Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches
Abstract
:1. Introduction
2. Structure of Family B DNA Polymerases
3. DNA Polymerases Not Blocked by 2′-Deoxyuridine
4. Blockage of 3′→5′-Exonuclease Activity
5. Increasing the Fidelity
6. Increasing Processivity
7. DNA Polymerases with Altered Substrate Specificity
- Efficient synthesis of tPhoNA (3′-2′-phosphonomethyl-threosyl nucleic acid) was described for the TgoT EPFLH, which contains mutations Val93Gln, Asp141Ala, Glu143Ala, His147Glu, Leu403Pro, Leu408Phe, Ala485Leu, Ile521Leu, and Glu664His [63].
- Another variant of DNA polymerase Tgo is the TGLLK mutant form, which contains substitutions Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Tyr409Gly, Ile521Leu, Phe545Leu, and Glu664Lys and can perform template-dependent DNA and RNA synthesis with regioisomeric 2′-5′-bonds [64].
- Efficient synthesis of XNAs—in which the canonical ribofuranose ring is substituted with five- or six-membered congeners constituting 1,5-anhydrohexitol nucleic acids—was documented for the Pol6G12 mutant form, which contains 18 amino acid substitutions (Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Val589Ala, Glu609Lys, Ile610Met, Lys659Gln, Glu664Gln, Gln665Pro, Arg668Lys, Asp669Gln, Lys671His, Lys674Arg, Thr676Arg, Ala681Ser, Leu704Pro, and Glu730Gly) [65].
- Efficient synthesis of CeNAs (cyclohexenyl nucleic acids) and of LNAs (2′-O,4′-C-methylene-b-D-ribonucleic acids, i.e., locked nucleic acids) was described for the PolC7 mutant form (amino acid substitutions Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu654Gln, Glu658Gln, Lys659Gln, Val661Ala, Glu664Gln, Gln665Pro, Asp669Ala, Lys671Gln, Thr676Lys, and Arg709Lys) [65].
- Efficient synthesis of ANAs (arabinonucleic acids) and of FANAs (2′-fluoro-arabinonucleic acids) has been described for the PolD4K mutant form (amino acid substitutions Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Leu403Pro, Pro657Thr, Glu658Gln, Lys659His, Tyr663His, Glu664Lys, Asp669Ala, Lys671Asn, and Thr676Ile) [65].
- Efficient DNA-templated synthesis of uncharged P-methyl and P-ethyl phosphonate nucleic acids (phNAs) has been described for the RT521 mutant form (amino acid substitutions Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, and Lys726Arg) and GV2 mutant form (amino acid substitutions Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, and Lys726Arg, Lys487Gly, Arg606Val, and Arg613Val) [66].
- Efficient synthesis of 2′-MOE-RNA and 2′-OMe-RNA has been described for the 2M mutant form (amino acid substitutions Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Tyr409Gly, Ile521Leu, Phe545Leu, Glu664Lys, Thr541Gly, and Lys592Ala) and 3M mutant form (amino acid substitutions Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Tyr409Gly, Ile521Leu, Phe545Leu, Glu664Lys, Thr541Gly, Lys592Ala, and Lys664Arg) [67].
7.1. DNA Polymerases with Elevated Sensitivity to Methylated DNA
7.2. DNA Polymerases with Properties of RNA Polymerase
7.3. DNA Polymerases with Reverse-Transcriptase Properties
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aschenbrenner, J.; Marx, A. DNA Polymerases and Biotechnological Applications. Curr. Opin. Biotechnol. 2017, 48, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Ishino, S.; Ishino, Y. DNA Polymerases as Useful Reagents for Biotechnology—The History of Developmental Research in the Field. Front. Microbiol. 2014, 5, 465. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR Past, Present and Future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Terpe, K. Overview of Thermostable DNA Polymerases for Classical PCR Applications: From Molecular and Biochemical Fundamentals to Commercial Systems. Appl. Microbiol. Biotechnol. 2013, 97, 10243–10254. [Google Scholar] [CrossRef]
