Drivers of Dust-Enhanced Snowpack Melt-Out and Streamflow Timing
Abstract
:1. Introduction
2. Study Site and Datasets
2.1. Study Basin and Automated Data
2.2. Snowpack Development and Dust Timing
2.3. CSAS Snow Stake Data
2.4. CSAS Snow Pit Data
2.5. SNOTEL Site and Data
2.6. Streamflow Data
3. Methods
3.1. Albedo Correction
3.2. Dust Concentration
3.3. Absorbed Energy Calculations
3.4. Snow Energy Balance Model
3.5. Timing of Snowmelt Runoff
3.6. Drivers of Dust Present vs. the Clean Snow Energy Balance Model
4. Results
4.1. Light and Heavy Dust Years
4.2. Daily Mean Visible DEAE
4.3. Modeled SWE and Snow Cover Duration
4.4. Streamflow Timing
4.5. Drivers of DEAE, ΔSAG and tQ50
5. Discussion
5.1. Inter-Annual Variability
5.2. DEAE Computation
5.3. Modeling of Snow Cover
5.4. Streamflow Timing
5.5. Drivers of DEAE, Snow Cover Duration and Flow Characteristics
5.6. Implications and Uses of This Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Albedo Adjustment Procedures
Appendix B. Model Components
Forcing Variables | State Variables |
---|---|
Net shortwave radiation (W/m2) | Snow depth (m) |
Incoming longwave radiation (W/m2) | Snow density (kg/m3) |
Air temperature (°C) | Snow surface layer temperature (°C) |
Vapor pressure (Pa) | Average total snowpack temperature (°C) |
Wind speed (m/s) | Average snow liquid water content (%) |
Dewpoint Temperature (°C) | Percentage of Snow (%) | Snow Density (kg/m3) |
---|---|---|
Td < –5 | 100 | 75 |
–5 ≤ Td < –3 | 100 | 100 |
–3 ≤ Td < –1.5 | 100 | 150 |
–1.5 ≤ Td < –0.5 | 100 | 175 |
–0.5 ≤ Td < 0 | 75 | 200 |
0 ≤ Td < 0.5 | 25 | 250 |
0.5 ≥ Td | 0 | 0 |
Appendix C. Observed and Computed Annual Data
WY | Dust Conc. (mg/g) | Dust Events | ΣHK-IN (MJ/m2) | Σprecip (mm) | 1 April SWE (mm) | Fraction of Dust Events Post-Peak SWE | DEAE (W/m2) | ΔSAG (Days) | tQ50 (Date) |
---|---|---|---|---|---|---|---|---|---|
2007 | 1 | 8 | 1543 | 256 | 508 | 0.13 | 33.3 | 19 | 11 June |
2008 | 0.88 | 7 | 2004 | 229 | 780 | 0.57 | 40.1 | 23 | 21 June |
2009 | 4.55 | 12 | 1213 | 195 | 729 | 0.17 | 46.4 | 31 | 30 May |
2010 | 4.35 | 9 | 1494 | 181 | 675 | 0.56 | 45.4 | 23 | 9 June |
2011 | 1.78 | 11 | 2090 | 419 | 623 | 0.18 | 37.2 | 27 | 25 June |
2012 | 1.35 | 12 | 969 | 93 | 420 | 0.58 | 37.5 | 13 | 22 May |
2013 | 7.92 | 10 | 1142 | 128 | 469 | 0.20 | 44.2 | 18 | 5 June |
2014 | 5.22 | 10 | 1629 | 223 | 589 | 0.30 | 40.3 | 24 | 15 June |
2015 | 0.79 | 3 | 1744 | 313 | 493 | 0.00 | 31.0 | 11 | 16 June |
2016 | 1.41 | 6 | 1677 | 207 | 572 | 0.00 | 38.7 | 19 | 14 June |
2017 | 0.22 | 4 | 1763 | 183 | 665 | 0.25 | 37.3 | 14 | 13 June |
2018 | 0.92 | 8 | 1084 | 134 | 393 | 0.13 | 36.2 | 14 | 25 May |
2019 | 0.67 | 7 | 2477 | 304 | 843 | 0.43 | 50.0 | 23 | 28 June |
Appendix D. Model vs. Observed Model Correlation
References
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western United States. Water Resour. Res. 2006, 42, W08432. [Google Scholar] [CrossRef]
- Painter, T.H.; Barrett, A.P.; Landry, C.C.; Neff, J.; Cassidy, M.P.; Lawrence, C.; McBride, K.E.; Farmer, G.L. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 2007, 34, L12502. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Ohta, T. Effect of Larch Forest Density on Snow Surface Energy Balance. J. Hydrometeorol. 2003, 4, 1181–1193. [Google Scholar] [CrossRef]
- Takeuchi, N.; Li, X. Characteristics of surface dust on Ürümqi Glacier No. 1 in the Tien Shan Mountains, China. Arct. Antarct. Alp. Res. 2007, 40, 744–750. [Google Scholar] [CrossRef]
- Warren, S.G.; Wiscombe, W.J. A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols. J. Atmos. Sci. 1980, 37, 2734–2745. [Google Scholar] [CrossRef]
