Predictive Analysis of Hospital Stay after Caesarean Section: A Single-Center Study
Abstract
:1. Introduction
Related Works
2. Materials and Methods
- Age;
- Date of admission, discharge, and CS procedure;
- Primary and secondary diagnoses;
- Diagnosis-related group (DRG);
- Age;
- Pre-operative LOS,
- Thyroid disorder (yes/no);
- Cardiovascular disease (yes/no);
- Abnormal foetus (yes/no);
- Respiratory disease (yes/no);
- Hypertension (yes/no);
- Diabetes (yes/no);
- Haemorrhage (yes/no);
- Brain and retinal disorders (yes/no);
- Multiple births (yes/no);
- Obesity (yes/no);
- Amniotic fluid disorders (yes/no);
- Stillborn (yes/no);
- Pre-eclampsia (yes/no);
- Tumour (yes/no);
- Complicating previous delivery (yes/no);
- Urinary and gynaecological disorders (yes/no);
- Complication during surgery (yes/no).
2.1. Regression Models
2.2. Classification Algorithms and Neural Network
- -
- Group 0: 0–4 days;
- -
- Group 1: 5–6 days;
- -
- Group 2: LOS > 6 days.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | Caesarean Section |
VD | Vaginal Delivery |
LOS | Length Of Stay |
ML | Machine Learning |
MLR | Multiple Linear Regression |
DT | Decision Tree |
RF | Random Forest |
SVM | Support Vector Machine |
MLP | Multilayer Perception |
NB | Naive Bayes |
VC | Voting Classifier |
NN | Neural Network |
References
- Sung, S.; Mahdy, H. Cesarean Section. [Updated 25 August 2021]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. Available online: https://www.ncbi.nlm.nih.gov/books/NBK546707/ (accessed on 1 December 2022).
- McCourt, C.; Weaver, J.; Statham, H.; Beake, S.; Gamble, J.; Creedy, D.K. Elective cesarean section and decision making: A critical review of the literature. Birth 2007, 34, 65–79. [Google Scholar] [CrossRef]
- ACOG Practice Bulletin No. 205: Vaginal Birth After Cesarean Delivery. Obstet Gynecol. 2019, 133, e110–e127. [CrossRef] [PubMed]
- pne.agenas.it [Webpage on the Internet]. Available online: https://pne.agenas.it/ (accessed on 30 December 2021).
- Triassi, M.; Pugliese, A.; Castronuovo, E.; Esposito, D.; Passaro, M. Report on the Natality in Campania 2014, Napoli (IT); 2016. Italian. Available online: https://www.epicentro.iss.it/percorso-nascita/pdf/RAPPORTO%20NATALITA%202014.pdf (accessed on 1 December 2022).
- Clapp, M.A.; Barth, W.H. The Future of Cesarean Delivery Rates in the United States. Clin. Obstet. Gynecol. 2017, 60, 829–839. [Google Scholar] [CrossRef]
- Barber, E.L.; Lundsberg, L.S.; Belanger, K.; Pettker, C.M.; Funai, E.F.; Illuzzi, J.L. Indications contributing to the increasing cesarean delivery rate. Obstet. Gynecol. 2011, 118, 29–38. [Google Scholar] [CrossRef]
- Boyle, A.; Reddy, U.M.; Landy, H.J.; Huang, C.C.; Driggers, R.W.; Laughon, S.K. Primary cesarean delivery in the United States. Obstet. Gynecol. 2013, 122, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robson, M.S. Can we reduce the caesarean section rate? Best Pract. Res. Clin. Obstet. Gynaecol. 2001, 15, 179–194. [Google Scholar] [CrossRef]
- Betrán, A.P.; Torloni, M.R.; Zhang, J.J.; Gülmezoglu, A.M.; Aleem, H.A.; Althabe, F.; Bergholt, T.; De Bernis, L.; Carroli, G.; Deneux-Tharaux, C.; et al. WHO statement on caesarean section rates. BJOG Int. J. Obstet. Gynaecol. 2016, 123, 667–670. [Google Scholar] [CrossRef]