- Coulther, T.A.; Stern, H.R.; Beuning, P.J. Engineering Polymerases for New Functions. Trends Biotechnol. 2019, 37, 1091–1103. [Google Scholar] [CrossRef]
- Houlihan, G.; Arangundy-Franklin, S.; Holliger, P. Engineering and Application of Polymerases for Synthetic Genetics. Curr. Opin. Biotechnol. 2017, 48, 168–179. [Google Scholar] [CrossRef]
- Kranaster, R.; Marx, A. Engineered DNA Polymerases in Biotechnology. ChemBioChem 2010, 11, 2077–2084. [Google Scholar] [CrossRef]
- Śpibida, M.; Krawczyk, B.; Olszewski, M.; Kur, J. Modified DNA Polymerases for PCR Troubleshooting. J. Appl. Genet. 2017, 58, 133–142. [Google Scholar] [CrossRef]
- Pinheiro, V.B. Engineering-Driven Biological Insights into DNA Polymerase Mechanism. Curr. Opin. Biotechnol. 2019, 60, 9–16. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, M.; Xu, J.; Huang, Y. Archaeal DNA Polymerases in Biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 6585–6597. [Google Scholar] [CrossRef]
- Nikoomanzar, A.; Chim, N.; Yik, E.J.; Chaput, J.C. Engineering Polymerases for Applications in Synthetic Biology. Q. Rev. Biophys. 2020, 53, e8. [Google Scholar] [CrossRef] [PubMed]
- Hübscher, U.; Spadari, S.; Villani, G.; Maga, G. DNA Polymerases Discovery, Characterization and Functions in Cellular DNA Transactions.; World Scientific Publishing Company: Singapore, 2010; ISBN 978-981-4299-16-9. [Google Scholar]
- Garcia-Diaz, M.; Bebenek, K. Multiple Functions of DNA Polymerases. CRC. Crit. Rev. Plant Sci. 2007, 26, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Alba, M.M. Replicative DNA Polymerases. Genome Biol. 2001, 2, reviews3002.1. [Google Scholar] [CrossRef]
- Miller, E.S.; Kutter, E.; Mosig, G.; Arisaka, F.; Kunisawa, T.; Rüger, W. Bacteriophage T4 Genome. Microbiol. Mol. Biol. Rev. 2003, 67, 86–156. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.C.; Park, H.W.; Mao, C.; Beese, L.S. Crystal Structure of a Pol α Family DNA Polymerase from the Hyperthermophilic Archaeon Thermococcus Sp. 9°N-7. J. Mol. Biol. 2000, 299, 447–462. [Google Scholar] [CrossRef]
- Kazlauskas, D.; Krupovic, M.; Guglielmini, J.; Forterre, P.; Venclovas, C.S. Diversity and Evolution of B-Family DNA Polymerases. Nucleic Acids Res. 2020, 48, 10142–10156. [Google Scholar] [CrossRef]
- Joyce, C.M.; Steitz, T.A. Function and Structure Relationships in DNA Polymerases. Annu. Rev. Biochem. 1994, 63, 777–822. [Google Scholar] [CrossRef]
- Hashimoto, H.; Nishioka, M.; Fujiwara, S.; Takagi, M.; Imanaka, T.; Inoue, T.; Kai, Y. Crystal Structure of DNA Polymerase from Hyperthermophilic Archaeon Pyrococcus Kodakaraensis KOD1. J. Mol. Biol. 2001, 306, 469–477. [Google Scholar] [CrossRef]
- Kropp, H.M.; Betz, K.; Wirth, J.; Diederichs, K.; Marx, A. Crystal Structures of Ternary Complexes of Archaeal B-Family DNA Polymerases. PLoS ONE 2017, 12, e0188005. [Google Scholar] [CrossRef]
- Kuroita, T.; Matsumura, H.; Yokota, N.; Kitabayashi, M.; Hashimoto, H.; Inoue, T.; Imanaka, T.; Kai, Y. Structural Mechanism for Coordination of Proofreading and Polymerase Activities in Archaeal DNA Polymerases. J. Mol. Biol. 2005, 351, 291–298. [Google Scholar] [CrossRef]