- Boon, S. Snow ablation energy balance in a dead forest stand. Hydrol. Process. 2009, 23, 2600–2610. [Google Scholar] [CrossRef]
- Flanner, M.G.; Zender, C.S.; Hess, P.G.; Mahowald, N.M.; Painter, T.H.; Ramanathan, V.; Rasch, P.J. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 2009, 9, 2481–2497. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G.; Liu, X.; Zhou, C.; Penner, J.E.; Jiao, C. Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos. Chem. Phys. Discuss. 2012, 12, 4699–4721. [Google Scholar] [CrossRef] [Green Version]
- Pugh, E.; Small, E. The impact of pine beetle infestation on snow accumulation and melt in the headwaters of the Colorado River. Ecohydrology 2011, 5, 467–477. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Skiles, S.M.; Painter, T. Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J. Glaciol. 2016, 63, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Skiles, S.M.; Flanner, M.; Cook, J.M.; Dumott, M.; Painter, T. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 2018, 8, 964–971. [Google Scholar] [CrossRef]
- Lawrence, C.R.; Painter, T.H.; Landry, C.C.; Neff, J.C. Contemporary geochemical composition and flux of aeolian dust to the San Juan Mountains, Colorado, United States. J. Geophys. Res. 2010, 115, G03007. [Google Scholar] [CrossRef]
- Deems, J.S.; Painter, T.H.; Barsugli, J.J.; Belnap, J.; Udall, B. Combined impacts of current and future dust deposition and re-gional warming on Colorado River Basin snow dynamics and hydrology. Hydrol. Earth Syst. Sci. 2013, 17, 4401–4413. [Google Scholar] [CrossRef] [Green Version]
- Skiles, S.M.; Painter, T.H.; Deems, J.S.; Bryant, A.C.; Landry, C.C. Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res. 2012, 48, W07522. [Google Scholar] [CrossRef]
- Neff, J.C.; Ballantyne, A.P.; Farmer, G.L.; Mahowald, N.M.; Conroy, J.L.; Landry, C.C.; Overpeck, J.T.; Painter, T.H.; Lawrence, C.R.; Reynolds, R.L. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 2008, 1, 189–195. [Google Scholar] [CrossRef]
- Nauman, T.W.; Duniway, M.C.; Webb, N.P.; Belnap, J. Elevated aeolian sediment transport on the Colorado Plateau, USA: The role of grazing, vehicle disturbance, and increasing aridity. Earth Surf. Process. Landf. 2018, 43, 2897–2914. [Google Scholar] [CrossRef]
- Fassnacht, S.; Williams, M.; Corrao, M. Changes in the surface roughness of snow from millimetre to metre scales. Ecol. Complex. 2009, 6, 221–229. [Google Scholar] [CrossRef]
- Painter, T.H.; Bryant, A.C.; Skiles, S.M. Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett. 2012, 39, 17502. [Google Scholar] [CrossRef]
- Skiles, S.M.; Painter, T.H.; Belnap, J.; Holland, L.; Reynolds, R.L.; Goldstein, H.L.; Lin, J. Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin. Hydrol. Proc. 2015, 29, 5397–5413. [Google Scholar] [CrossRef]
- Painter, T.H.; Skiles, S.M.; Deems, J.; Bryant, A.C.; Landry, C.C. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res. 2012, 48, W07521. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.A. National Weather Service River Forecast System—Snow Accumulation and Ablation Model; NOAA Technical Memorandum NWS HYDRO-17; U.S. Department of Commerce: Silver Spring, MD, USA, 1973; p. 217. [Google Scholar]
- Burnash, R.J.; Ferral, R.L.; McGuire, R.A. A Generalized Streamflow Simulation System Conceptual Modeling for Digital Computers; U.S. Department Commerce NWS and State of California Department of Water Research: Silver Spring, MD, USA, 1973. [Google Scholar]
- Franz, K.J.; Hogue, T.S.; Sorooshian, S. Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts. J. Hydrol. 2008, 360, 48–66. [Google Scholar] [CrossRef] [Green Version]
