Correlation between Body Composition and Inter-Examiner Errors for Assessing Lumbar Multifidus Muscle Size, Shape and Quality Metrics with Ultrasound Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Size
2.4. Data Collection
2.4.1. Sociodemographic and Body Composition Data
2.4.2. Examiners
2.4.3. Ultrasound Imaging Acquisition
2.4.4. Measurement of Muscle Morphology and Quality
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiles, L.K.; Hibbert, P.D.; Stephens, J.H.; Molloy, C.; Maher, C.G.; Buchbinder, R.; Moseley, G.L.; O’Sullivan, P.B.; Lin, I.; Briggs, A.M.; et al. What Constitutes “Appropriate Care” for Low Back Pain? Point-of-Care Clinical Indicators From Guideline Evidence and Experts (the STANDING Collaboration Project). Spine 2022, 47, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.; Helsby, J.; Naus, J.; Bassett, S.; Fernández-De-Las-Peñas, C.; Carnero, S.F.; Hides, J.; O’Sullivan, C.; Teyhen, D.; Stokes, M.; et al. Exploring the use of ultrasound imaging by physiotherapists: An international survey. Musculoskelet. Sci. Pract. 2020, 49, 102213. [Google Scholar] [CrossRef] [PubMed]
- So, S.; Patel, R.M.; Orebaugh, S.L. Ultrasound imaging in medical student education: Impact on learning anatomy and physical diagnosis. Anat. Sci. Educ. 2017, 10, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.F.; Barfoot, S. Implementation of Ultrasound in Anatomy Education. Adv. Exp. Med. Biol. 2021, 1317, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Romero-Morales, C.; Bravo-Aguilar, M.; Ruiz-Ruiz, B.; Almazán-Polo, J.; López-López, D.; Blanco-Morales, M.; Téllez-González, P.; Calvo-Lobo, C. Current advances and research in ultrasound imaging to the assessment and management of musculoskeletal disorders. Dis. Mon. 2021, 67, 101050. [Google Scholar] [CrossRef]
- Romero-Morales, C.; Bravo-Aguilar, M.; Abuín-Porras, V.; Almazán-Polo, J.; Calvo-Lobo, C.; Martínez-Jiménez, E.M.; López-López, D.; Navarro-Flores, E. Current advances and novel research on minimal invasive techniques for musculoskeletal disorders. Dis. Mon. 2021, 67, 101210. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Sánchez-Jorge, S.; Buffet-García, J.; Varol, U.; Fernández-de-Las-Peñas, C.; Álvarez-González, J. Changes in stiffness at active myofascial trigger points of the upper trapezius after dry needling in patients with chronic neck pain: A randomized controlled trial. Acupunct. Med. 2022, 9645284221104831. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Cendra-Martel, E.; Fernández-Rodríguez, T.; Fernández-de-Las-Peñas, C.; Gallego-Sendarrubias, G.M.; Guodemar-Pérez, J. Prediction model of rhomboid major and pleura depth based on anthropometric features to decrease the risk of pneumothorax during dry needling. Int. J. Clin. Pract. 2021, 75, e14176. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Varol, U.; Plaza-Manzano, G.; Fernández-de-Las-Peñas, C.; Agudo-Aguado, A. Regression Model Decreasing the Risk of Femoral Neurovascular Bundle Accidental Puncture. Tomography 2022, 8, 2498–2507. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Laguna-Rastrojo, L.; De-Jesús-Franco, F.; Cimadevilla-Fernández-Pola, E.; Cleland, J.A.; Fernández-De-Las-Peñas, C.; Arias-Buría, J.L. Prediction Model of Soleus Muscle Depth Based on Anthropometric Features: Potential Applications for Dry Needling. Diagnostics 2020, 10, 284. [Google Scholar] [CrossRef]
