Soil Erosion, Sediment Yield, and Runoff Modeling of the Megech Watershed Using the GeoWEPP Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods and Datasets
2.2.1. GeoWEPP Model Description and Applications
2.2.2. Onsite and Offsite Model Simulation
Digital Elevation Model (DEM)
Land Use Land Cover (LULC) Data
Soil Data
Climate Data
Watershed Delineation
Model Calibration and Validation
Model Performance Evaluation
Sensitivity Ratio
3. Results
3.1. Model Sensitvity
3.2. Model Calibration and Validation
3.2.1. Runoff
3.2.2. Sediment
Sediment Rating Curve
Sub-Watershed Model Analysis
Onsite Model Simulation
Offsite (Watershed) Method
Offsite (Watershed) Method
4. Discussion
4.1. GeoWEPP Model Performance in Upper Abbay Basin
4.2. Spatial Variability of Soil Loss (SL) and Sediment Yield (SY)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bewket, W.; Teferi, E. Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degrad. Dev. 2009, 20, 609–622. [Google Scholar] [CrossRef]
- Prokop, P.; Poreba, G.J. Soil erosion associated with an upland farming system under population pressure in northeast india. Land Degrad. Dev. 2012, 23, 310–321. [Google Scholar] [CrossRef]
- Tamene, L.; Park, S.J.; Dikau, R.; Vlek, P.L.G. Reservoir siltation in the semi-arid highlands of Northern Ethiopia: Sediment yield—catchment area relationship and a semi-quantitative approach for predicting sediment yield. Earth Surf. Process. Landforms 2006, 31, 1364–1383. [Google Scholar] [CrossRef]
- De Araújo, J.C.; Güntner, A.; Bronstert, A. Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil. Hydrol. Sci. J. 2006, 51, 157–170. [Google Scholar] [CrossRef]
- Getahun, M.M. Sustaining Reservoir Use through Sediment Trapping in NW Ethiopia; Wageningen University: Wageningen, The Netherlands, 2016; ISBN 9789462579101. [Google Scholar]
- Schleiss, A.J.; Franca, M.J.; Juez, C.; De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Melesse, B.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.; Balana, B.B. Reservoir sedimentation and its mitigating strategies: A case study of Angereb reservoir (NW Ethiopia). J. Soils Sediments 2012, 12, 291–305. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.; Poesen, J.; Nyssen, J.; Deckers, J. Reservoir Sedimentation and Its Mitigation Strategies: A Case Study of the Ethiopian Highlands. Available online: https://www.semanticscholar.org/paper/Reservoir-sedimentation-and-its-mitigation-%3A-a-case-Haregeweyn-Tsunekawa/63afffe1d8d0be3b7cf62b786e221ad4b13fdae6 (accessed on 19 October 2022).