- Follum, M.L.; Niemann, J.D.; Fassnacht, S.R. A comparison of snowmelt-derived streamflow from temperature-index and modified-temperature-index snow models. Hydrol. Proc. 2019, 33, 3030–3045. [Google Scholar] [CrossRef]
- Painter, T.H.; Skiles, S.M.; Deems, J.S.; Brandt, W.T.; Dozier, J. Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust Radiative Forcing in Snow. Geophys. Res. Lett. 2018, 45, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Bryant, A.C.; Painter, T.H.; Deems, J.S.; Bender, S.M. Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the Upper Colorado River Basin. Geophys. Res. Lett. 2013, 40, 3945–3949. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Molotch, N.P.; Livneh, B.; Harpold, A.A.; Knowles, J.F.; Schneider, D. Snowmelt rate dictates streamflow. Geophys. Res. Lett. 2016, 43, 8006–8016. [Google Scholar] [CrossRef]
- Musselman, K.N.; Clark, M.P.; Liu, C.; Ikeda, K.; Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 2017, 7, 214–220. [Google Scholar] [CrossRef]
- Harpold, A.A.; Brooks, P.D. Humidity determines snowpack ablation under a warming climate. Proc. Natl. Acad. Sci. USA 2018, 115, 1215–1220. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.M.; Abatzoglou, J.T.; Link, T.E.; Tennant, C.J. Projected Changes in Interannual Variability of Peak Snowpack Amount and Timing in the Western United States. Geophys. Res. Lett. 2019, 46, 8882–8892. [Google Scholar] [CrossRef] [Green Version]
- Church, B.J.E., Jr. Recent studies of snow in the United States. Q. J. R. Meteorol. Soc. 1914, 40, 43–52. [Google Scholar] [CrossRef]
- Fassnacht, S.R. Upper versus lower Colorado River sub-basin streamflow: Characteristics, runoff estimation and model simulation. Hydrol. Process. 2006, 20, 2187–2205. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Deitemeyer, D.C.; Venable, N.B.H. Capitalizing on the daily time step of snow telemetry data to model the snowmelt components of the hydrograph for small watersheds. Hydrol. Process. 2014, 28, 4654–4668. [Google Scholar] [CrossRef]
- Pagano, T.; Garen, D.; Sorooshian, S. Evaluation of Official Western, U.S. Seasonal Water Supply Outlooks, 1922–2002. J. Hydrometeorol. 2004, 5, 896–909. [Google Scholar] [CrossRef] [Green Version]
- Anghileri, D.; Voisin, N.; Castelletti, A.; Pinaosi, F.; Nijssen, B.; Lettenmaier, D.P. Value of long-term streamflow forecasts to reservoir operations for water supply in snow-dominated river catchments. Water Resour. Res. 2016, 52, 4209–4225. [Google Scholar] [CrossRef] [Green Version]
- Court, A. Measures of Streamflow Timing. J. Geophys. Res. 1962, 67, 4335–4339. [Google Scholar] [CrossRef]
- Satterlund, D.R.; Eschner, A.R. Land use, snow, and streamflow regimen in central New York. Water Resour. Res. 1965, 1, 397–405. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes toward Earlier Streamflow Timing across Western North America. J. Clim. 2005, 18, 1136–1155. [Google Scholar] [CrossRef]
- Clow, D. Changes in the Timing of Snowmelt and Streamflow in Colorado: A Response to Recent Warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Landry, C.C.; Buck, K.A.; Raleigh, M.S.; Clark, M.P. Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res. 2014, 50, 1773–1788. [Google Scholar] [CrossRef]
- Painter, T.H.; Deems, J.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. USA 2010, 107, 17125–17130. [Google Scholar] [CrossRef] [Green Version]