- Mylonas, I.; Friese, K. Indications for and Risks of Elective Cesarean Section. Dtsch. Arztebl. Int. 2015, 112, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, L.S.; von Dadelszen, P.; Christilaw, J.; Janssen, P.A.; Lisonkova, S.; Marquette, G.P.; Liston, R.M. Caesarean section on maternal request: Risks and benefits in healthy nulliparous women and their infants. J. Obstet. Gynaecol. Can. 2009, 31, 808–817. [Google Scholar] [CrossRef]
- Geller, E.J.; Wu, J.M.; Jannelli, M.L.; Nguyen, T.V.; Visco, A.G. Maternal outcomes associated with planned vaginal versus planned primary cesarean delivery. Am. J. Perinatol. 2010, 27, 675–684. [Google Scholar] [CrossRef]
- Signore, C.; Klebanoff, M. Neonatal morbidity and mortality after elective cesarean delivery. Clin. Perinatol. 2008, 35, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Boutsikou, T.; Malamitsi-Puchner, A. Caesarean section: Impact on mother and child. Acta Paediatr. 2011, 100, 1518–1522. [Google Scholar] [CrossRef]
- Souza, J.P.; the WHO Global Survey on Maternal and Perinatal Health Research Group; Gülmezoglu, A.; Lumbiganon, P.; Laopaiboon, M.; Carroli, G.; Fawole, B.; Ruyan, P. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: The 2004–2008 WHO Global Survey on Maternal and Perinatal Health. BMC Med. 2010, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cegolon, L.; Mastrangelo, G.; Campbell, O.M.; Giangreco, M.; Alberico, S.; Monasta, L.; Ronfani, L.; Barbone, F. Correction: Length of stay following cesarean sections: A population based study in the Friuli Venezia Giulia region (North-Eastern Italy), 2005–2015. PLoS ONE 2019, 14, e0213939. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.E.; Berger, D.L. Shortened length of stay and hospital cost reduction with implementation of an accelerated clinical care pathway after elective colon resection. Surgery 2003, 133, 277–282. [Google Scholar] [CrossRef]
- Ferraro, A.; Centobelli, P.; Cerchione, R.; Cicco, M.V.; Montella, E.; Raiola, E.; Triassi, M.; Improta, G. Implementation of lean practices to reduce healthcare associated infections. Int. J. Healthc. Technol. Manag. 2020, 18, 51–72. [Google Scholar] [CrossRef]
- Di Laura, D.; D′Angiolella, L.; Mantovani, L.; Squassabia, G.; Clemente, F.; Santalucia, I.; Improta, G.; Triassi, M. Efficiency measures of emergency departments: An Italian systematic literature review. BMJ Open Qual. 2021, 10, e001058. [Google Scholar] [CrossRef]
- Cesarelli, G.; Montella, E.; Scala, A.; Raiola, E.; Triassi, M.; Improta, G. DMAIC Approach for the Reduction of Healthcare-Associated Infections in the Neonatal Intensive Care Unit of the University Hospital of Naples “Federico II”. In Proceedings of the 8th European Medical and Biological Engineering Conference, Portorož, Slovenia, 29 November–3 December 2020; Springer: Cham, Switzerland, 2020; pp. 414–423. [Google Scholar]
- Converso, G.; Improta, G.; Mignano, M.; Santillo, L.C. A Simulation Approach for Agile Production Logic Implementation in a Hospital Emergency Unit. In Intelligent Software Methodologies, Tools and Techniques; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 532, pp. 623–634. [Google Scholar]
- Improta, G.; Luciano, M.A.; Vecchione, D.; Cesarelli, G.; Rossano, L.; Santalucia, I.; Triassi, M. Management of the Diabetic Patient in the Diagnostic Care Pathway. In Proceedings of the 8th European Medical and Biological Engineering Conference. EMBEC 2020. IFMBE Proceedings, Portorož, Slovenia, 29 November–3 December 2020; Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D., Eds.; Springer: Cham, Switzerland; Volume 80. [Google Scholar] [CrossRef]
