# Computational Study of Hemodynamic Field of an Occluded Artery Model with Anastomosis

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Model Geometry

_{0}is the point for placing the respective geometric equation which depends on the position and geometry of the stenosis, x is the length point for the calculation of y coordinate point.

_{0}term had to be equal to 21 and 3 respectively for the creation of the two curves, so that F

_{1}(0) = 24 mm and F

_{2}(0) = 0 mm. The stenosis curves are presented in Figure 3.

#### 2.2. Governing Equations

_{1ε}= 1.42 and C

_{2ε}= 1.68.

_{eff}/μ and ${C}_{\nu}$ ≈ 100.

_{t}= ρk/(μω), R

_{k}= 6, ${\alpha}_{0}^{*}$ = β

_{i}/3 and β

_{i}= 0.072.

#### 2.3. Numerical Model

#### 2.4. Grid Sensitivity Analysis

#### 2.5. Boundary Conditions

_{blood}= 3.5 cP) and density of ρ = 1060 kg/m

^{3}. Numerical simulations were conducted assuming the same blood properties, with steady flow inlet conditions, with total flow rate of Q = 220 lt/h.

## 3. Results

#### 3.1. Qualitative Comparison of Flow Models

#### 3.2. Velocity Field in the Artery Anastomosis Region

_{by-pass}= 100%) led to the impingement of fluid on artery walls as it inserted the aorta via the bypass graft, while the existence of stagnant fluid located downwards the stenosis resulted in the creation of a wide recirculation zone, accompanied by correspondingly high levels of vorticity and shear of the flow field. Additionally, high values of mean longitudinal and radial velocities were observed in the impingement and infusion regions of the flui, respectivelyy.

_{by-pass}= 85% intense flow mixing was observed but with lower levels of vorticity and shear when compared to the previous case, still strong fluid impingement appeared on artery walls as it emerged from the bypass graft.

_{by-pass}= 70% the topology of the flow field showed significant change. In this scenario, there was no fluid impingement on artery walls because of the high amount of flow emerging from the stenosis region, occupying 25% of the artery cross-section area in the mixing region of the two flows. In this region, high levels of shear were observed due to the two flow interactions and subsequent acceleration of the fluid from the stenosis region, due to the reduction of the effective area in which the fluid flows.

_{by-pass}= 53%, the topology of the flow field is almost the same as in the previous case with the flow ratio of $\dot{m}$

_{by-pass}= 70% but with smaller levels of shear due to a higher ratio of the flow from the stenosis region that leads to a 50% occupation of the artery area in the mixing region of two flows.

#### 3.3. Cross Sectional Velocity Distribution

_{by-pass}= 100% and 85%, the flow formed a rolling up due to the fact that the flow field in both cases was formed mainly by the bypass graft. Moreover, as expected, in the case of $\dot{m}$

_{by-pass}= 100%, the flow rolling up was more intense than that of $\dot{m}$

_{by-pass}= 85%.

_{by-pass}= 70% and 53% the topology of the flow field was quite different. In these two cases, the flow from stenosis occupied a significant amount of the aorta area and down the anastomosis region, the flow twisted. More specifically, when the flow ratios of $\dot{m}$

_{by-pass}= 70% the topology change of the flow field in contrast with the two previous cases was related to the fact that twisting characteristics of the flow appear in the mixing area of the two flows. with respect to the axis of symmetry of the vessel, in which the transverse component of velocity takes the same measure but opposite sign. In the case of $\dot{m}$

_{by-pass}= 53%, flow twisting became more pronounced.