- Li, V.; Hogg, M.; Reha-Krantz, L.J. Identification of a New Motif in Family B DNA Polymerases by Mutational Analyses of the Bacteriophage T4 DNA Polymerase. J. Mol. Biol. 2010, 400, 295–308. [Google Scholar] [CrossRef]
- Fogg, M.J.; Pearl, L.H.; Connolly, B.A. Structural Basis for Uracil Recognition by Archaeal Family B DNA Polymerases. Nat. Struct. Biol. 2002, 9, 922–927. [Google Scholar] [CrossRef]
- Firbank, S.J.; Wardle, J.; Heslop, P.; Lewis, R.J.; Connolly, B.A. Uracil Recognition in Archaeal DNA Polymerases Captured by X-Ray Crystallography. J. Mol. Biol. 2008, 381, 529–539. [Google Scholar] [CrossRef]
- LinWu, S.W.; Tu, Y.H.; Tsai, T.Y.; Maestre-Reyna, M.; Liu, M.S.; Wu, W.J.; Huang, J.Y.; Chi, H.W.; Chang, W.H.; Chiou, C.F.; et al. Thermococcus Sp. 9°N DNA Polymerase Exhibits 3′-Esterase Activity that Can be Harnessed for DNA Sequencing. Commun. Biol. 2019, 2, 224. [Google Scholar] [CrossRef]
- Cline, J.; Braman, J.C.; Hogrefe, H.H. PCR Fidelity of Pfu DNA Polymerase and Other Thermostable DNA Polymerases. Nucleic Acids Res. 1996, 24, 3546–3551. [Google Scholar] [CrossRef]
- Takagi, M.; Nishioka, M.; Kakihara, H.; Kitabayashi, M.; Inoue, H.; Kawakami, B.; Oka, M.; Imanaka, T. Characterization of DNA Polymerase from Pyrococcus Sp. Strain KOD1 and Its Application to PCR. Appl. Environ. Microbiol. 1997, 63, 4504. [Google Scholar] [CrossRef]
- Dietrich, J.; Schmitt, P.; Zieger, M.; Preve, B.; Rolland, J.L.; Chaabihi, H.; Gueguen, Y. PCR Performance of the Highly Thermostable Proof-Reading B-Type DNA Polymerase from Pyrococcus Abyssi. FEMS Microbiol. Lett. 2002, 217, 89–94. [Google Scholar] [CrossRef]
- Dąbrowski, S.; Kiær Ahring, B. Cloning, Expression, and Purification of the His6-Tagged Hyper-Thermostable DUTPase from Pyrococcus Woesei in Escherichia Coli: Application in PCR. Protein Expr. Purif. 2003, 31, 72–78. [Google Scholar] [CrossRef]
- Cambon-Bonavita, M.A.; Schmitt, P.; Zieger, M.; Flaman, J.M.; Lesongeur, F.; Raguénès, G.; Bindel, D.; Frisch, N.; Lakkis, Z.; Dupret, D.; et al. Cloning, Expression, and Characterization of DNA Polymerase I from the Hyperthermophilic Archaea Thermococcus Fumicolans. Extremophiles 2000, 4, 215–225. [Google Scholar] [CrossRef]
- Bonch-Osmolovskaya, E.; Svetlichny, V.; Ankenbauer, W.; SchmitzAgheguian, G.; Angerer, B.; Ebenbichler, C.; Laue, F. Thermostable Nucleic Acid Polymerase from Thermococcus Gorgonarius. Patent Appl. No EP0834570A1, 8 April 1998. [Google Scholar]
- Mattila, P.; Korpela, J.; Tenkanen, T.; Pitkämem, K. Fidelity of DNA Synthesis by the Thermococcus Litoralis DNA Polymerase—An Extremely Heat Stable Enzyme with Proofreading Activity. Nucleic Acids Res. 1991, 19, 4967. [Google Scholar] [CrossRef]
- Diaz, R.S.; Sabino, E.C. Accuracy of Replication in the Polymerase Chain Reaction. Comparison between Thermotoga Maritima DNA Polymerase and Thermus Aquaticus DNA Polymerase. Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Medicas Biol. 1998, 31, 1239–1242. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.S.; Bae, S.S.; Jeon, J.H.; Lim, J.K.; Cho, Y.; Nam, K.H.; Kang, S.G.; Kim, S.J.; Kwon, S.T.; et al. Cloning, Purification, and Characterization of a New DNA Polymerase from a Hyperthermophilic Archaeon, Thermococcus Sp. NA1. J. Microbiol. Biotechnol. 2007, 17, 1090–1097. [Google Scholar]
- Chatterjee, D.K.; Potomac, N.; Hughes, J. Cloned DNA Polymerases from Thermotoga Neopolitana. Patent Appl. No U.S. 6444424B1, 3 September 2002. [Google Scholar]