- Ribeiro-Alvares, J.B.; Dornelles, M.P.; Fritsch, C.G.; de Lima-E-Silva, F.X.; Medeiros, T.M.; Severo-Silveira, L.; Marques, V.B.; Baroni, B.M. Prevalence of Hamstring Strain Injury Risk Factors in Professional and Under-20 Male Football (Soccer) Players. J. Sport Rehabil. 2020, 29, 339–345. [Google Scholar] [CrossRef]
- Noormohammadpour, P.; Khezri, A.H.; Linek, P.; Mansournia, M.A.; Hassannejad, A.; Younesian, A.; Farahbakhsh, F.; Kordi, R. Comparison of Lateral Abdominal Muscle Thickness and Cross Sectional Area of Multifidus in Adolescent Soccer Players with and without Low Back Pain: A Case Control Study. Asian J. Sports Med. 2016, 7, e38318. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Manzano, G.; Fernández-De-Las-Peñas, C.; Cleland, J.A.; Conde-Lima, R.; Navarro-Santana, M.J.; Valera-Calero, J.A.; López-De-Uralde-Villanueva, I. Lumbar multifidus thickness changes during active leg raising with ultrasound imaging can detect patients with chronic non-specific low back pain. Musculoskelet. Sci. Pract. 2022, 62, 102670. [Google Scholar] [CrossRef]
- Cuesta-Vargas, A.I.; González-Sánchez, M. Ability to discriminate between healthy and low back pain sufferers using ultrasound during maximum lumbar extension. Arch. Phys. Med. Rehabil. 2014, 95, 1093–1099. [Google Scholar] [CrossRef]
- Batıbay, S.; Külcü, D.G.; Kaleoğlu, Ö.; Mesci, N. Effect of Pilates mat exercise and home exercise programs on pain, functional level, and core muscle thickness in women with chronic low back pain. J. Orthop. Sci. 2021, 26, 979–985. [Google Scholar] [CrossRef]
- Uluğ, N.; Yilmaz, O.T.; Kara, M.; Özçakar, L. Effects of Pilates and yoga in patients with chronic neck pain: A sonographic study. J. Rehabil. Med. 2018, 50, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Arslan, S.; Karahan, A.Y.; Oncu, F.; Bakdik, S.; Durmaz, M.S.; Tolu, I. Diagnostic Performance of Superb Microvascular Imaging and Other Sonographic Modalities in the Assessment of Lateral Epicondylosis. J. Ultrasound Med. 2018, 37, 585–593. [Google Scholar] [CrossRef]
- Bowler, N.; Shamley, D.; Davies, R. The effect of a simulated manipulation position on internal carotid and vertebral artery blood flow in healthy individuals. Man. Ther. 2011, 16, 87–93. [Google Scholar] [CrossRef]
- Dieterich, A.V.; Pickard, C.M.; Deshon, L.E.; Strauss, G.R.; Gibson, W.; Davey, P.; McKay, J. M-mode ultrasound used to detect the onset of deep muscle activity. J. Electromyogr. Kinesiol. 2015, 25, 224–231. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Sánchez-Jorge, S.; Buffet-García, J.; Varol, U.; Gallego-Sendarrubias, G.M.; Álvarez-González, J. Is Shear-Wave Elastography a Clinical Severity Indicator of Myofascial Pain Syndrome? An Observational Study. J. Clin. Med. 2021, 10, 2895. [Google Scholar] [CrossRef]
- Roots, J.; Trajano, G.S.; Fontanarosa, D. Ultrasound elastography in the assessment of post-stroke muscle stiffness: A systematic review. Insights Imaging 2022, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Valera-Calero, J.A.; Ojedo-Martín, C.; Fernández-de-Las-Peñas, C.; Cleland, J.A.; Arias-Buría, J.L.; Hervás-Pérez, J.P. Reliability and Validity of Panoramic Ultrasound Imaging for Evaluating Muscular Quality and Morphology: A Systematic Review. Ultrasound Med. Biol. 2021, 47, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.I.; Ogawa, M.; Yoshiko, A.; Akima, H. Validity of Extended-Field-of-View Ultrasound Imaging to Evaluate Quantity and Quality of Trunk Skeletal Muscles. Ultrasound Med. Biol. 2021, 47, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Naimo, M.A.; Varanoske, A.N.; Hughes, J.M.; Pasiakos, S.M. Skeletal Muscle Quality: A Biomarker for Assessing Physical Performance Capabilities in Young Populations. Front. Physiol. 2021, 12, 706699. [Google Scholar] [CrossRef]