#### 3.4. Wall Shear Stresses (WSS)

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Carvalho, V.; Pinho, D.; Lima, R.A.; Teixeira, J.C.; Teixeira, S. Blood Flow Modeling in Coronary Arteries: A Review. Fluids
**2021**, 6, 53–67. [Google Scholar] [CrossRef] - Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med.
**2014**, 276, 618–632. [Google Scholar] [CrossRef] - Lusis, A.J. Atherosclerosis. Nature
**2000**, 407, 233–241. [Google Scholar] [CrossRef] [PubMed] - Kashyap, V.; Arora, B.B.; Bhattacharjee, S. A computational study of branch-wise curvature in idealized coronary artery bifurcations. Appl. Eng. Sci.
**2020**, 4, 100027. [Google Scholar] [CrossRef] - Sun, Y.; Guan, X. Autophagy: A new target for the treatment of atherosclerosis. Front. Lab. Med.
**2018**, 2, 68–71. [Google Scholar] [CrossRef] - Carpenter, H.J.; Gholipour, A.; Ghayesh, M.H.; Zander, A.C.; Psaltis, P.J. A review on the biomechanics of coronary arteries. Int. J. Eng. Sci.
**2020**, 147, 103201. [Google Scholar] [CrossRef] - Lopes, D.; Puga, H.; Teixeira, J.; Lima, R. Blood flow simulations in patient-specific geometries of the carotid artery: A systematic review. J. Biomech.
**2020**, 111, 110019. [Google Scholar] [CrossRef] - Zaromytidou, J.M.; Siasos, G.; Coskun, A.U.; Lucier, M.; Antoniadis, A.P.; Papafaklis, M.I.; Koskinas, K.C.; Andreou, I.; Feldman, C.L.; Stone, P.H. Intravascular hemodynamics and coronary artery disease: New insights and clinical implications. Hell. J. Cardiol.
**2016**, 57, 389–400. [Google Scholar] [CrossRef] - Doutel, E.; Carneiro, J.; Campos, J.B.L.M.; Miranda, J.M. Experimental and numerical methodology to analyze flows in a coronary bifurcation. Eur. J. Mech. B Fluids
**2018**, 67, 341–356. [Google Scholar] [CrossRef] - Abdelsalam, S.I.; Zaher, A.Z. On behavioral response of ciliated cervical canal on the development of electroosmotic forces in spermatic fluid, Modelling and Simulations of Fluid Flows. Math. Model. Nat. Phenom.
**2022**, 17, 27. [Google Scholar] [CrossRef] - Alsharif, A.M.; Abdellateef, A.I.; Elmaboud, Y.A. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: Fractional Cattaneo heat flux problem. Appl. Math. Mech.
**2022**, 43, 931–944. [Google Scholar] [CrossRef] - Abdelsalam, S.I.; Mekheimer, K.S.; Zaher, A.Z. Dynamism of a hybrid Casson nanofluid with laser radiation and chemical reaction through sinusoidal channels. Waves Random Complex Media 2022. [CrossRef]
- Nisco, G.D.; Hoogendoorn, A.; Chiastra, C.; Gallo, D.; Kok, A.M.; Morbiducci, U.; Wentzel, J.J. The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis
**2020**, 300, 39–46. [Google Scholar] [CrossRef] [PubMed] - Samady, H.; Eshtehardi, P.; McDaniel, M.C.; Suo, J.; Dhawan, S.S.; Maynard, C.; Timmins, L.H.; Quyyumi, A.A.; Giddens, D.P. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation
**2011**, 124, 779–788. [Google Scholar] [CrossRef] [Green Version] - Han, D.; Starikov, A.; Hartaigh, B.; Gransar, H.; Kolli, K.K.; Lee, J.H.; Rizvi, A.; Baskaran, L.; Schulman-Marcus, J.; Lin, F.Y.; et al. Relationship between endothelial wall shear stress and high-risk atherosclerotic plaque characteristics for identification of coronary lesions that cause ischemia: A direct comparison with fractional flow reserve. J. Am. Heart Assoc.
**2016**, 5, e004186. [Google Scholar] [CrossRef] - Siasos, G.G.; Sara, J.D.; Zaromytidou, M.; Park, K.H.; Coskun, A.U.; Lerman, L.O.; Oikonomou, E.; Maynard, C.C.; Fotiadis, D.; Stefanou, K.; et al. Local Low Shear Stress and Endothelial Dysfunction in PatientsWith Nonobstructive Coronary Atherosclerosis. J. Am. Coll. Cardiol.
**2018**, 71, 2092–2102. [Google Scholar] [CrossRef] - Soulis, J.V.; Fytanidis, D.K.; Seralidou, K.V.; Giannoglou, G.D. Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations. Hippokratia
**2014**, 18, 12–16. [Google Scholar] - Pandey, R.; Kumar, M.; Majdoubi, J.; Rahimi-Gorji, M.; Srivastav, V.K. A review study on blood in human coronary artery: Numerical approach. Comput. Methods Program. Biomed.