- Alemaw, D.; Ayana, E.K.; Legesse, E.S.; Moges, M.M.; Tilahun, S.A.; Moges, M.A. Estimating reservoir sedimentation using bathymetric differencing and hydrologic modeling in data scarce Koga watershed, Upper Blue Nile, Ethiopia. J. Agric. Environ. Int. Dev. 2016, 110, 413–427. [Google Scholar] [CrossRef]
- Sharma, T. Scientific Paper on Sedimentation Challenges in Hydro-Power Storage Projects (Reservoir) and it’s Mitigation Measures. Int. J. Innov. Sci. Res. Technol. 2020, 5, 1240–1249. [Google Scholar] [CrossRef]
- Tsegaye, L.; Bharti, R. Soil erosion and sediment yield assessment using RUSLE and GIS-based approach in Anjeb watershed, Northwest Ethiopia. SN Appl. Sci. 2021, 3, 1–19. [Google Scholar] [CrossRef]
- Ayele, G.T.; Kuriqi, A.; Jemberrie, M.A.; Saia, S.M.; Seka, A.M.; Teshale, E.Z.; Daba, M.H.; Ahmad Bhat, S.; Demissie, S.S.; Jeong, J.; et al. Sediment Yield and Reservoir Sedimentation in Highly Dynamic Watersheds: The Case of Koga Reservoir, Ethiopia. Water 2021, 13, 3374. [Google Scholar] [CrossRef]
- Annandale, G.W.; Randle, T.J.; Langendoen, E.J.; Hotchkiss, R.H. Reservoir Sedimentation Management: A Sustainable Development Challenge. Hydrolink 2018, 3, 72–75. [Google Scholar]
- Bolsenkötter, L.; Küppers, J.; Lothmann, R. Sustainable dams in vital river systems—relevance of sediment balance. In Sustainable and Safe Dams Around the World; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Analyzing the variability of sediment yield: A case study from paired watersheds in the Upper Blue Nile basin, Ethiopia. Geomorphology 2018, 303, 446–455. [Google Scholar] [CrossRef]
- Ouri, A.E.; Golshan, M.; Janizadeh, S.; Cerdà, A.; Melesse, A.M. Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques. Land 2020, 9, 368. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B.; Melesse, A.M. Spatial delineation of soil erosion vulnerability in the Lake Tana Basin, Ethiopia. Hydrol. Process. 2009, 23, 3738–3750. [Google Scholar] [CrossRef]
- Mekonnen, M.; Melesse, A.M. Soil Erosion Mapping and Hotspot Area Identification Using GIS and Remote Sensing in Northwest Ethiopian Highlands, Near Lake Tana. In Nile River Basin; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Admas, B.F.; Gashaw, T.; Adem, A.A.; Worqlul, A.W.; Dile, Y.T.; Molla, E. Identification of soil erosion hot-spot areas for prioritization of conservation measures using the SWAT model in Ribb watershed, Ethiopia. Resour. Environ. Sustain. 2022, 8, 100059. [Google Scholar] [CrossRef]
- Andualem, T.G.; Hagos, Y.G.; Kefale, A.; Zelalem, B. Soil erosion-prone area identification using multi-criteria decision analysis in Ethiopian highlands. Model. Earth Syst. Environ. 2020, 6, 1407–1418. [Google Scholar] [CrossRef]
- Negash, D.A.; Moisa, M.B.; Merga, B.B.; Sedeta, F.; Gemeda, D.O. Soil erosion risk assessment for prioritization of sub-watershed: The case of Chogo Watershed, Horo Guduru Wollega, Ethiopia. Environ. Earth Sci. 2021, 80, 1–11. [Google Scholar] [CrossRef]
- Gilbert, N.; Riveros, L.C. Assessment of soil erosion of Burundi using remote sensing and GIS by RUSLE model. Вестник Рoссийскoгo университета дружбы нарoдoв 2019, 27, 17–28. [Google Scholar] [CrossRef]
- Betela, B.; Wolka, K. Evaluating soil erosion and factors determining farmers’ adoption and management of physical soil and water conservation measures in Bachire watershed, southwest Ethiopia. Environ. Chall. 2021, 5, 100348. [Google Scholar] [CrossRef]
- Porto, P.; Walling, D.E. Use of 7Be measurements to estimate rates of soil loss from cultivated land: Testing a new approach applicable to individual storm events occurring during an extended period. Water Resour. Res. 2014, 50, 8300–8313. [Google Scholar] [CrossRef]