- Larivière, C.; Henry, S.M.; Preuss, R. Structural remodeling of the lumbar multifidus, thoracolumbar fascia and lateral abdominal wall perimuscular connective tissues: A search for its potential determinants. J. Anat. 2021, 238, 536–550. [Google Scholar] [CrossRef]
- Zamani, H.; Dadgoo, M.; Akbari, M.; Sarrafzadeh, J.; Pourahmadi, M. Intra-examiner and inter-examiner reliability of rehabilitative ultrasound imaging for lumbar multifidus and anterolateral abdominal muscles in females with recurrent low back pain: An observational, cross-sectional study. J. Ultrason. 2021, 21, e286–e293. [Google Scholar] [CrossRef]
- Plaza-Manzano, G.; Navarro-Santana, M.J.; Valera-Calero, J.A.; Fabero-Garrido, R.; Fernández-de-Las-Peñas, C.; López-de-Uralde-Villanueva, I. Reliability of lumbar multifidus ultrasound assessment during the active straight leg raise test. Eur. J. Clin. Invest. 2022, 52, e13728. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Gallego-Sendarrubias, G.M.; Fernández-de-Las-Peñas, C.; Cleland, J.A.; Ortega-Santiago, R.; Arias-Buría, J.L. Panoramic Ultrasound Examination of Posterior Neck Extensors in Healthy Subjects: Intra-Examiner Reliability Study. Diagnostics 2020, 10, 740. [Google Scholar] [CrossRef]
- Hebert, J.J.; Koppenhaver, S.L.; Parent, E.C.; Fritz, J.M. A systematic review of the reliability of rehabilitative ultrasound imaging for the quantitative assessment of the abdominal and lumbar trunk muscles. Spine 2009, 34, E848–E856. [Google Scholar] [CrossRef]
- Farragher, J.; Pranata, A.; El-Ansary, D.; Parry, S.; Williams, G.; Royse, C.; Royse, A.; O’Donohue, M.; Bryant, A. Reliability of lumbar multifidus and iliocostalis lumborum thickness and echogenicity measurements using ultrasound imaging. Australas J. Ultrasound Med. 2021, 24, 151–160. [Google Scholar] [CrossRef]
- Valera-Calero, J.A.; Navarro-Santana, M.J.; Plaza-Manzano, G.; Fernández-de-Las-Peñas, C.; Ortega-Santiago, R. Identifying Demographic, Clinical, Muscular and Histological Factors Associated with Ultrasound Cervical Multifidus Measurement Errors in a Chronic Neck Pain Population. Sensors 2022, 22, 8344. [Google Scholar] [CrossRef]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; De Vet, H.C.; et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.J. A Primer of Multivariate Statistics, 2nd ed.; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- VanVoorhis, C.W.; Morgan, B.L. Understanding power and rules of thumb for determining sample sizes. Tutor. Quant. Methods Psychol. 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.N.; Krustrup, P.; Araújo Póvoas, S.C.; Castagna, C. Accuracy and reliability of the InBody 270 multi-frequency body composition analyser in 10-12-year-old children. PLoS ONE 2021, 16, e0247362. [Google Scholar] [CrossRef]
- Fortin, M.; Rosenstein, B.; Levesque, J.; Nandlall, N. Ultrasound Imaging Analysis of the Lumbar Multifidus Muscle Echo Intensity: Intra-Rater and Inter-Rater Reliability of a Novice and an Experienced Rater. Medicina 2021, 57, 512. [Google Scholar] [CrossRef]