- Lee, J.I.; Kim, Y.J.; Bae, H.; Cho, S.S.; Lee, J.-H.; Kwon, S.-T. Biochemical Properties and PCR Performance of a Family B DNA Polymerase from Hyperthermophilic Euryarchaeon Thermococcus Peptonophilus. Appl. Biochem. Biotechnol. 2010, 160, 1585–1599. [Google Scholar] [CrossRef]
- Griffiths, K.; Nayak, S.; Park, K.; Mandelman, D.; Modrell, B.; Lee, J.; Ng, B.; Gibbs, M.D.; Bergquist, P.L. New High Fidelity Polymerases from Thermococcus Species. Protein Expr. Purif. 2007, 52, 19–30. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, D.; Shi, H.; Wu, M.; Gan, Q.; Yang, Z.; Oger, P. Characterization and Application of a Family B DNA Polymerase from the Hyperthermophilic and Radioresistant Euryarchaeon Thermococcus Gammatolerans. Int. J. Biol. Macromol. 2020, 156, 217–224. [Google Scholar] [CrossRef]
- Ali, S.F.; Rashid, N.; Imanaka, T.; Akhtar, M. Family B DNA Polymerase from a Hyperthermophilic Archaeon Pyrobaculum Calidifontis: Cloning, Characterization and PCR Application. J. Biosci. Bioeng. 2011, 112, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.J.; Cho, S.S.; Ppyun, H.W.; Youn, M.H.; Kim, S.H.; Seo, B.S.; Kwon, S.T. Characterization of a Family B DNA Polymerase from the Hyperthermophilic Crenarchaeon Ignicoccus Hospitalis KIN4/I and Its Application to PCR. Appl. Biochem. Biotechnol. 2014, 173, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Connolly, B.A. Recognition of Deaminated Bases by Archaeal Family-B DNA Polymerases. Biochem. Soc. Trans. 2009, 37, 65–68. [Google Scholar] [CrossRef]
- Tubeleviciute, A.; Skirgaila, R. Compartmentalized Self-Replication (CSR) Selection of Thermococcus Litoralis Sh1B DNA Polymerase for Diminished Uracil Binding. Protein Eng. Des. Sel. 2010, 23, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.M.; Hergott, C.; Dewhurst, S.; Kim, B. The Mechanistic Architecture of Thermostable Pyrococcus Furiosus Family B DNA Polymerase Motif A and Its Interaction with the DNTP Substrate. Biochemistry 2009, 48, 11161–11168. [Google Scholar] [CrossRef]
- Skirgaila, R.; Rimseliene, R.; Sukackaite, R.; Simutyte, M.; Valinskyte, S.; MatjosaitisTIS, K.; Ukanis, M. Thermophilic DNA Polymerase Mutants. Patent WO2017121836A1, 20 July 2017. [Google Scholar]
- Wang, Y.; Prosen, D.E.; Mei, L.; Sullivan, J.C.; Finney, M.; Vander Horn, P.B. A Novel Strategy to Engineer DNA Polymerases for Enhanced Processivity and Improved Performance In Vitro. Nucleic Acids Res. 2004, 32, 1197–1207. [Google Scholar] [CrossRef]
- Elshawadfy, A.M.; Keith, B.J.; Ee Ooi, H.; Kinsman, T.; Heslop, P.; Connolly, B.A. DNA Polymerase Hybrids Derived from the Family-B Enzymes of Pyrococcus Furiosus and Thermococcus Kodakarensis: Improving Performance in the Polymerase Chain Reaction. Front. Microbiol. 2014, 5, 224. [Google Scholar] [CrossRef]
- Cho, S.S.; Yu, M.; Kwon, S.T. Mutations in the Palm Subdomain of Twa DNA Polymerase to Enhance PCR Efficiency and Its Function Analysis. J. Biotechnol. 2014, 184, 39–46. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.S.; Kwon, S.T.; Lee, J.H.; Kang, S.G. Enhancing the Processivity of a Family B-Type DNA Polymerase of Thermococcus Onnurineus and Application to Long PCR. Biotechnol. Lett. 2014, 36, 985–992. [Google Scholar] [CrossRef]
- Kim, K.P.; Cho, S.S.; Lee, K.K.; Youn, M.H.; Kwon, S.T. Improved Thermostability and PCR Efficiency of Thermococcus Celericrescens DNA Polymerase via Site-Directed Mutagenesis. J. Biotechnol. 2011, 155, 156–163. [Google Scholar] [CrossRef]