- Elder, K.; Cline, D.; Liston, G.E.; Armstrong, R. NASA Cold Land Processes Experiment (CLPX 2002/03): Field Measurements of Snowpack Properties and Soil Moisture. J. Hydrometeorol. 2009, 10, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Logan, L.A. Basin-Wide Water Equivalent Estimation from Snowpack Depth Measurements. Role of Snow and Ice in Hydrology; IAHS Press: Wallingford, UK, 1973; Volume 107, pp. 864–884. [Google Scholar]
- Elder, K.; Dozier, J.; Michaelsen, J. Snow accumulation and distribution in an Alpine Watershed. Water Resour. Res. 1991, 27, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, J.; Fassnacht, S.; Heath, J.; Musselman, K.; Revuelto, J.; Latron, J.; Morán-Tejeda, E.; Jonas, T. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 2012, 55, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.C.; Saavedra, F.A.; Kampf, S.K. Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Clim. 2018, 38, 4369–4383. [Google Scholar] [CrossRef]
- Reynolds, R.L.; Goldstein, H.L.; Moskowitz, B.M.; Kokaly, R.F.; Munson, S.M.; Solheid, P.; Breit, G.N.; Lawrence, C.R.; Derry, J. Dust Deposited on Snow Cover in the San Juan Mountains, Colorado, 2011–2016: Compositional Variability Bearing on Snow-Melt Effects. J. Geophys. Res. Atmos. 2020, 125, e2019JD032210. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA 2003, 101, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Melloh, R.A.; Hardy, J.P.; Davis, R.E.; Robinson, P.B. Spectral albedo/reflectance of littered forest snow during the melt season. Hydrol. Process. 2001, 15, 3409–3422. [Google Scholar] [CrossRef]
- Marks, D.; Dozier, J. Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada 2. Snow Cover Energy Balance. Water Resour. Res. 1992, 28, 3043–3054. [Google Scholar] [CrossRef]
- Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D. A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol. Process. 1999, 13, 1935–1959. [Google Scholar] [CrossRef]
- Susong, D.; Marks, D.; Garen, D. Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models. Hydrol. Process. 1999, 13, 2003–2021. [Google Scholar] [CrossRef]
- Fassnacht, S.R. Estimating Alter-shielded gauge snowfall undercatch, snowpack sublimation, and blowing snow transport at six sites in the coterminous USA. Hydrol. Process. 2004, 18, 3481–3492. [Google Scholar] [CrossRef]
- Stewart, I.T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 2009, 23, 78–94. [Google Scholar] [CrossRef]
- Dudley, R.; Hodgkins, G.; McHale, M.; Kolian, M.; Renard, B. Trends in snowmelt-related streamflow timing in the conterminous United States. J. Hydrol. 2017, 547, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Landry, C.; (Center for Snow and Avalanche Studies, Silverton, CO, USA). Personal communication, 2015.
- Fassnacht, S.R.; Sexstone, G.A.; Kashipazha, A.H.; López-Moreno, J.I.; Jasinski, M.F.; Kampf, S.K.; Von Thaden, B.C. Deriving snow-cover depletion curves for different spatial scales from remote sensing and snow telemetry data. Hydrol. Process. 2015, 30, 1708–1717. [Google Scholar] [CrossRef]
- Hultstrand, D.M.; Fassnacht, S.R.; Stednick, J.D.; Hiemstra, C.A. Snowpack Distribution Using Topographical, Climatological and Winter Season Index Inputs. Atmosphere 2021, 13, 3. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Dressler, K.A.; Bales, R.C. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour. Res. 2003, 39, 1208. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.R.; Hultstrand, M. Snowpack variability and trends at long-term stations in northern Colorado, USA. Proc. Int. Assoc. Hydrol. Sci. 2015, 371, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.; Patterson, G.; Venable, N.; Cherry, M.; Pfohl, A.; Sanow, J.; Tedesche, M. How Do We Define Climate Change? Considering the Temporal Resolution of Niveo-Meteorological Data. Hydrology 2020, 7, 38. [Google Scholar] [CrossRef]