- Improta, G.; Scala, A.; Trunfio, T.A.; Guizzi, G. Application of Supply Chain Management at Drugs Flow in an Italian Hospital District. J. Phys. Conf. Ser. 2021, 1828, 012081. [Google Scholar] [CrossRef]
- Improta, G.; Simone, T.; Bracale, M. HTA (Health Technology Assessment): A means to reach governance goals and to guide health politics on the topic of clinical Risk management. In Proceedings of the 11th World Congress on Medical Physics and Biomedical Engineering (IUPESM 2009), Munich, Germany, 7–12 September 2009. [Google Scholar]
- Cortesi, P.A.; Castaman, G.; Trifirò, G.; Creazzola, S.S.; Improta, G.; Mazzaglia, G.; Molinari, A.C.; Mantovani, L.G. Cost-Effectiveness and Budget Impact of Emicizumab Prophylaxis in Haemophilia A Patients with Inhibitors. Thromb. Haemost. 2019, 120(2), 216–228. [Google Scholar] [CrossRef]
- Kazandjian, V.A.; Chaulk, C.P.; Ogunbo, S.; Wicker, K. Does a Cesarean section delivery always cost more than a vaginal delivery? J. Eval. Clin. Pract. 2007, 13, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Cegolon, L.; Campbell, O.; Alberico, S.; Montico, M.; Mastrangelo, G.; Monasta, L.; Ronfani, L.; Barbone, F. Length of stay following vaginal deliveries: A population based study in Friuli Venezia Giulia (North-eastern Italy), 2005–2015. PLoS ONE 2019, 14, e0204919. [Google Scholar]
- Cegolon, L.; Mastrangelo, G.; Campbell, O.M.; Giangreco, M.; Alberico, S.; Montasta, L.; Ronfani, L.; Barbone, F. Length of stay following cesarean sections: A population based study in the Friuli Venezia Giulia region (North-Eastern Italy), 2005–2015. PLoS ONE 2019, 14, e0210753. [Google Scholar]
- Trunfio, T.A.; Ponsiglione, A.M.; Ferrara, A.; Borrelli, A.; Gargiulo, P. A comparison of different regression and classification methods for predicting the length of hospital stay after cesarean sections. In Proceedings of the 2021 5th International Conference on Medical and Health Informatics, Kyoto, Japan, 14–16 May 2021. [Google Scholar]
- Esposito, C.; Moscato, V.; Sperli, G. Trustworthiness Assessment of Users in Social Reviewing Systems. In IEEE Transactions on Systems, Man, and Cybernetics: Systems; 2022; Volume 52, pp. 151–165. [Google Scholar] [CrossRef]
- De Santo, A.; Galli, A.; Moscato, V.; Sperlì, G. A deep learning approach for semi-supervised community detection in Online Social Networks. Knowledge-Based Syst. 2021, 229, 107345. [Google Scholar] [CrossRef]
- Sperlí, G. A deep learning based chatbot for cultural heritage. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 March 2020; pp. 935–937. [Google Scholar] [CrossRef] [Green Version]
- Sperlí, G. A cultural heritage framework using a Deep Learning based Chatbot for supporting tourist journey. Expert Syst. Appl. 2021, 183, 115277. [Google Scholar] [CrossRef]
- Moscato, V.; Sperlì, G. A survey about community detection over On-line Social and Heterogeneous Information Networks. Knowledge-Based Syst. 2021, 224, 107112. [Google Scholar] [CrossRef]
- Amato, F.; Moscato, V.; Picariello, A.; Sperli, G. Multimedia Social Network Modeling: A Proposal. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 448–453. [Google Scholar] [CrossRef]
- Bhatt, C.; Dey, N.; Ashour, A.S. (Eds.) Internet of Things and Big Data Technologies for Next Generation Healthcare; Springer: Berlin/Heidelberg, Germany, 2017; pp. 978–983. [Google Scholar]
- Cesarelli, M.; Romano, M.; Bifulco, P.; Improta, G.; D’Addio, G. An application of symbolic dynamics for FHRV assessment. Stud. Health Technol. Inform. 2012, 180, 123–1277. [Google Scholar]