- Ppyun, H.; Kim, I.; Cho, S.S.; Seo, K.J.; Yoon, K.; Kwon, S.T. Improved PCR Performance Using Mutant Tpa-S DNA Polymerases from the Hyperthermophilic Archaeon Thermococcus Pacificus. J. Biotechnol. 2012, 164, 363–370. [Google Scholar] [CrossRef]
- Cho, S.S.; Yu, M.; Kim, S.H.; Kwon, S.T. Enhanced PCR Efficiency of High-Fidelity DNA Polymerase from Thermococcus Waiotapuensis. Enzyme Microb. Technol. 2014, 63, 39–45. [Google Scholar] [CrossRef]
- Ralec, C.; Henry, E.; Lemor, M.; Killelea, T.; Henneke, G. Calcium-Driven DNA Synthesis by a High-Fidelity DNA Polymerase. Nucleic Acids Res. 2017, 45, 12425–12440. [Google Scholar] [CrossRef]
- Gardner, A.F.; Jack, W.E. Acyclic and Dideoxy Terminator Preferences Denote Divergent Sugar Recognition by Archaeon and Taq DNA Polymerases. Nucleic Acids Res. 2002, 30, 605–613. [Google Scholar] [CrossRef]
- Gardner, A.F.; Joyce, C.M.; Jack, W.E. Comparative Kinetics of Nucleotide Analog Incorporation by Vent DNA Polymerase. J. Biol. Chem. 2004, 279, 11834–11842. [Google Scholar] [CrossRef]
- Gardner, A.F.; Jack, W.E. Determinants of Nucleotide Sugar Recognition in an Archaeon DNA Polymerase. Nucleic Acids Res. 1999, 27, 2545–2553. [Google Scholar] [CrossRef]
- Dunn, M.R.; Otto, C.; Fenton, K.E.; Chaput, J.C. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures. ACS Chem. Biol. 2016, 11, 1210–1219. [Google Scholar] [CrossRef]
- Nikoomanzar, A.; Vallejo, D.; Chaput, J.C. Elucidating the Determinants of Polymerase Specificity by Microfluidic-Based Deep Mutational Scanning. ACS Synth. Biol. 2019, 8, 1421–1429. [Google Scholar] [CrossRef]
- Nikoomanzar, A.; Vallejo, D.; Yik, E.J.; Chaput, J.C. Programmed Allelic Mutagenesis of a DNA Polymerase with Single Amino Acid Resolution. ACS Synth. Biol. 2020, 9, 1873–1881. [Google Scholar] [CrossRef]
- Medina, E.; Yik, E.J.; Herdewijn, P.; Chaput, J.C. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology. ACS Synth. Biol. 2021, 10, 1429–1437. [Google Scholar] [CrossRef]
- Li, Q.; Maola, V.A.; Chim, N.; Hussain, J.; Lozoya-Colinas, A.; Chaput, J.C. Synthesis and Polymerase Recognition of Threose Nucleic Acid Triphosphates Equipped with Diverse Chemical Functionalities. J. Am. Chem. Soc. 2021, 143, 17761–17768. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, H.; Kasahara, Y.; Kuwahara, M.; Obika, S. DNA Polymerase Variants with High Processivity and Accuracy for Encoding and Decoding Locked Nucleic Acid Sequences. J. Am. Chem. Soc. 2020, 142, 21530–21537. [Google Scholar] [CrossRef]
- Zhai, L.; Wang, Z.; Fen, L.; Xu, C.; Wang, J.; Han, H.; Xie, Q.; Zhang, W.; Zheng, Y.; Buell, A.K.; et al. Semi-Rational Evolution of a Recombinant DNA Polymerase for Modified Nucleotide Incorporation Efficiency. bioRxiv 2023. [Google Scholar] [CrossRef]
- Liu, C.; Cozens, C.; Jaziri, F.; Rozenski, J.; Maréchal, A.; Dumbre, S.; Pezo, V.; Marlière, P.; Pinheiro, V.B.; Groaz, E.; et al. Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers. J. Am. Chem. Soc. 2018, 140, 6690–6699. [Google Scholar] [CrossRef]
- Cozens, C.; Mutschler, H.; Nelson, G.M.; Houlihan, G.; Taylor, A.I.; Holliger, P. Enzymatic Synthesis of Nucleic Acids with Defined Regioisomeric 2′-5′ Linkages. Angew. Chem.—Int. Ed. 2015, 54, 15570–15573. [Google Scholar] [CrossRef]