- Weggel, J.R.; Rustom, R. Soil erosion by rainfall and runoff-state of the art. Geotext. Geomembr. 1992, 11, 551–572. [Google Scholar] [CrossRef]
- Liu, G.; Yang, M.Y.; Warrington, D.N.; Liu, P.L.; Tian, J.L. Using beryllium-7 to monitor the relative proportions of interrill and rill erosion from loessal soil slopes in a single rainfall event. Earth Surf. Process. Landforms 2010, 36, 439–448. [Google Scholar] [CrossRef]
- Goulet, M.; Gallichand, J.; Duchemin, M.; Giroux, M. Measured and computed phosphorus losses by runoff and subsurface drainage in eastern Canada. Appl. Eng. Agric. 2006, 22, 203–213. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D.; Sapountzis, M.; Theodosiou, G. Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land 2022, 11, 911. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Billi, P.; Vanmaercke, M.; et al. Analysis of long-term gully dynamics in different agro-ecology settings. Catena 2019, 179, 160–174. [Google Scholar] [CrossRef]
- Fulajtár, E. Identification of Severely Eroded Soils from Remote Sensing Data Tested in Rišňovce, Slovakia. In Proceedings of the 10th International Soil Conservation Organization Meeting, West Lafayette, IN, USA, 24–29 May 1999. [Google Scholar]
- Shahin, M.M.A. An overview of reservoir sedimentation in some African river basins. IAHS Publ. 1993, 93–100. [Google Scholar]
- Margiorou, S.; Kastridis, A.; Sapountzis, M. Pre/Post-Fire Soil Erosion and Evaluation of Check-Dams Effectiveness in Mediterranean Suburban Catchments Based on Field Measurements and Modeling. Land 2022, 11, 1705. [Google Scholar] [CrossRef]
- Sinshaw, B.G.; Belete, A.M.; Mekeonen, B.M.; Wubetu, T.G.; Lakew, T.; Dessie, W.; Atinkut, H.B.; Adugna, A.; Bilkew, T.; Tefera, A.K.; et al. Watershed-based soil erosion and sediment yield modeling in the Rib watershed of the Upper Blue Nile Basin, Ethiopia. Energy Nexus 2021, 3, 100023. [Google Scholar] [CrossRef]
- Yesuf, H.M.; Assen, M.; Alamirew, T.; Melesse, A.M. Catena Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. CATENA 2015, 127, 191–205. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, C. Strategies for managing reservoir sedimentation. Int. J. Sediment Res. 2010, 24, 369–384. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil erosion modelling: A bibliometric analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Himanshu, S.K.; Mishra, S.K.; Singh, V.P. Physically based soil erosion and sediment yield models revisited. Catena 2016, 147, 595–620. [Google Scholar] [CrossRef]
- Zhang, L.; O’Neill, A.L.; Lacey, S. Modelling approaches to the prediction of soil erosion in catchments. Environ. Softw. 1996, 11, 123–133. [Google Scholar] [CrossRef]
- Hajigholizadeh, M.; Melesse, A.M.; Fuentes, H.R. Erosion and sediment transport modelling in shallowwaters: A review on approaches, models and applications. Int. J. Environ. Res. Public Health 2018, 15, 518. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Benavidez, R.; Bethanna, J.; Deborah, M.; Kevin, N. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef] [Green Version]
- Igwe, P.U.; Onuigbo, A.A.; Chinedu, O.C.; Ezeaku, I.I.; Muoneke, M.M. Soil Erosion: A Review of Models and Applications. Int. J. Adv. Eng. Res. Sci. 2017, 4, 138–150. [Google Scholar] [CrossRef]
- Defersha, M.B.; Melesse, A.M.; McClain, M.E. Watershed scale application of WEPP and EROSION 3D models for assessment of potential sediment source areas and runoff flux in the Mara River Basin, Kenya. Catena 2012, 95, 63–72. [Google Scholar] [CrossRef]