- Doskocil, L.G.; Fassnacht, S.R.; Derry, J.E. Mystery Peaks: Estimating the Unusual Double Peak Streamflow Behavior in the Uncompahgre River Basin. Col. Water 2021, 38, 28–29. [Google Scholar]
- Sahaar, M.; Fassnacht, S.R. The Timing of Peak Streamflow in a Small River versus Snowpack Melt-out. Col. Water 2021, 38, 21–23. [Google Scholar]
- Seidel, F.C.; Rittger, K.; Skiles, S.M.; Molotch, N.P.; Painter, T.H. Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy. Cryosphere 2016, 10, 1229–1244. [Google Scholar] [CrossRef] [Green Version]
- Skiles, S.M.; Painter, T.H. A 9-yr record of dust on snow in the Colorado River Basin. In Scientific Investigations Report 2015–5180, Proceedings of the 12th Biennial Conference of Research on the Colorado Plateau, Flagstaff, AZ, USA, 16–19 September 2013; Ralston, B.E., Ed.; U.S. Geological Survey: Reston, VA, USA, 2016. [Google Scholar] [CrossRef]
- Skiles, S.M.; Painter, T.H. Toward Understanding Direct Absorption and Grain Size Feedbacks by Dust Radiative Forcing in Snow with Coupled Snow Physical and Radiative Transfer Modeling. Water Resour. Res. 2019, 55, 7362–7378. [Google Scholar] [CrossRef]
- Flanner, M.G.; Zender, C.S.; Randerson, J.T.; Rasch, P.J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. Atmos. 2007, 112, D11202. [Google Scholar] [CrossRef] [Green Version]
- Lehning, M.; Bartelt, P.; Brown, B.; Russi, T.; Stöckli, U.; Zimmerli, M. snowpack model calculations for avalanche warning based upon a new network of weather and snow stations. Cold Reg. Sci. Technol. 1999, 30, 145–157. [Google Scholar] [CrossRef]
- Reimanis, D.C. Variable Fresh Snow Albedo: How Snowpack and Sub-nivean Properties Influence Fresh Snow Reflectance. Master’s Thesis, Watershed Science, Colorado State University, Fort Collins, CO, USA, 2021. [Google Scholar]
- Flanner, M.G.; Arnheim, J.B.; Cook, J.M.; Dang, C.; He, C.; Huang, X.; Singh, D.; Skiles, S.M.; Whicker, C.A.; Zender, C.S. SNICAR-ADv3: A community tool for modeling spectral snow albedo. Geosci. Model Dev. 2021, 14, 7673–7704. [Google Scholar] [CrossRef]
- Kilmister, I.; Campbell, P.; Dee, M. Till the End; UDR GmbH: Husum, Germany, 2015. [Google Scholar]
- Martinec, J. Snowmelt—runoff model for stream flow forecasts. Hydrol. Res. 1975, 6, 145–154. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Soulis, E.D.; Kouwen, N. Algorithm application to improve weather radar snowfall estimates for winter hy-drologic modelling. Hydrol. Process. 1999, 13, 3017–3039. [Google Scholar] [CrossRef]
- Duncan, C.R. Patterns of Dust-Enhanced Absorbed Energy and Shifts in Melt Timing for Snow of Southwestern Colorado. Master’s Thesis, Watershed Science, Colorado State University, Fort Collins, CO, USA, 2020. Available online: https://hdl.handle.net/10217/211991 (accessed on 10 February 2022).
- Fassnacht, S.R.; Brown, K.S.J.; Blumberg, E.J.; López-Moreno, J.I.; Covino, T.P.; Kappas, M.; Huang, Y.; Leone, V.; Kashipazha, A.H. Distribution of snow depth variability. Front. Earth Sci. 2018, 12, 683–692. [Google Scholar] [CrossRef]
- Goodison, B.E.; Louie, P.Y.T.; Yang, D. WMO Solid Precipitation Measurement Intercomparison Final Report; WMO Instruments and Observing Methods Report, No. 67, WMO/TD No. 872; WMO: Geneva, Switzerland, 1998. [Google Scholar]
- Fassnacht, S.R. Data time step to estimate snowpack accumulation at select United States meteorological stations. Hydrol. Process. 2007, 21, 1608–1615. [Google Scholar] [CrossRef]
- Kochendorfer, J.; Nitu, R.; Wolff, M.; Mekis, E.; Rasmussen, R.; Baker, B.; Earle, M.E.; Reverdin, A.; Wong, K.; Smith, C.D.; et al. Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE. Hydrol. Earth Syst. Sci. 2018, 22, 1437–1452. [Google Scholar] [CrossRef] [Green Version]