- Pinheiro, V.B.; Taylor, A.I.; Cozens, C.; Abramov, M.; Renders, M.; Zhang, S.; Chaput, J.C.; Wengel, J.; Peak-Chew, S.-Y.; McLaughlin, S.H.; et al. Synthetic Genetic Polymers Capable of Heredity and Evolution. Science 2012, 336, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Arangundy-Franklin, S.; Taylor, A.I.; Porebski, B.T.; Genna, V.; Peak-Chew, S.; Vaisman, A.; Woodgate, R.; Orozco, M.; Holliger, P. A Synthetic Genetic Polymer with an Uncharged Backbone Chemistry Based on Alkyl Phosphonate Nucleic Acids. Nat. Chem. 2019, 11, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Freund, N.; Taylor, A.I.; Arangundy-Franklin, S.; Subramanian, N.; Peak-Chew, S.-Y.; Whitaker, A.M.; Freudenthal, B.D.; Abramov, M.; Herdewijn, P.; Holliger, P. A Two-Residue Nascent-Strand Steric Gate Controls Synthesis of 2′-O-Methyl- and 2′-O-(2-Methoxyethyl)-RNA. Nat. Chem. 2023, 15, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Houlihan, G.; Arangundy-Franklin, S.; Porebski, B.T.; Subramanian, N.; Taylor, A.I.; Holliger, P. Discovery and Evolution of RNA and XNA Reverse Transcriptase Function and Fidelity. Nat. Chem. 2020, 12, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Du, Y.; Ma, X.; Ye, F.; Qin, Y.; Wang, Y.; Xiang, Y.; Tao, R.; Chen, T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int. J. Mol. Sci. 2022, 23, 14969. [Google Scholar] [CrossRef]
- Cozens, C.; Pinheiro, V.B.; Vaisman, A.; Woodgate, R.; Holliger, P. A Short Adaptive Path from DNA to RNA Polymerases. Proc. Natl. Acad. Sci. USA 2012, 109, 8067–8072. [Google Scholar] [CrossRef]
- Staiger, N.; Marx, A. A DNA Polymerase with Increased Reactivity for Ribonucleotides and C5-Modified Deoxyribonucleotides. ChemBioChem 2010, 11, 1963–1966. [Google Scholar] [CrossRef]
- Huber, C.; Von Watzdorf, J.; Marx, A. 5-Methylcytosine-Sensitive Variants of Thermococcus Kodakaraensis DNA Polymerase. Nucleic Acids Res. 2016, 44, 9881–9890. [Google Scholar] [CrossRef]
- Huber, C.; Marx, A. Variants of Sequence Family B Thermococcus Kodakaraensis DNA Polymerase with Increased Mismatch Extension Selectivity. PLoS ONE 2017, 12, e0183623. [Google Scholar] [CrossRef]
- Ellefson, J.W.; Gollihar, J.; Shroff, R.; Shivram, H.; Iyer, V.R.; Ellington, A.D. Synthetic Evolutionary Origin of a Proofreading Reverse Transcriptase. Science 2016, 352, 1590–1593. [Google Scholar] [CrossRef]
- Choi, W.S.; He, P.; Pothukuchy, A.; Gollihar, J.; Ellington, A.D.; Yang, W. How a B Family DNA Polymerase Has Been Evolved to Copy RNA. Proc. Natl. Acad. Sci. USA 2020, 117, 21274–21280. [Google Scholar] [CrossRef] [PubMed]
pol | Archaea | Optimal Temperature (°C) | Extension Rate (kbp/min) | Error Rate (×10−6) | Thermal Stability (τ1/2) | Ref. |
---|---|---|---|---|---|---|
Deep Vent™ | Pyrococcus species GB-D | 72–75 | 1.4 | 12–2.7 [exo−: 200] | 95 °C/23 h; 100 °C/8 h | [26] |
KOD | Thermococcus kodakarensis | 72–75 | 6.0–7.8 | 2.6 | 95 °C/12 h; 100 °C/3 h | [27] |
Pab (Isis™) | Pyrococcus abyssi | 70–80 | n.p. | 0.7–6.7 | 100 °C/5 h | [28] |
Pfu | Pyrococcus furiosus | 72–80 | 0.5–1.5 | 0.7–2.2 [exo−: 20–60] | 95 °C/95% after 1 h | [26] |
Pwo | Pyrococcus woesei | 72 | n.p. | n.p. | 100 °C/2 h | [29] |
Tfu | Thermococcus fumicolans | 72 | 0.32 | 9–53 | 95 °C/3.3 h 100 °C/2 h | [30] |
Tgo | Thermococcus gorgonarius | 72 | 1.5 | 3.5–5.6 | 95 °C/2 h | [31] |
Tli (Vent™) | Thermococcus litoralis | 72–80 | 1.0 | 2.8–45 [exo−: 190] | 95 °C/6.7 h 100 °C/1.8 h | [26,32] |
Tma (UlTma™) | Thermotoga maritima | 65–75 | n.p. | 32–74 | 97.5 °C/50 min | [33] |
TNA1 | Thermococcus sp. NA1 | 75 | 3.6 | 220 | 95 °C/12.5 h 100 °C/3.5 h | [34] |