- Santini, S.; Pescape, A.; Valente, A.S.; Abate, V.; Improta, G.; Triassi, M.; Ricchi, P.; Filosa, A. Using fuzzy logic for improving clinical daily-care of β-thalassemia patients. In Fuzzy Systems (FUZZ-IEEE). In Proceedings of the 2017 IEEE International Conference, Boston, MA, USA, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Ponsiglione, A.M.; Cesarelli, G.; Amato, F.; Romano, M. Optimization of an artificial neural network to study accelerations of foetal heart rhythm. In Proceedings of the 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), Virtual, 6–9 September 2021; pp. 159–164. [Google Scholar] [CrossRef]
- Ponsiglione, A.M.; Cosentino, C.; Cesarelli, G.; Amato, F.; Romano, M. A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals. Sensors 2021, 21, 6136. [Google Scholar] [CrossRef]
- Ponsiglione, A.M.; Romano, M.; Amato, F. A Finite-State Machine Approach to Study Patients Dropout From Medical Examinations. In Proceedings of the 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), Virtual, 6–9 September 2021; pp. 289–294. [Google Scholar] [CrossRef]
- Huyen, D.T.T.; Binh, N.T.; Tuan, T.M.; Trung, T.Q.; Nhu, N.G.; Dey, N.; Son, L.H. Analyzing trends in hospital-cost payments of patients using ARIMA and GIS: Case study at the Hanoi Medical University Hospital, Vietnam. J. Med. Imaging Health Inform. 2017, 7, 421–429. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Ray, P.K. Patient flow modelling and performance analysis of healthcare delivery processes in hospitals: A review and reflections. Comput. Ind. Eng. 2014, 78, 299–312. [Google Scholar] [CrossRef]
- Chai, Z.-Y.; Hu, H.-M.; Ren, X.-L.; Zeng, B.-J.; Zheng, L.-Z.; Qi, F. Applying Lean Six Sigma methodology to reduce cesarean section rate. J. Eval. Clin. Pract. 2016, 23, 562–566. [Google Scholar] [CrossRef]
- Verhoeven, C.J.; Oudenaarden, A.; Hermus, M.A.; Porath, M.M.; Oei, S.G.; Mol, B.W.J. Validation of models that predict Cesarean section after induction of labor. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2009, 34, 316–321. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Chen, J.-Y.; Guo, J.; Tan, J.; Yang, Y.; Liu, N. Prediction models of vaginal birth after cesarean delivery: A systematic review. Int. J. Nurs. Stud. 2022, 135, 104359. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, H.M.; Durnwald, C.P.; Catalano, P.; Mercer, B.M. The influence of obesity and diabetes on the risk of cesarean delivery. Am. J. Obstet. Gynecol. 2004, 191, 969–974. [Google Scholar] [CrossRef]
- Scala, A.; Borrelli, A.; Improta, G. Predictive analysis of lower limb fractures in the orthopedic complex operative unit using artificial intelligence: The case study of AOU Ruggi. Sci. Rep. 2022, 12, 22153. [Google Scholar] [CrossRef]
- Olivato, M.; Rossetti, N.; Gerevini, A.E.; Chiari, M.; Putelli, L.; Serina, I. Machine Learning Models for Predicting Short-Long Length of Stay of COVID-19 Patients. Procedia Comput. Sci. 2022, 207, 1232–1241. [Google Scholar] [CrossRef]
- Montella, E.; Marino, M.R.; Majolo, M.; Raiola, E.; Russo, G.; Longo, G.; Lombardi, A.; Borrelli, A.; Triassi, M. Regression and classification methods for predicting the length of hospital stay after cesarean section: A bicentric study. In Proceedings of the 6th International Conference on Medical and Health Informatics, Kyoto, Japan, 13–15 May 2022. [Google Scholar]
- Available online: https://colab.research.google.com/ (accessed on 1 December 2022).