- Defersha, M.B.; Melesse, A.M. Catena Field-scale investigation of the effect of land use on sediment yield and runoff using runoff plot data and models in the Mara River basin, Kenya. Catena 2012, 89, 54–64. [Google Scholar] [CrossRef]
- Han, F.; Ren, L.; Zhang, X.; Li, Z. The WEPP Model Application in a Small Watershed in the Loess Plateau. PLoS ONE 2016, 11, e0148445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Gao, M. Batunacun Evaluations of water yield and soil erosion in the Shaanxi-Gansu Loess Plateau under different land use and climate change scenarios. Environ. Dev. 2020, 34, 100488. [Google Scholar] [CrossRef]
- Singh, R.K.; Panda, R.K.; Satapathy, K.K.; Ngachan, S.V. Simulation of runoff and sediment yield from a hilly watershed in the eastern Himalaya, India using the WEPP model. J. Hydrol. 2011, 405, 261–276. [Google Scholar] [CrossRef]
- Amaru, K.; Hotta, N. Application of GeoWEPP for Evaluating Sediment Yield in a Mountain Area: Agatsuma Watershed, Japan. Int. J. Eros. Control Eng. 2018, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Meinen, B.U.; Robinson, D.T. Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data. Environ. Model. Softw. 2021, 137, 104962. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Risse, L.M.; Nearing, M.A. Evaluation of WEPP and its comparison with USLE and RUSLE. Trans. Am. Soc. Agric. Eng. 2000, 43, 1129–1135. [Google Scholar] [CrossRef]
- Amore, E.; Modica, C.; Nearing, M.A.; Santoro, V.C. Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins. J. Hydrol. 2004, 293, 100–114. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Gong, Y.W.; Li, Y.H.; Hong, Q.; Xu, L.; Liu, R.M. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agric. Water Manag. 2009, 96, 1435–1442. [Google Scholar] [CrossRef]
- Afshar, A.A.; Hassanzadeh, Y. Determination of monthly hydrological erosion severity and runoff in torogh dam watershed basin using SWAT and WEPP Models. Iran. J. Sci. Technol.-Trans. Civ. Eng. 2017, 41, 221–228. [Google Scholar] [CrossRef]
- Ogwo, V.; Ogbu, K.N.; Okoye, C.J.; Okechukwu, M.E.; Mbajiorgu, C.C. Comparison of soil erosion models for application in the humid tropics. Hydrol. Disaster Manag. 2012, 266–278. [Google Scholar]
- Flanagan, D.C.; Nearing, M.A. USDA Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. In USDA-ARS National Soil Erosion Laboratory Report No. 10; United States Department of Agriculture: Washington, DC, USA, 1995. [Google Scholar]
- Flanagan, D.; Frankenberger, J. Ascough II, WEPP: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1463–1477. [Google Scholar] [CrossRef]
- Foster, G.R.; Lane, L.J. User Requirements: USDA Water Erosion Prediction Project (WEPP); NSERL Report No. 1; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1987.
- Renschler, C.S.; Flanagan, D.C.; Engel, B.A.; Frankenberger, J.R. GeoWEPP—The Geo-spatial interface for the Water Erosion Prediction Project. In Proceedings of the 2002 ASAE Annual Meeting, Chicago, IL, USA, 18–31 July 2002; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2002. [Google Scholar] [CrossRef] [Green Version]
- Renschler, C.S. Designing geo-spatial interfaces to scale process models: The GeoWEPP approach. Hydrol. Process. 2003, 17, 1005–1017. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Frankenberger, J.R.; Cochrane, T.A.; Renschler, C.S.; Elliot, W.J. Geospatial application of the water erosion prediction project (WEPP) model. Trans. ASABE 2013, 56, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Goergen, J.; Yasumiishi, M.; Renschler, C.S. GeoWEPP for ArcGIS 10.x Version Overview Manual. Available online: http://geowepp.geog.buffalo.edu/wp-content/uploads/2014/01/GeoWEPP_ArcGIS10_Overview.pdf (accessed on 18 January 2021).