- Skeie, E.J.; Borge, J.A.; Leboeuf-Yde, C.; Bolton, J.; Wedderkopp, N. Reliability of diagnostic ultrasound in measuring the multifidus muscle. Chiropr. Man. Therap. 2015, 23, 15. [Google Scholar] [CrossRef] [Green Version]
- Emami, M.; Rahmani, N.; Mohseni Bandpei, M.A.; Biglarian, A. Reliability of Ultrasound Imaging of the Trunk Musculature in Athletes with and without Hamstring Injuries. Arch. Bone Jt. Surg. 2020, 8, 531–536. [Google Scholar] [CrossRef]
- Henderson, A.R. Testing experimental data for univariate normality. Clin. Chim. Acta. 2006, 366, 112–129. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Chan, Y.H. Biostatistics 104: Correlational analysis. Singapore Med. J. 2003, 44, 614–619. [Google Scholar] [PubMed]
- Shriki, J. Ultrasound physics. Crit. Care Clin. 2014, 30, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, J.E. Basic physics of ultrasound imaging. Crit. Care Med. 2007, 35 (Suppl. 5), S131–S137. [Google Scholar] [CrossRef] [PubMed]
- Sahlani, L.; Thompson, L.; Vira, A.; Panchal, A.R. Bedside ultrasound procedures: Musculoskeletal and non-musculoskeletal. Eur. J. Trauma Emerg. Surg. 2016, 42, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.A. Medical ultrasound imaging. Prog. Biophys. Mol. Biol. 2007, 93, 153–165. [Google Scholar] [CrossRef]
- Lieu, D. Ultrasound physics and instrumentation for pathologists. Arch. Pathol. Lab. Med. 2010, 134, 1541–1556. [Google Scholar] [CrossRef]
- Long, Z.; Zhou, W.; Tradup, D.J.; Stekel, S.F.; Callstrom, M.R.; Hangiandreou, N.J. Systematic optimization of ultrasound grayscale imaging presets and its application in abdominal scanning. J. Appl. Clin. Med. Phys. 2020, 21, 192–199. [Google Scholar] [CrossRef]
- Carpentier, B.; Hayward, J.; Strachowski, L. Enhancing Your Acoustics: Ultrasound Image Optimization of Breast Lesions. J. Ultrasound Med. 2017, 36, 1479–1485. [Google Scholar] [CrossRef]
- Lagalla, R.; Midiri, M. Image quality control in breast ultrasound. Eur. J. Radiol. 1998, 27 (Suppl. 2), S229–S233. [Google Scholar] [CrossRef]
- Enriquez, J.L.; Wu, T.S. An introduction to ultrasound equipment and knobology. Crit. Care Clin. 2014, 30, 25–45. [Google Scholar] [CrossRef]
- Santoro, A.; Guidarelli, G.; Ostan, R.; Giampieri, E.; Fabbri, C.; Bertarelli, C.; Nicoletti, C.; Kadi, F.; de Groot, L.C.P.G.M.; Feskens, E.; et al. Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study. Eur. Radiol. 2019, 29, 4968–4979. [Google Scholar] [CrossRef] [Green Version]
- Al-Sofiani, M.E.; Ganji, S.S.; Kalyani, R.R. Body composition changes in diabetes and aging. J. Diabetes Complicat. 2019, 33, 451–459. [Google Scholar] [CrossRef]
- Goubert, D.; Oosterwijck, J.V.; Meeus, M.; Danneels, L. Structural Changes of Lumbar Muscles in Non-specific Low Back Pain: A Systematic Review. Pain Physician 2016, 19, E985–E1000. [Google Scholar]
- Toda, Y.; Segal, N.; Toda, T.; Morimoto, T.; Ogawa, R. Lean body mass and body fat distribution in participants with chronic low back pain. Arch. Intern. Med. 2000, 160, 3265–3269. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, M.; Fankhauser, G.; Meichtry, A.; Luomajoki, H. Correlation between lumbar dysfunction and fat infiltration in lumbar multifidus muscles in patients with low back pain. BMC Musculoskelet. Disord. 2017, 18, 12. [Google Scholar] [CrossRef] [Green Version]