Tne | Thermotoga neopolitana | 72–75 | n.p. | n.p. | 90 °C/1 h | [35] |
Tpe | Thermococcus peptonophilus | 75 | 2.0 | 3.4 | 95 °C/4 h | [36] |
Tzi (Pfx50™) | Thermococcus zilligii | 68 | 0.5–1.0 | 2.0 | n.p. | [37] |
Tga | Thermococcus gammatolerans | 45–65 | n.p. | n.p. | 95 °C/93% after 1 h; 20% after 1 h | [38] |
Pca | Pyrobaculum calidifontis | 75 | n.p. | n.p. | 95 °C/4.5 h 100 °C/0.5 h | [39] |
Iho | Ignicoccus hospitalis KIN4/I | 70 | n.p. | 14.2 | 94 °C/2 h | [40] |
DNA Polymerase | Amino Acid Substitutions | Properties | Ref. |
---|---|---|---|
Pfu, Tgo, Tli | Pro36His, Tyr37Phe, Val93Glu | Treating uracil as normal in the matrix | [23,24,42] |
Pfu, KOD | Ala408Ser, Hys147Lys/Arg | Increase in the polymerase fidelity | [21,43,44] |
Pfu, Twa, TNA1, Tpa, Tce | Leu381Arg, Asn502Arg Asn213Arg/Asp His633Arg | An increase in PCR efficiency, enhancement of enzyme processivity, increase in the extension rate. | [46,47,48,49,50,51] |
Vent, Pfu, Deep Vent, 9°N | Ala488Leu | Increase incorporation of modified dNTP containing a modified base, modified sugar, or modified phosphate. | [53,54,55] |
Tgo, KOD, Deep Vent, 9°N | RI: Asp141Ala, Glu143Ala, Ala485Arg, Glu664Ile | Synthesis TNA from a DNA template | [56] |
QGLK: Asp141Ala, Glu143Ala, Val93Gln, Tyr409Gly, Ala485Leu, Glu664Lys | Efficiently synthesis RNA on a DNA strand | [56,70] | |
9°N | Leu408Gln | RNA synthesis on a DNA template Increase incorporation of C5-modified dNTP | [71] |
Tgo | EPFLH: Val93Gln, Asp141Ala, Glu143Ala, His147Glu, Leu403Pro, Leu408Phe, Ala485Leu, Ile521Leu, Glu664His | Synthesis tPhoNA on a DNA strand and DNA on a tPhoNA strand | [63] |
TGLLK: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Tyr409Gly, Ile521Leu, Phe545Leu, Glu664Lys | Template-dependent DNA and RNA synthesis with regioisomeric 2′-5′-bonds | [64] | |
Pol6G12: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Val589Ala, Glu609Lys, Ile610Met, Lys659Gln, Glu664Gln, Gln665Pro, Arg668Lys, Asp669Gln, Lys671His, Lys674Arg, Thr676Arg, Ala681Ser, Leu704Pro, Glu730Gly | Efficient synthesis of XNAs | [65] | |
PolC7: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu654Gln, Glu658Gln, Lys659Gln, Val661Ala, Glu664Gln, Gln665Pro, Asp669Ala, Lys671Gln, Thr676Lys, Arg709Lys | Efficient synthesis of CeNAs and LNAs | [65] | |
PolD4K: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Leu403Pro, Pro657Thr, Glu658Gln, Lys659His, Tyr663His, Glu664Lys, Asp669Ala, Lys671Asn, Thr676Ile | Efficient synthesis of ANAs and FANAs | [65] | |
GV2: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg, Lys487Gly, Arg606Val, Arg613Val | Efficient synthesis of phNAs | [66] | |
2M: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Tyr409Gly, Ile521Leu, Phe545Leu, Glu664Lys, Thr541Gly, Lys592Ala | Efficient synthesis of 2′-MOE-RNA, 2′-OMe-RNA | [67] | |
3M: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Tyr409Gly, Ile521Leu, Phe545Leu, Glu664Lys, Thr541Gly, Lys592Ala, Lys664Arg | Efficient synthesis of 2′-MOE-RNA, 2′-OMe-RNA | [67] | |
RT521: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg | Efficient synthesis of XNAs Reverse synthesis of DNA on an XNA strand | [63,65,66] | |
RT521K: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg, Ala385Val, Phe445Leu, Glu664Lys | Reverse synthesis of DNA on an XNA strand | [65] | |
RT-TKK: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg, Ala385Val, Phe445Leu, Glu664Lys, Ile114Thr, Ser383Lys, Asn735Lys | Reverse synthesis of DNA on a 2′-OMe-RNA or AtNA strand | [68] | |