- Nath, S.S.; Mishra, G.; Kar, J.; Chakraborty, S.; Dey, N. A survey of image classification methods and techniques. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari District, India, 10–11 July 2014; IEEE: New York City, NY, USA; pp. 554–557. [Google Scholar]
- Singh, A.; Halgamuge, M.N.; Lakshmiganthan, R. Impact of different data types on classifier performance of random forest, naive bayes, and k-nearest neighbors algorithms. Int. J. Adv. Comput. Sci. Appl. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Wainberg, M.; Alipanahi, B.; Frey, B.J. Are random forests truly the best classifiers? J. Mach. Learn. Res. 2016, 17, 3837–3841. [Google Scholar]
- Cegolon, L.; Mastrangelo, G.; Maso, G.; Pozzo, G.D.; Heymann, W.C.; Ronfani, L.; Barbone, F. Determinants of length of stay after cesarean sections in the Friuli Venezia Giulia region (north-eastern Italy), 2005–2015. Sci. Rep. 2020, 10, 19238. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, Y.Y.; Lyell, D.J.; Nelson, L.M.; Butwick, A.J.; Blumenfeld, Y.J. Risk factors for prolonged postpartum length of stay following cesarean delivery. Am. J. Perinatol. 2015, 32, 825–832. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Cheng, Z.; Wu, T.; Zhou, Y.; Chen, J.; Fu, Q.; Feng, Z. The costs and their determinant of cesarean section and vaginal delivery: An exploratory study in Chongqing Municipality, China. BioMed Res. Int. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Algorithms | Hyperparameters |
---|---|
SVM | ‘kernel’:(‘linear’, ‘rbf’), ‘C’:[1, 10, 100], cv = 10 |
RF | ‘n_estimators’: [5, 10, 15, 20], ‘max_depth’: [2, 5, 7, 9], cv = 10 |
DT | ‘max_depth’:range(3,20), cv = 10 |
MLP | ‘hidden_layer_sizes’: [(50,50,50), (50,100,50), (100,)], ‘activation’: [‘tanh’, ‘relu’], ‘solver’: [‘sgd’, ‘adam’], ‘alpha’: [0.0001, 0.05],’ learning_rate’: [‘constant’,’adaptive’], cv = 10 |
NB | ‘var_smoothing’: np.logspace(0,−9, num = 100), cv = 10 |
VC | ‘voting technique’: (‘hard’, ‘soft’) |
Independent Variable | Tolerance | VIF |
---|---|---|
Age | 0.966 | 1.035 |
Pre-operative LOS | 0.927 | 1.079 |
Thyroid disorder | 0.988 | 1.012 |
Cardiovascular disease | 0.969 | 1.032 |
Abnormal foetus | 0.977 | 1.023 |
Respiratory disease | 0.990 | 1.010 |
Hypertension | 0.952 | 1.051 |
Diabetes | 0.922 | 1.084 |
Haemorrhage | 0.968 | 1.034 |
Brain and retinal disorders | 0.989 | 1.011 |
Multiple births | 0.926 | 1.080 |
Obesity | 0.955 | 1.047 |
Amniotic fluid disorders | 0.938 | 1.067 |
Stillborn | 0.984 | 1.016 |
Pre-eclampsia | 0.924 | 1.082 |
Tumour | 0.993 | 1.007 |
Complicating previous delivery | 0.876 | 1.141 |
Urinary and gynaecological disorders | 0.988 | 1.013 |
Complication during surgery | 0.774 | 1.291 |
R | R2 | R2 Adjusted | Std. Error of the Estimate | |
---|---|---|---|---|
MLR Model | 0.936 | 0.876 | 0.876 | 1.618 |
Variable | Unstandardized Coefficients | Standardized Coefficients Beta | t | p-Value | |
---|---|---|---|---|---|
B | Std. Error | ||||
(Constant) | 3.352 | 0.085 | - | 39.655 | 0.000 |