**2020**, 187, 105243. [Google Scholar] [CrossRef] - Carvalho, V.; Maia, I.; Souza, A.; Ribeiro, J.; Costa, P.; Puga, H.; Teixeira, S.F.C.F.; Lima, R.A. In vitro stenotic arteries to perform blood analogues flow visualizations and measurements: A Review. Open Biomed. Eng. J.
**2020**, 14, 87–102. [Google Scholar] [CrossRef] - Zuo, Y.; Estes, S.K.; Ali, R.A.; Gandhi, A.A.; Yalavarthi, S.; Shi, H.; Sule, G.; Gockman, K.; Madison, J.A.; Zuo, M.; et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med.
**2020**, 3876, 1–17. [Google Scholar] [CrossRef] - LaDisa, J.F.; Olson, L.E.; Douglas, H.A.; Warltier, D.C.; Kersten, J.R.; Pagel, P.S. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: Analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed. Eng. Online
**2006**, 5, 40. [Google Scholar] [CrossRef] [PubMed] - Griggs, R.; Wing, E.F.G. Cecil Essentials of Medicine, 9th ed.; Elsevier: New York, NY, USA, 2016; ISBN 9781437718997. [Google Scholar]
- Loth, F.; Jones, S.A.; Zarins, C.K.; Giddens, D.P.; Nassar, R.F.; Glagov, S.; Bassiouny, H.S. Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-Side Arterial Anastomoses. J. Biomech. Eng.
**2002**, 124, 44–51. [Google Scholar] [CrossRef] [PubMed] - Bassiouny, H.S.; White, S.; Glagov, S.; Choi, E.; Giddens, D.P.; Zarins, C.K. Anastomotic intimal hyperplasia: Mechanical injury or flow induced. J. Vasc. Surg.
**1992**, 15, 708–716. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Longest, P.W.; Kleinstreuer, C. Computational hemodynamics analysis and comparison study of arterio-venous grafts. J. Med. Eng. Technol.
**2000**, 24, 102–110. [Google Scholar] [CrossRef] - David, N.K. Blood Flow in Arteries. Annu. Rev. Fluid Mech.
**1997**, 29, 399–434. [Google Scholar] [CrossRef] - Fillinger, M.F.; Reinitz, E.R.; Schwartz, R.A.; Resetarits, D.E.; Paskanik, A.M. Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts. J. Vasc. Surg.
**1990**, 11, 556–566. [Google Scholar] [CrossRef] [Green Version] - Giordana, S.; Sherwin, S.J.; Peiro, J.; Doorly, D.J.; Crane, J.S.; Lee, K.E.; Cheshire, N.J.W.; Caro, C.G. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. J. Biomech. Eng.
**2005**, 127, 1087–1089. [Google Scholar] [CrossRef] - Keynton, R.S.; Evancho, M.M.; Sims, R.L.; Rodway, N.V.; Gobin, A.; Rittgers, S.E. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: An in vivo model study. J. Biomech. Eng.
**2001**, 123, 464–467. [Google Scholar] [CrossRef] - Rittgers, S.E.; Karayannacos, P.E.; Guy, J.F.; Nerem, R.M.; Shaw, G.M. Velocity distribution and intimal proliferation in autologous vein graft in dogs. Circ. Res.
**1978**, 42, 792–801. [Google Scholar] [CrossRef] [Green Version] - Sottiurai, V.S.; Yao, J.S.; Batson, R.C.; Sue, S.L.; Jones, R.; Nakamura, Y.A. Distal anastomotic intimal hyperplasia: Histopathologic character and biogenesis. Annu. Rev. Fluid Mech.
**1989**, 3, 26–33. [Google Scholar] [CrossRef] - Kamiya, A.; Togawa, T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol.
**1980**, 239, H14–H21. [Google Scholar] [CrossRef] [PubMed] - Giannadakis, A.; Perrakis, K.; Panidis, T.; Romeos, A. Experimental investigation of the Hemodynamic Field of Occluded Arteries with Double Stenosis. In Proceedings of the 10th IEEE International Workshop of Biomedical Engineering, Kos Island, Greece, 14 November 2011. [Google Scholar] [CrossRef]
- Kalogirou, I.D.; Romeos, A.; Giannadakis, A.; Perrakis, K.; Panidis, T. Flow patterns in an occluded artery with an end to side anastomosis model. A visualization study. NAUN Int. J. Biol. Biomed. Eng.