- Khattab, K.; Dziesinski, L.K.; Crawford, R.; Ballatori, A.; Nyayapati, P.; Krug, R.; Fields, A.; O’Neill, C.W.; Lotz, J.C.; Bailey, J.F. Spatial distribution of fat infiltration within the paraspinal muscles: Implications for chronic low back pain. Eur. Spine J. 2022, 31, 2875–2883. [Google Scholar] [CrossRef]
- Nakamura, M.; Otani, K.; Kaneko, Y.; Sekiguchi, M.; Konno, S.I. The Relationship between Exercise-Induced Low Back Pain, the Fat Infiltration Rate of Paraspinal Muscles, and Lumbar Sagittal Balance. Spine Surg. Relat. Res. 2021, 6, 261–270. [Google Scholar] [CrossRef]
- Faur, C.; Patrascu, J.M.; Haragus, H.; Anglitoiu, B. Correlation between multifidus fatty atrophy and lumbar disc degeneration in low back pain. BMC Musculoskelet. Disord. 2019, 20, 414. [Google Scholar] [CrossRef] [Green Version]
- Javanshir, K.; Amiri, M.; Mohseni-Bandpei, M.A.; Rezasoltani, A.; Fernández-de-las-Peñas, C. Ultrasonography of the cervical muscles: A critical review of the literature. J. Manip. Physiol. Ther. 2010, 33, 630–637. [Google Scholar] [CrossRef]
Variables | Total Sample (n = 49) | Gender | Side | ||
---|---|---|---|---|---|
Male (n = 24) | Female (n = 25) | Left (n = 48) | Right (n = 50) | ||
Body Composition Characteristics | |||||
Age (y) | 22.0 ± 6.1 | 23.2 ± 7.0 | 20.1 ± 4.9 | - | - |
Height (m) * | 1.72 ± 0.08 | 1.79 ± 0.05 | 1.67 ± 0.06 | - | - |
Weight (kg) * | 71.6 ± 13.7 | 78.8 ± 10.3 | 65.0 ± 13.2 | - | - |
Body mass index (kg/m2) | 24.0 ± 4.4 | 24.7 ± 3.8 | 23.4 ± 4.9 | - | - |
Fat mass | |||||
Total mass (kg) * | 17.3 ± 9.5 | 14.2 ± 8.5 | 20.1 ± 9.6 | - | - |
Total percentage (%) * | 23.7 ± 10.3 | 17.3 ± 8.2 | 29.6 ± 8.3 | - | - |
Trunk mass (kg) ** | 8.7 ± 5.2 | 7.4 ± 4.8 | 10.0 ± 5.2 | - | - |
Trunk percentage (%) * | 11.8 ± 5.6 | 8.9 ± 4.8 | 14.5 ± 4.9 | - | - |
Lean Mass | |||||
Total mass (kg) * | 41.0 ± 17.0 | 49.7 ± 17.6 | 33.1 ± 11.8 | - | - |
Total percentage (%) * | 57.0 ± 19.8 | 63.2 ± 21.2 | 51.3 ± 16.6 | - | - |
Trunk mass (kg) * | 26.9 ± 6.9 | 31.7 ± 6.1 | 22.4 ± 4.2 | - | - |
Trunk percentage (%) * | 37.6 ± 6.9 | 40.5 ± 7.0 | 34.9 ± 5.6 | - | - |
Water volume (L) * | 40.0 ± 8.3 | 47.2 ± 4.8 | 33.4 ± 4.4 | - | - |
Lumbar Multifidus Ultrasound Characteristics | |||||
Cross-sectional area (cm2) ** | 5.2 ± 3.7 | 6.4 ± 4.3 | 4.4 ± 2.8 | 5.5 ± 4.0 | 5.6 ± 4.3 |
Muscle perimeter (cm) ** | 8.6 ± 3.4 | 9.6 ± 3.9 | 7.8 ± 2.6 | 8.5 ± 3.3 | 8.5 ± 3.4 |
Circularity (0–1) | 0.84 ± 0.05 | 0.83 ± 0.05 | 0.84 ± 0.05 | 0.83 ± 0.04 | 0.84 ± 0.05 |
Aspect ratio | 1.46 ± 0.22 | 1.44 ± 0.25 | 1.48 ± 0.22 | 1.46 ± 0.25 | 1.46 ± 0.22 |
Roundness | 0.70 ± 0.10 | 0.71 ± 0.11 | 0.68 ± 0.09 | 0.70 ± 0.11 | 0.70 ± 0.10 |
Solidity | 0.98 ± 0.02 | 0.98 ± 0.02 | 0.99 ± 0.01 | 0.99 ± 0.02 | 0.99 ± 0.02 |
Mean echo intensity (0–255) * | 44.9 ± 10.8 | 40.9 ± 8.7 | 48.2 ± 11.6 | 44.7 ± 11.1 | 45.1 ± 10.7 |
Variables | Experienced Examiner | Novel Examiner | Absolute Error | ICC3,2 (95% CI) | SEM | MDC95 |
---|---|---|---|---|---|---|
Cross-sectional area (cm2) | 5.0 ± 3.5 | 5.4 ± 4.0 | 1.1 ± 1.1 | 0.958 (0.934; 0.973) | 0.7 | 2.0 |
Muscle Perimeter (cm) | 8.6 ± 3.4 | 8.6 ± 3.5 | 0.9 ± 0.9 | 0.963 (0.942; 0.976) | 0.6 | 1.8 |
Circularity (0–1) | 0.84 ± 0.05 | 0.84 ± 0.06 | 0.04 ± 0.03 | 0.716 (0.560; 0.817) | 0.03 | 0.07 |