- Melaku, N.D.; Renschler, C.S.; Flagler, J.; Bayu, W.; Klik, A. Integrated impact assessment of soil and water conservation structures on runoff and sediment yield through measurements and modeling in the Northern Ethiopian highlands. Catena 2018, 169, 140–150. [Google Scholar] [CrossRef]
- Reis, M.; Altun Aladag, I.; Bolat, N.; Dutal, H. Using Geowepp Model to Determine Sediment Yield and Runoff in the Keklik Watershed in Kahramanmaras, Turkey. Šumarski List. 2017, 116, 563–569. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.P.; Phillips, D.L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 1994, 33, 140–158. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Al-Mukhtar, M.; Dunger, V.; Merkel, B. Runoff and sediment yield modeling by means of WEPP in the Bautzen dam catchment, Germany. Environ. Earth Sci. 2014, 72, 2051–2063. [Google Scholar] [CrossRef]
- Pandey, A.; Chowdary, V.M.; Mal, B.C.; Billib, M. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. J. Hydrol. 2008, 348, 305–319. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Livingston, S.J. WEPP User Summary: USDA-Water Erosion Prediction Project (WEPP); NSERL Report No. 11; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995.
- Yousuf, A.; Bhardwaj, A.; Tiwari, A.K.; Bhatt, V.K. Simulation of runoff and sediment yield from a forest micro watershed in Shivalik foothills using WEPP Model. Indian J. Soil Conserv. 2017, 45, 21–27. [Google Scholar]
- Gray, J.R.; Simões, F.J.M.; Introduction, D. Estimating Sediment Discharge. Sediment. Eng.–Process. Meas. Model. Pract. 2008, 110, 1065–1086. [Google Scholar]
- Ali, Y.S.A.; Crosato, A.; Mohamed, Y.A.; Abdalla, S.H.; Wright, N.G. Sediment balances in the Blue Nile River Basin. Int. J. Sediment Res. 2014, 29, 316–328. [Google Scholar] [CrossRef]
- Moges, M.M.; Abay, D.; Engidayehu, H. Investigating reservoir sedimentation and its implications to watershed sediment yield: The case of two small dams in data-scarce upper Blue Nile Basin, Ethiopia. Lakes Reserv. Res. Manag. 2018, 23, 217–229. [Google Scholar] [CrossRef]
- Assfaw, A.T. Calibration, Validation and Performance Evaluation of Swat Model for Sediment Yield Modelling in Megech Reservoir Catchment, Ethiopia. J. Environ. Geogr. 2019, 12, 21–31. [Google Scholar] [CrossRef]
- Assfaw, A.T. Modeling Impact of Land Use Dynamics on Hydrology and Sedimentation of Megech Dam Watershed, Ethiopia. Sci. World J. 2020, 2020, 6530278. [Google Scholar] [CrossRef]
- Water Works Design and Supervision Enterprize (WWDSE) Megech Dam Detail Design Document. Addis Abeba, Ethiopia 2009, VI. Available online: https://addisbiz.com/business-directory/11316-water-works-design-supervision-enterprise-wwdse (accessed on 20 March 2020).
- Balabathina, V.N.; Raju, R.P.; Mulualem, W.; Tadele, G. Estimation of soil loss using remote sensing and GIS-based universal soil loss equation in northern catchment of Lake Tana Sub-basin, Upper Blue Nile Basin, Northwest Ethiopia. Environ. Syst. Res. 2020, 9, 1–32. [Google Scholar] [CrossRef]