**2016**, 10, 159–167. [Google Scholar] - Romeos, A.; Giannadakis, A.; Kalogirou, I.; Perrakis, K.; Panidis, T.H. Visualization study of an occluded artery with an end-to-side anastomosis, INASE. In Proceedings of the 19th International Conference on Circuits, Systems, Communications and Computers—Continuum Mechanics, Zakynthos Island, Greece, 16–20 July 2015. [Google Scholar]
- Loth, F.; Fischer, P.F.; Bassiouny, H.S. Blood Flow in End to Side Anastomosis. Annu. Rev. Fluid Mech.
**2008**, 40, 367–393. [Google Scholar] [CrossRef] - Keynton, R.S.; Rittgers, S.E.; Shu, M.C.S. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: An in vitro model study. J. Biomech. Eng.
**1991**, 113, 458–463. [Google Scholar] [CrossRef] - Politis, A.K.; Stavropoulos, G.P.; Christolis, M.N.; Panagopoulos, P.G.; Vlachos, N.S.; Markatos, N.C. Numerical modeling of simulated blood flow in idealized composite arterial coronary grafts: Steady state simulations. J. Biomech.
**2007**, 40, 1125–1136. [Google Scholar] [CrossRef] - Sui, Y.; Ma, B.; Chu, B.; Qiao, A. Optimization of Anastomotic Configuration in CABG Surgery. Commun. Numer. Methods Eng.
**2009**, 25, 1097–1106. [Google Scholar] [CrossRef] - Politis, A.K.; Stavropoulos, G.P.; Christolis, M.N.; Panagopoulos, P.G.; Vlachos, N.S.; Markatos, N.C. Numerical modelling of simulated blood flow in idealized composite arterial coronary grafts: Transient flow. J. Biomech.
**2008**, 41, 25–39. [Google Scholar] [CrossRef] - Ansys Fluent Theory Guide, ANSYS Inc.,Release 2021R2, July 2021. Available online: www.ansys.com (accessed on 12 November 2022).
- Ghalichi, F.; Deng, X.; De Champlain, A.; Douville, Y.; King, M.; Guidoin, R. Low Reynolds number turbulence modeling of blood flow in arterial stenosis. Biorheology
**1998**, 35, 281–294. [Google Scholar] [CrossRef] - Skouras, E.D.; Paraskeva, C.A.; Valavanides, M.S.; Kalarakis, A.N.; Kalogirou, I.; Mavridis, C. Computational Investigation of Flow Field in Biological Liquids at Clinically Significant Conditions using Meshless Methods. In Proceedings of the 10th Panhellenic Science Congress Chemistry Engineering, Patras, Greece, 4–6 June 2015. [Google Scholar]
- Frankel, S.H.; Varghese, S.S. Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels. J. Biomech. Eng.
**2003**, 125, 445–460. [Google Scholar] [CrossRef] - Kabir, M.A.; Alam, M.F.; Uddin, M.A. A numerical study on the effects of Reynolds number on blood flow with spiral velocity through regular arterial stenosis. Chiang Mai J. Sci.
**2018**, 45, 2515–2527. [Google Scholar] - Carvalho, V.; Rodrigues, N.; Ribeiro, R.; Costa, P.; Teixeira, J.C.F.; Lima, R.; Teixeira, S.F.C.F. Hemodynamic study in 3D printed stenotic coronary artery models: Experimental validation and transient simulation. Comput. Methods Biomech. Biomed. Eng.
**2020**, 24, 623–626. [Google Scholar] [CrossRef] [PubMed] - Carvalho, V.; Rodrigues, N.; Lima, R.A.; Teixeira, S.F.C.F. Modeling blood pulsatile turbulent flow in stenotic coronary arteries. Int. J. Biol. Biomed. Eng.
**2020**, 14, 1998–4510. [Google Scholar] [CrossRef] - Kamangar, S.; Salman Ahmed, N.J.; Badruddin, I.A.; Al-Rawahi, N.; Husain, A.; Govindaraju, K.; Yunus Khan, T.M. Effect of stenosis on hemodynamics in left coronary artery based on patient-specific CT scan. Biomed. Mater. Eng.
**2019**, 30, 463–473. [Google Scholar] [CrossRef] [PubMed] - Banks, J.; Bressloff, N.W. Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations. J. Biomech. Eng.
**2007**, 129, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bertolotti, C.; Deplano, V. Three-dimensional numerical simulations of flow through a stenosed coronary bypass. J. Biomech.
**1999**, 33, 1011–1022. [Google Scholar] [CrossRef] - Lakin, W.D.; Stevens, S.A.; Goetz, W. A Differentiable, Periodic Function for Pulsatile Cardiac Output Based on Heart Rate and Stroke Volume. Math. Biosci.
**2003**, 182, 201–211. [Google Scholar] [CrossRef] - Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic Shear Stress and Its Role in Atherosclerosis. JAMA
**1999**, 282, 235–242. [Google Scholar] [CrossRef]