Aspect Ratio | 1.49 ± 0.27 | 1.42 ± 0.24 | 0.19 ± 0.16 | 0.710 (0.550; 0.813) | 0.15 | 0.40 |
Roundness | 0.69 ± 0.12 | 0.72 ± 0.11 | 0.09 ± 0.07 | 0.707 (0.546; 0.811) | 0.06 | 0.18 |
Solidity | 0.99 ± 0.01 | 0.98 ± 0.02 | 0.01 ± 0.01 | 0.767 (0.639; 0.850) | 0.00 | 0.01 |
Mean echo intensity (0–255) | 45.6 ± 12.0 | 44.2 ± 11.0 | 5.8 ± 5.2 | 0.873 (0.802; 0.918) | 4.3 | 11.8 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Age | |||||||||||||||
2. Height | 0.155 * | ||||||||||||||
3. Weight | 0.208 ** | 0.519 ** | |||||||||||||
4. Body mass index | n.s. | n.s. | 0.833 ** | ||||||||||||
5. Total fat mass | n.s. | −0.330 ** | 0.530 ** | 0.829 ** | |||||||||||
6. Trunk fat mass | n.s. | n.s. | 0.307 ** | 0.558 ** | 0.495 ** | ||||||||||
7. Total lean mass | n.s. | 0.284 ** | 0.171 * | 0.409 ** | n.s. | 0.747 ** | |||||||||
8. Trunk lean mass | n.s. | 0.290 ** | 0.228 ** | n.s. | n.s. | 0.643 ** | 0.880 ** | ||||||||
9. Water volume | n.s. | 0.207 ** | n.s. | 0.458 ** | n.s. | 0.803 ** | 0.966 ** | 0.864 ** | |||||||
10. Cross-sectional area error | 0.390 ** | n.s. | 0.250 * | n.s. | n.s. | n.s. | 0.411 ** | 0.404 ** | −0.285 * | ||||||
11. Muscle perimeter error | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |||||
12. Circularity error | 0.221 * | n.s. | n.s. | n.s. | n.s. | n.s. | 0.271 * | n.s. | n.s. | 0.677 ** | n.s. | ||||
13. Aspect Ratio error | 0.243 * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |||
14. Roundness error | 0.336 ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | 0.348 ** | ||
15. Solidity error | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | 0.223 * | 0.359 ** | 0.872 ** | |
16. Mean echo intensity error | 0.276 * | n.s. | n.s. | n.s. | n.s. | n.s. | 0.422 ** | 0.314 ** | n.s. | 0.221 * | 0.252 * | 0.250 * | 0.357 ** | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varol, U.; Sánchez-Jiménez, E.; Leloup, E.A.A.; Navarro-Santana, M.J.; Fernández-de-las-Peñas, C.; Sánchez-Jorge, S.; Valera-Calero, J.A. Correlation between Body Composition and Inter-Examiner Errors for Assessing Lumbar Multifidus Muscle Size, Shape and Quality Metrics with Ultrasound Imaging. Bioengineering 2023, 10, 133. https://doi.org/10.3390/bioengineering10020133
Varol U, Sánchez-Jiménez E, Leloup EAA, Navarro-Santana MJ, Fernández-de-las-Peñas C, Sánchez-Jorge S, Valera-Calero JA. Correlation between Body Composition and Inter-Examiner Errors for Assessing Lumbar Multifidus Muscle Size, Shape and Quality Metrics with Ultrasound Imaging. Bioengineering. 2023; 10(2):133. https://doi.org/10.3390/bioengineering10020133
Chicago/Turabian StyleVarol, Umut, Elena Sánchez-Jiménez, Emma Alyette Adélaïde Leloup, Marcos José Navarro-Santana, César Fernández-de-las-Peñas, Sandra Sánchez-Jorge, and Juan Antonio Valera-Calero. 2023. "Correlation between Body Composition and Inter-Examiner Errors for Assessing Lumbar Multifidus Muscle Size, Shape and Quality Metrics with Ultrasound Imaging" Bioengineering 10, no. 2: 133. https://doi.org/10.3390/bioengineering10020133
APA StyleVarol, U., Sánchez-Jiménez, E., Leloup, E. A. A., Navarro-Santana, M. J., Fernández-de-las-Peñas, C., Sánchez-Jorge, S., & Valera-Calero, J. A. (2023). Correlation between Body Composition and Inter-Examiner Errors for Assessing Lumbar Multifidus Muscle Size, Shape and Quality Metrics with Ultrasound Imaging. Bioengineering, 10(2), 133. https://doi.org/10.3390/bioengineering10020133