- Zeleke, T.; Moussa, A.M.; El-manadely, M.S. Prediction of sediment inflows to Angereb dam reservoir using the SRH-1D sediment transport model. Sci. Policy Manag. Sustain. Use 2013, 18, 366–371. [Google Scholar] [CrossRef]
- Poeppl, R.E.; Dilly, L.A.; Haselberger, S.; Renschler, C.S.; Baartman, J.E.M. Combining Soil Erosion Modeling with Connectivity Analyses to Assess Lateral Fine Sediment Input into Agricultural Streams. Water 2019, 11, 1793. [Google Scholar] [CrossRef] [Green Version]
- Klein, L.R.; Hendrix, W.G.; Lohr, V.I.; Kaytes, J.B.; Sayler, R.D.; Swanson, M.E.; Elliot, W.J.; Reganold, J.P. Linking ecology and aesthetics in sustainable agricultural landscapes: Lessons from the Palouse region of Washington, U.S.A. Landsc. Urban Plan. 2015, 134, 195–209. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, S.; Naithani, S. Modelling runoff and sediment yield using GeoWEPP: A study in a watershed of lesser Himalayan landscape, India. Model. Earth Syst. Environ. 2021, 7, 2089–2100. [Google Scholar] [CrossRef]
- Dutal, H.; Reis, M. Identification of priority areas for sediment yield reduction by using a GeoWEPP-based prioritization approach. Dutal, H.; Reis, M. Identification of priority areas for sediment yield reduction by using a GeoWEPP-based prioritization approach. Arab. J. Geosci. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Pandey, A.; Chowdary, V.M.; Mal, B.C.; Billib, M. Application of the WEPP model for prioritization and evaluation of best management practices in an Indian watershed. Hydrol. Process. 2009, 23, 2997–3005. [Google Scholar] [CrossRef]
Slope (%) | Characteristics | Area (Km2) | Percent Distribution (%) | Sensitivity Index |
---|---|---|---|---|
0–2 | Flat | 2.70 | 0.64% | 0 |
2–5 | Gentle undulating | 19.19 | 4.52% | 4 |
5–10 | Undulating | 58.28 | 13.73% | 8 |
10–15 | Rolling | 57.10 | 13.45% | 12 |
15–30 | Moderately steep | 125.31 | 29.52% | 16 |
>30 | Steep | 161.96 | 38.15% | 20 |
Soil Type | FAO Soil | Eutric Leptosol (90.9%) | Lithic Leptosol (7.2%) | Eutric Cambisol |
---|---|---|---|---|
Soil Texture | Clay Loam (Coarse) | Loam to Clay Loam (Fine) | Light Clay Silt Loam | |
Runoff | Ke (mm/h) | −0.3487 | −0.3785 | −1.7263 |
τc (pa) | 0 | 0 | 0 | |
Kr (s/m) | 0 | 0 | 0 | |
Ki (kg·s/m4) | 0 | 0 | 0 | |
Soil loss | Ke (mm/h) | −0.4487 | −0.4894 | −1.5901 |
τc (pa) | −0.1271 | −0.1766 | −0.0875 | |
Kr (s/m) | 0.6082 | 0.6098 | 0.6119 | |
Ki (kg·s/m4) | 0.025 | 0.0109 | 0.0173 | |
Sediment yield | Ke (mm/h) | −0.4549 | −0.4887 | −1.6060 |
τc (pa) | −0.127 | −0.1767 | −0.0876 | |
Kr (s/m) | 0.6079 | 0.6096 | 0.6119 | |
Ki (kg·s/m4) | 0.0253 | 0.0104 | 0.0172 |
Soil Types | Eutric Leptosol (90.9%) | Lithic Leptosol (7.2%) | Eutric Cambisol (1.9%) | |
---|---|---|---|---|
Calibrated Parameters | Ke (mm/h) | 5.5 | 5 | 8 |
τc (pa) | 2.5 | 2.2 | 1.5 | |
Kr (s/m) | 0.001 | 0.0015 | 0.002 | |
Ki (kg·s/m4) | 1 × 106 | 1.2 × 106 | 1.2 × 106 |