RT-C8: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg, Ala385Val, Phe445Leu, Glu664Lys, Ile114Thr, Ser383Lys, Asn735Lys, Phe493Val, Tyr496Asn, Tyr497Leu, Tyr499Ala, Ala500Gln, Lys501His | Reverse synthesis of DNA on 2′-OMe-RNA, HNA, AtNA, 2′-MOE-RNA or PS 2′-MOE-RNA strand | [68] | |
RTC8-exo+: Val93Gln, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg, Ala385Val, Phe445Leu, Glu664Lys, Ile114Thr, Ser383Lys, Asn735Lys, Phe493Val, Tyr496Asn, Tyr497Leu, Tyr499Ala, Ala500Gln, Lys501His | Reverse synthesis of DNA on 2′-OMe-RNA, HNA, AtNA, 2′-MOE-RNA or PS 2′-MOE-RNA strand | [68] | |
RT-H4: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg, Ala385Val, Phe445Leu, Glu664Lys, Ile114Thr, Ser383Lys, Asn735Lys, Phe493Val, Tyr496His, Tyr497Met, Tyr499Phe, Ala500Glu, Lys501Asn | Reverse synthesis of DNA on HNA strand | [68] | |
RTH4-exo+: Val93Gln, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg, Ala385Val, Phe445Leu, Glu664Lys, Ile114Thr, Ser383Lys, Asn735Lys, Phe493Val, Tyr496His, Tyr497Met, Tyr499Phe, Ala500Glu, Lys501Asn | Reverse synthesis of DNA on HNA strand | [68] | |
RT-TR: Val93Gln, Asp141Ala, Glu143Ala, Ala485Leu, Glu429Gly, Ile521Leu, Lys726Arg, Ala385Val, Phe445Leu, Glu664Lys, Pro410Thr, Ser411Arg | Reverse synthesis of DNA on 2′-OMe-RNA, HNA, AtNAs, 2′-MOE-RNA or PS 2′-MOE-RNA strand with enhanced fidelity | [68] | |
KOD | DGLNK: Asn210Asp, Tyr409Gly, Ala485Leu, Asp614Asn, Glu664Lys | Efficient synthesis of LNA | [61] |
DLK: Asn210Asp, Ala485Leu, Glu664Lys | Efficient synthesis of LNA Reverse synthesis of DNA on LNA strand | [61] | |
RS: Asp141Ala, Glu143Ala, Ala485Arg, Asn491Ser | Efficient synthesis of TNA | [57] | |
QS: Asp141Ala, Glu143Ala, Leu489Gln, Asn491Ser | Efficient synthesis of TNA | [57] | |
RSGA: Asp141Ala, Glu143Ala, Ala485Arg, Asn491Ser, Arg606Gly, Thr723Ala | Efficient synthesis of FANA, ANA, HNA, TNA, C5-modified TNA, and PMT | [58,59,60] | |
E10: Asp141Ala, Glu143Ala, Ser383Thr, Tyr384Phe, Val389Ile, Leu408Tyr, Ile409Ala, Ala485Glu, V589His, Thr676Lys, Val680Met | Efficient incorporation of modified dNTP | [62] | |
Exo– variant + Gly245Asp | 5-methyl-cytosine sensitive | [72] | |
Exo– variant + Arg501Cys, Arg606Gln/Trp | Mismatches/5-methyl-cytosine sensitive | [73] | |
K.RT521K: Val93Glu, Asp141Ala, Glu143Ala, Ala485Leu, Ile521Leu, Glu664Lys | Reverse synthesis of DNA on tPhoNA strand | [63] | |
RTX: Phe38Leu, Arg97Met, Lys118Ile, Met137Leu, Arg381His, Tyr384His, Val389Ile, Lys466Arg, Tyr493Leu, Thr514Ile, Ile521Leu, Phe587Leu, Glu664Lys, Gly711Val, Asn735Lys, Trp768Arg. | RNA- and DNA-dependent DNA polymerase activities | [74,75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, A.A.; Kuznetsov, N.A. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering 2023, 10, 1150. https://doi.org/10.3390/bioengineering10101150
Kuznetsova AA, Kuznetsov NA. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering. 2023; 10(10):1150. https://doi.org/10.3390/bioengineering10101150
Chicago/Turabian StyleKuznetsova, Aleksandra A., and Nikita A. Kuznetsov. 2023. "Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches" Bioengineering 10, no. 10: 1150. https://doi.org/10.3390/bioengineering10101150
APA StyleKuznetsova, A. A., & Kuznetsov, N. A. (2023). Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering, 10(10), 1150. https://doi.org/10.3390/bioengineering10101150