- Kimball, J.S.; Running, S.W.; Nemani, R. An improved method for estimating surface humidity from daily minimum temper-ature. Agric. Forest Meteorol. 1997, 85, 87–98. [Google Scholar] [CrossRef]
- Fassnacht, S.; Soulis, E. Implications during transitional periods of improvements to the snow processes in the land surface scheme—Hydrological model WATCLASS. Atmosphere-Ocean 2002, 40, 389–403. [Google Scholar] [CrossRef]
- Rajagopal, S.; Harpold, A. Testing and Improving Temperature Thresholds for Snow and Rain Prediction in the Western United States. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 1142–1154. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Venable, N.B.H.; Khishigbayar, J.; Cherry, M.L. The probability of precipitation as snow derived from daily air temperature for high elevation Areas of Colorado, United States. In Cold and Mountain Region Hydrological Systems under Climate Change: Towards Improved Projections, Proceedings of the Symposium H02, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 22–26 July 2013; IAHS: Wallingford, UK, 2013; Volume 360, pp. 65–70. [Google Scholar]
- Jennings, K.S.; Winchell, T.S.; Livneh, B.; Molotch, N.P. Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat. Commun. 2018, 9, 1148. [Google Scholar] [CrossRef] [Green Version]
- Judson, A.; Doesken, N. Density of Freshly Fallen Snow in the Central Rocky Mountains. Bull. Am. Meteorol. Soc. 2000, 81, 1577–1587. [Google Scholar] [CrossRef]
- Meinhardt, M.; Fassnacht, S.R. Fresh snow density from the Fort Collins Colorado meteorological station and new measure-ments. Col. Water 2020, 37, 7–9. [Google Scholar] [CrossRef]
- Thomas, C.W. On the Transfer of Visible Radiation through Sea Ice and Snow. J. Glaciol. 1963, 4, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.G.; King, M.D.; Frey, M.M. The impact of parameterising light penetration into snow on the photochemical production of NOx and OH radicals in snow. Atmos. Chem. Phys. 2015, 15, 7913–7927. [Google Scholar] [CrossRef] [Green Version]
- Reay, H.J.; France, J.L.; King, M. Decreased albedo,e-folding depth and photolytic OH radical and NO2production with increasing black carbon content in Arctic snow. J. Geophys. Res. Earth Surf. 2012, 117, D00R20. [Google Scholar] [CrossRef]
- Munson, S.M.; Belnap, J.; Okin, G.S. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proc. Natl. Acad. Sci. USA 2011, 108, 3854–3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, P.H. Is ‘Centre of Volume’ a robust indicator of changes in snowmelt timing? Hydrol. Process. 2013, 27, 2691–2698. [Google Scholar] [CrossRef]
- Flynn, H.; MacDonald, M.; Fassnacht, S.R. Assessing Baseflow in Snow-Dominated Watersheds. Col. Water 2021, 38, 12–13. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Sexstone, G.A.; McGrath, D.; Liston, G.E.; Fassnacht, S.R.; Dougherty, E.; Kingston, A. Peering into the future: The evolution of seasonal snow in the Colorado Rocky Mountains. Col. Water 2020, 37, 9–12. [Google Scholar] [CrossRef]
- Pagano, T.C.; Wood, A.W.; Ramos, M.-H.; Cloke, H.; Pappenberger, F.; Clark, M.P.; Cranston, M.; Kavetski, D.; Mathevet, T.; Sorooshian, S.; et al. Challenges of Operational River Forecasting. J. Hydrometeorol. 2014, 15, 1692–1707. [Google Scholar] [CrossRef] [Green Version]
- Garousi-Nejad, I.; Tarboton, D.G. A comparison of National Water Model retrospective analysis snow outputs at snow telemetry sites across the Western United States. Hydrol. Process. 2022, 36, e14469. [Google Scholar] [CrossRef]
