darwish, H.H.; Schreyack, D.W.; DeOrio, J.K.; Trnka, H.J. Hallux Valgus: Proximal First Metatarsal Osteotomies. In International Advances in Foot and Ankle Surgery; Saxena, A., Ed.; Springer: London, UK, 2012; pp. 11–25. [Google Scholar]
- Malde, O.; Libby, J.; Moazen, M. An overview of modelling craniosynostosis using the finite element method. Mol. Syndromol. 2019, 10, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.B.; Cho, N.Y.; Park, H.W.; Seon, J.K.; Lee, S.H. A comparison of proximal and distal Chevron osteotomy, both with lateral soft-tissue release, for moderate to severe hallux valgus in patients undergoing simultaneous bilateral correction: A prospective randomised controlled trial. Bone Joint J. 2015, 97B, 202–207. [Google Scholar] [CrossRef]
- Trnka, H.J. Osteotomies for Hallux Valgus Correction. Foot Ankle Clin. 2005, 10, 15–33. [Google Scholar] [CrossRef]
- Lee, Y.; Ogihara, N.; Lee, T. Assessment of finite element models for prediction of osteoporotic fracture. J. Mech. Behav. Biomed. Mater. 2019, 97, 312–320. [Google Scholar] [CrossRef]
- Moulodi, N.; Azadinia, F.; Ebrahimi-Takamjani, I.; Atlasi, R.; Jalali, M.; Kamali, M. The functional capacity and morphological characteristics of the intrinsic foot muscles in subjects with Hallux Valgus deformity: A systematic review. Foot 2020, 45, 101706. [Google Scholar] [CrossRef]
- Buddhadev, H.H.; Barbee, C.E. Redistribution of joint moments and work in older women with and without hallux valgus at two walking speeds. Gait Posture 2020, 77, 112–117. [Google Scholar] [CrossRef]
- Guiotto, A.; Sawacha, Z.; Guarneri, G.; Avogaro, A.; Cobelli, C. 3D finite element model of the diabetic neuropathic foot: A gait analysis driven approach. J. Biomech. 2014, 47, 3064–3071. [Google Scholar] [CrossRef] [PubMed]
- Biz, C.; Favero, L.; Stecco, C.; Aldegheri, R. Hypermobility of the first ray in ballet dancer. Muscles Ligaments Tendons J. 2012, 2, 282–288. [Google Scholar] [PubMed]
Materials | Young’s Modulus (MPa) | Poisson’s Ratio | Stiffness (N/mm) |
---|---|---|---|
Articular cartilage | 3.4 | 0.40 | - |
Cancellous bone | 100 | 0.30 | - |
Cortical bone | 10,000 | 0.34 | - |
Kirschner wires (stainless steel) | 200,000 | 0.30 | - |
Soft tissue | 1.15 | 0.49 | - |
Anterior talofibular ligament | - | - | 47.3 |
Anterior tibiofibular ligament | - | - | 115.9 |
Calcaneofibular ligament | - | - | 24.9 |
Deep transverse metatarsal ligament | - | - | 78 |
Dorsal tarsometatarsal ligament | - | - | 115.2 |
Fibularis longus ligament | - | - | 67.2 |
Long plantar ligament | - | - | 28.1 |
Metatarsophalangeal joint capsules | - | - | 136.5 |
Phalangeal ligament | - | - | 169.1 |
Plantar calcaneonavicular ligament | - | - | 65.7 |
Plantar metatarsal ligament | - | - | 15.7 |
Posterior talofibular ligament | - | - | 25.5 |
Posterior tibiofibular ligament | - | - | 257.8 |
Superior fibular retinaculum | - | - | 25.6 |
Tibiocalcaneal ligament | - | - | 109.5 |
Tibionavicular ligament | - | - | 14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, K.-S.; Hsu, C.-C.; Huang, G.-T. Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method. Bioengineering 2023, 10, 499. https://doi.org/10.3390/bioengineering10040499
Shih K-S, Hsu C-C, Huang G-T. Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method. Bioengineering. 2023; 10(4):499. https://doi.org/10.3390/bioengineering10040499
Chicago/Turabian StyleShih, Kao-Shang, Ching-Chi Hsu, and Guan-Ting Huang. 2023. "Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method" Bioengineering 10, no. 4: 499. https://doi.org/10.3390/bioengineering10040499
APA StyleShih, K. -S., Hsu, C. -C., & Huang, G. -T. (2023). Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method. Bioengineering, 10(4), 499. https://doi.org/10.3390/bioengineering10040499