Age | 0.006 | 0.003 | 0.008 | 2.383 | 0.017 |
Pre-operative LOS | 0.989 | 0.004 | 0.912 | 277.175 | 0.000 |
Thyroid disorder | 0.149 | 0.284 | 0.002 | 0.524 | 0.600 |
Cardiovascular disease | 0.841 | 0.160 | 0.017 | 5.245 | 0.000 |
Abnormal foetus | −0.090 | 0.073 | −0.004 | −1.236 | 0.217 |
Respiratory disease | 3.643 | 0.383 | 0.030 | 9.503 | 0.000 |
Hypertension | 0.397 | 0.092 | 0.014 | 4.321 | 0.000 |
Diabetes | −0.383 | 0.138 | −0.009 | −2.766 | 0.006 |
Haemorrhage | 1.222 | 0.164 | 0.024 | 7.475 | 0.000 |
Brain and retinal disorders | 0.030 | 0.187 | 0.001 | 0.162 | 0.872 |
Multiple births | 0.368 | 0.083 | 0.015 | 4.412 | 0.000 |
Obesity | 0.826 | 0.147 | 0.018 | 5.617 | 0.000 |
Amniotic fluid disorders | 0.008 | 0.049 | 0.001 | 0.168 | 0.867 |
Stillborn | −0.238 | 0.194 | −0.004 | −1.225 | 0.221 |
Pre-eclampsia | 1.165 | 0.114 | 0.034 | 10.247 | 0.000 |
Tumour | 0.326 | 0.214 | 0.005 | 1.524 | 0.127 |
Complicating previous delivery | −0.110 | 0.033 | −0.011 | −3.302 | 0.001 |
Urinary and gynaecological disorders | 0.481 | 0.100 | 0.015 | 4.790 | 0.000 |
Complication during surgery | 0.535 | 0.047 | 0.041 | 11.392 | 0.000 |
LR | RF | GBT | XGBoost | |
---|---|---|---|---|
R2 | 0.839 | 0.705 | 0.844 | 0.838 |
Root Mean Squared Error | 1.522 | 2.595 | 1.495 | 1.524 |
Algorithms | Accuracy | Best Parameters |
---|---|---|
RF | 0.77 | ‘max_depth’: 9, ‘n_estimators’: 10 |
MLP | 0.74 | ‘activation’: ‘tanh’, ‘alpha’: 0.0001, ‘hidden_layer_sizes’: (50, 100, 50), ‘learning_rate’: ‘adaptive’, ‘solver’: ‘adam’ |
NB | 0.74 | var_smoothing = 0.004 |
SVM | 0.75 | ‘C’: 1, ‘kernel’: ‘linear’ |
DT | 0.76 | ‘max_depth’: 8 |
VC | 0.77 | ‘voting technique’: hard, ‘weights’: None |
Algorithms | Class | Precision | Recall | F1-Score |
---|---|---|---|---|
RF | 0 | 0.76 | 0.97 | 0.86 |
1 | 0.80 | 0.25 | 0.38 | |
2 | 0.76 | 0.70 | 0.73 |
Samples | MSE | R | |
---|---|---|---|
Training | 8652 | 2.224 | 0.944 |
Validation | 1854 | 2.963 | 0.935 |
Testing | 1854 | 3.631 | 0.917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponsiglione, A.M.; Trunfio, T.A.; Amato, F.; Improta, G. Predictive Analysis of Hospital Stay after Caesarean Section: A Single-Center Study. Bioengineering 2023, 10, 440. https://doi.org/10.3390/bioengineering10040440
Ponsiglione AM, Trunfio TA, Amato F, Improta G. Predictive Analysis of Hospital Stay after Caesarean Section: A Single-Center Study. Bioengineering. 2023; 10(4):440. https://doi.org/10.3390/bioengineering10040440
Chicago/Turabian StylePonsiglione, Alfonso Maria, Teresa Angela Trunfio, Francesco Amato, and Giovanni Improta. 2023. "Predictive Analysis of Hospital Stay after Caesarean Section: A Single-Center Study" Bioengineering 10, no. 4: 440. https://doi.org/10.3390/bioengineering10040440
APA StylePonsiglione, A. M., Trunfio, T. A., Amato, F., & Improta, G. (2023). Predictive Analysis of Hospital Stay after Caesarean Section: A Single-Center Study. Bioengineering, 10(4), 440. https://doi.org/10.3390/bioengineering10040440