**Figure 4.**(

**a**) and (

**b**) grid sections with tetrahedral elements, (

**c**) grid segment with hexahedral elements.

**Figure 5.**Streamwise x velocity profiles at two downstream stations from the stenosis (

**a**) 0.5D, (

**b**) 8.0D.

**Figure 6.**Streamwise x velocity profiles for two condensed grids at two downstream stations from the stenosis (

**a**) 0.5D, (

**b**) 8.0D.

**Figure 10.**Comparison between computational and experimental visualization results in the anastomosis region (

**a**) Computational results of the longitudinal velocity component, (

**b**) experimental visualization results.

**Figure 11.**Identification of the cross sections for computational result presentation along with the artery model.

**Figure 12.**Streamwise velocity distribution in three cross sections with different stenosis/anastomosis flow rate ratios.

**Figure 13.**(

**A**) Cross-sectional schematic diagram of a blood vessel illustrating hemodynamic shear stress, τ

_{s}, the frictional force per unit area acting on the inner vessel wall and on the luminal surface of the endothelium as a result of the flow of viscous blood. (

**B**) Tabular diagram illustrating the range of shear stress magnitudes encountered in veins, arteries, and in low-shear and high-shear pathologic states. Adapted from Malek [52].

Grids | Number of Elements | Number of Nodes |
---|---|---|

Grid 1 | 7.65·10^{5} | 4.28·10^{5} |

Grid 2 | 1.15·10^{6} | 5.81·10^{5} |

Grid 3 | 2.45·10^{6} | 1.23·10^{6} |

Grid 4 | 3.17·10^{6} | 1.63·10^{6} |

Cases | Flow Rate Proportion | Calculation Positions | Velocity (m/s) | Re |
---|---|---|---|---|

1st | 47% | A | 0.063 | 482 |

53% | B | 0.072 | 544 | |

47% | C | 0.254 | 964 | |

100% | D | 0.135 | 1026 | |

2nd | 30% | A | 0.041 | 308 |

70% | B | 0.095 | 718 | |

30% | C | 0.162 | 616 | |

100% | D | 0.135 | 1026 | |

3rd | 15% | A | 0.02 | 154 |

85% | B | 0.115 | 872 | |

15% | C | 0.081 | 308 | |

100% | D | 0.135 | 1026 | |

4th | 0% | A | 0 | 0 |

100% | B | 0.135 | 1026 | |

0% | C | 0 | 0 | |

100% | D | 0.135 | 1026 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Parissis, P.; Romeos, A.; Giannadakis, A.; Kalarakis, A.; Peroulis, M.
Computational Study of Hemodynamic Field of an Occluded Artery Model with Anastomosis. *Bioengineering* **2023**, *10*, 146.
https://doi.org/10.3390/bioengineering10020146

**AMA Style**

Parissis P, Romeos A, Giannadakis A, Kalarakis A, Peroulis M.
Computational Study of Hemodynamic Field of an Occluded Artery Model with Anastomosis. *Bioengineering*. 2023; 10(2):146.
https://doi.org/10.3390/bioengineering10020146

**Chicago/Turabian Style**

Parissis, Panagiotis, Alexandros Romeos, Athanasios Giannadakis, Alexandros Kalarakis, and Michail Peroulis.
2023. "Computational Study of Hemodynamic Field of an Occluded Artery Model with Anastomosis" *Bioengineering* 10, no. 2: 146.
https://doi.org/10.3390/bioengineering10020146