Document Information(Reference) | Models for Analysis | Study Site Name | Rate of Mean Sediment Yield (t/ha/year) |
---|---|---|---|
[73] | RUSLE | Shina reservoir | 24.99 |
[73] | RUSLE | Selamko reservoir | 43.336 |
[74] | SWAT | Megech dam watershed | 12.33 |
[75] | SWAT | Megech dam watershed | 12.6 |
[76] | Sediment rating curve | Megech dam watershed | 11.7 |
[17] | SWAT | Megech | 30–65 |
[7] | Bathymetric survey measurements (1997, 2005, 2007) | Angereb reservoir | 17.89 to 33.54 |
[77] | RUSLE | Megech watershed | 40.9 |
[78] | 1-D numerical modeling method | Angereb | 42.02 t/ha/year |
Annual Soil Loss (t/ha/year) | Sub Watersheds | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Deposition > 10 | 6.34 | 4.67 | 3.55 | 5.88 | 1.31 | 5.24 | 5.19 | 4.59 | 3.70 | 4.99 |
Deposition < 10 | 3.83 | 7.70 | 3.82 | 2.23 | 3.28 | 3.75 | 5.75 | 5.13 | 4.10 | 5.50 |
0 ≤ Soil Loss < 2.5 | 14.45 | 43.04 | 18.75 | 12.27 | 28.02 | 24.61 | 37.79 | 34.59 | 43.71 | 35.07 |
2.5 T ≤ Soil Loss < 5 | 2.95 | 10.79 | 8.45 | 5.57 | 14.77 | 12.79 | 10.41 | 12.16 | 10.86 | 10.48 |
5≤ Soil Loss < 7.5 | 1.95 | 6.07 | 6.91 | 3.69 | 8.75 | 8.89 | 6.79 | 7.11 | 6.45 | 6.26 |
7.5 ≤ Soil Loss < 10 | 2.76 | 4.26 | 6.28 | 2.87 | 6.04 | 6.89 | 4.35 | 4.57 | 3.98 | 4.70 |
10 ≤ Soil Loss < 20 | 14.20 | 8.53 | 15.45 | 9.65 | 12.96 | 14.97 | 9.17 | 9.79 | 7.83 | 10.84 |
20 ≤ Soil Loss < 30 | 8.10 | 3.75 | 11.60 | 6.92 | 7.42 | 7.11 | 3.65 | 4.36 | 3.87 | 4.79 |
30 ≤ Soil Loss < 40 | 7.29 | 2.33 | 7.97 | 5.75 | 6.18 | 3.78 | 2.57 | 3.20 | 3.11 | 3.32 |
Soil Loss ≥40 | 38.13 | 8.85 | 17.22 | 45.17 | 11.25 | 11.97 | 14.33 | 14.51 | 12.38 | 14.04 |
Sub-Watersheds | Area (ha) | Annual SY Rate (t/ha/year) | Sediment Delivery Ratio |
---|---|---|---|
1 | 162 | 54.8 | 0.338 |
2 | 2339.94 | 35.4 | 0.395 |
3 | 1772.95 | 26.9 | 0.164 |
4 | 4902.2 | 32.69 | 0.155 |
5 | 1259.99 | 10.3 | 0.146 |
6 | 1671.67 | 14.5 | 0.284 |
7 | 684.95 | 51.7 | 0.397 |
8 | 480.33 | 27.8 | 0.278 |
9 | 380.78 | 36.5 | 0.443 |
10 | 1453.94 | 22.1 | 0.267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Admas, M.; Melesse, A.M.; Abate, B.; Tegegne, G. Soil Erosion, Sediment Yield, and Runoff Modeling of the Megech Watershed Using the GeoWEPP Model. Hydrology 2022, 9, 208. https://doi.org/10.3390/hydrology9120208
Admas M, Melesse AM, Abate B, Tegegne G. Soil Erosion, Sediment Yield, and Runoff Modeling of the Megech Watershed Using the GeoWEPP Model. Hydrology. 2022; 9(12):208. https://doi.org/10.3390/hydrology9120208
Chicago/Turabian StyleAdmas, Mulugeta, Assefa M. Melesse, Brook Abate, and Getachew Tegegne. 2022. "Soil Erosion, Sediment Yield, and Runoff Modeling of the Megech Watershed Using the GeoWEPP Model" Hydrology 9, no. 12: 208. https://doi.org/10.3390/hydrology9120208
APA StyleAdmas, M., Melesse, A. M., Abate, B., & Tegegne, G. (2022). Soil Erosion, Sediment Yield, and Runoff Modeling of the Megech Watershed Using the GeoWEPP Model. Hydrology, 9(12), 208. https://doi.org/10.3390/hydrology9120208