- Horton, P.; Schaefli, B.; Kauzlaric, M. Why do we have so many different hydrological models? A review based on the case of Switzerland. WIREs Water 2021, 9, e1574. [Google Scholar] [CrossRef]
- Jin, H.; Barry, S.; Paydar, Z.; Shao, Q.; Van Dijk, A. Decision tree based uncertainty framework for water accounting. In Proceedings of the MODSIM 2011 International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 3861–3867. [Google Scholar]
- Ham, J.M.; Miner, G.L.; Kluitenberg, G.J. A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 14–18 December 2015; p. H32B-04. [Google Scholar]
- Collados-Lara, A.; Fassnacht, S.R.; Pulido-Velazquez, D.; Pfohl, A.K.; Morán-Tejeda, E.; Venable, N.B.; Pardo-Igúzquiza, E.; Puntenney-Desmond, K. Intra-day variability of temperature and its near-surface gradient with elevation over mountainous terrain: Comparing MODIS land surface temperature data with coarse and fine scale near-surface measurements. Int. J. Clim. 2020, 41, E1435–E1449. [Google Scholar] [CrossRef]
- Rice, D.; Fassnacht, S.R. Does it Get Cooler Going Down the Hill? Measuring Hillslope-Scale Temperature Gradients. Col. Water 2021, 38, 16–18. [Google Scholar]
ΔSAG | DEAE | Dust [] | # Events | HK-IN | ΣP | 1 April SWE | Dust Events Post-Peak SWE | |
---|---|---|---|---|---|---|---|---|
tQ50 | 0.314 | 0.110 | −0.234 | −0.413 | 0.961 * | 0.813 * | 0.637 # | −0.512 |
ΔSAG | 0.613 # | 0.371 | 0.543 # | 0.290 | 0.360 | 0.657 # | 0.163 | |
DEAE | 0.471 | 0.382 | 0.162 | −0.138 | 0.637 # | 0.450 | ||
Dust conc. | 0.541 # | −0.415 | −0.307 | −0.091 | 0.033 | |||
# events | −0.432 | −0.206 | −0.090 | 0.328 | ||||
HK-IN | 0.786 * | 0.715 * | 0.077 | |||||
ΣP | 0.396 | −0.263 | ||||||
1 April SWE | 0.378 |
Mean DEAE | ΔSAG | tQ50 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statistics | |||||||||||||||
Variables included | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
R2 | 0.41 | 0.69 | 0.77 | 0.80 | 0.80 | 0.43 | 0.80 | 0.85 | 0.88 | 0.94 | 0.66 | 0.78 | 0.79 | 0.80 | 0.77 |
Standard error | 4.35 | 3.30 | 3.01 | 2.98 | 3.18 | 4.67 | 2.93 | 2.68 | 2.50 | 1.92 | 7.07 | 5.79 | 5.19 | 5.09 | 5.43 |
NSE | 0.41 | 0.69 | 0.77 | 0.80 | 0.80 | 0.43 | 0.80 | 0.85 | 0.88 | 0.94 | 0.66 | 0.78 | 0.84 | 0.86 | 0.86 |
Coefficients | |||||||||||||||
Intercept | 25.0 | 21.0 | 23.0 | 20.1 | 19.9 | 3.21 | −8.63 | −10.7 | −10.6 | −12.5 | 140 | 126 | 136 | 136 | 136 |
1 April SWE | 20.9 | 22.5 | 26.4 | 26.6 | 27.3 | 23.6 | 25.6 | 22.2 | 21.8 | 28.9 | 25.5 | 25.3 | 24.8 | 24.9 | |
# of dust events | 4.78 | 5.15 | 15.2 | 16.3 | 13.4 | 17.2 | −12.0 | −16.5 | −17.0 | ||||||
ΣP | −8.24 | −8.07 | −8.53 | 7.05 | 8.47 | 3.73 | 43.6 | 35.6 | 32.9 | 35.1 | 35.5 | ||||
Dust conc. | 9.72 | 8.13 | 6.11 | 5.91 | 4.55 | 2.48 | 7.09 | 7.13 | |||||||
Dust after peak | −0.55 | −5.64 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassnacht, S.R.; Duncan, C.R.; Pfohl, A.K.D.; Webb, R.W.; Derry, J.E.; Sanford, W.E.; Reimanis, D.C.; Doskocil, L.G. Drivers of Dust-Enhanced Snowpack Melt-Out and Streamflow Timing. Hydrology 2022, 9, 47. https://doi.org/10.3390/hydrology9030047
Fassnacht SR, Duncan CR, Pfohl AKD, Webb RW, Derry JE, Sanford WE, Reimanis DC, Doskocil LG. Drivers of Dust-Enhanced Snowpack Melt-Out and Streamflow Timing. Hydrology. 2022; 9(3):47. https://doi.org/10.3390/hydrology9030047
Chicago/Turabian StyleFassnacht, Steven R., Caroline R. Duncan, Anna K. D. Pfohl, Ryan W. Webb, Jeffrey E. Derry, William E. Sanford, Danielle C. Reimanis, and Lenka G. Doskocil. 2022. "Drivers of Dust-Enhanced Snowpack Melt-Out and Streamflow Timing" Hydrology 9, no. 3: 47. https://doi.org/10.3390/hydrology9030047