Susceptibility of Water Resources and Hydropower Production to Climate Change in the Tropics: The Case of Lake Malawi and Shire River Basins, SE Africa
Abstract
:1. Introduction
- How sensitive are lake levels and discharge to variations in precipitation and temperature (potential evapotranspiration and lake evaporation) in the Lake Malawi Basin (including the lake) and Shire River Basin?
- What are the impacts of future climate change projections on the water budgets of the Lake Malawi Basin and Shire River Basin?
- How do these impacts translate into changes in hydropower productivity and reliability?
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Modeling Strategy
3.2. Mesoscale Hydrological Model (mHM)
3.3. Lake Malawi Model (LMM)
3.4. Estimation of Hydropower Production
3.5. Sensitivity Analysis and Response Surfaces
4. Results
4.1. Calibration and Verification of the Hydrological Model Chain
4.2. Sensitivity Analyses
4.3. Climate Change Projections for the Greater Lake Malawi Basin
4.4. Climate Change Impacts on Water Budgets and Hydropower Productivity
4.4.1. Lake Level
4.4.2. Shire River Discharge at Liwonde
4.4.3. Hydropower Productivity
5. Discussion
5.1. Sensitivity of Water Resources to Changes in Precipitation and Temperature (Evapotranspiration)
5.2. Climate Change Impacts on Hydropower Productivity
5.3. Limitations and Uncertainties
6. Conclusions
- The role of lake evaporation is essential for changes in lake level and lake outflow. Note that, currently, lake evaporation clearly exceeds rainfall over the lake. Although the effects of projected future rainfall changes on lake level and outflow were slightly larger than the effects of temperature changes, the sensitivity analysis identified the particular role of lake evaporation for the hydrological system of Lake Malawi. Evapotranspiration effects (temperature increases as a proxy) on Shire River discharge are not as high as for the lake surface area, and they might be seen as the inherited influence of outflow sensitivity from the lake.
- Climate projections agree that gradually increasing temperature and decreasing precipitation lead to a reduction in mean lake level, outflow and Shire River discharge. Depending on the time period and scenario considered, mean lake level and Shire River discharge are projected to decrease in in range of 0.5 m to 2.1 m and 23% to 75%, respectively. However, extreme scenarios even suggest a decrease in lake level, which would lead to a temporally ceasing outflow from Lake Malawi into the Shire River, bringing along serious ecological and economic threats. These results demonstrate that this tropical hydro-system is particularly vulnerable to climate change impacts. Since water resources are crucial for the economic development of Malawi, this may have serious socio-economic consequences for the country.
- Based on the currently installed capacities, hydropower productivity and reliability decrease for all future scenarios considered. The degree of these decreases, however, strongly depends on the time periods and scenarios considered. On average, projections for hydropower production losses vary between −1% and −24% (thus for 16 to 259 days per year, the maximum electricity production will not be reached). In part, the adverse effects of reduced Shire discharge on electrical production can be counteracted by installing additional hydropower stations along the middle Shire and/or the seasonal and diurnal optimization of hydro-electric production. This strategy is currently followed in Malawi, as some new power stations are under construction or planned [18,19,20]. Still, extreme scenarios, which coincide with a temporal offset of outflow from Lake Malawi, even suggest a productivity loss by −38%, with 318 days per year without maximum production. This would seriously endanger the domestic energy supply in Malawi.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vormoor, K.; Rössler, O.; Bürger, G.; Bronstert, A.; Weingartner, R. When timing matters-considering changing temporal structures in runoff response surfaces. Clim. Chang. 2017, 142, 213–226. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2008; Volume 100. [Google Scholar]
- Shukla, P.R.; Skea, J.; Slade, R.; Diemen, E.; Haughey, E.; Malley, J.; Pathak, J.; Pereira, P. Climate Change and Land an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Slade, R., Diemen, R., Haughey, E., Malley, J., Pathak, M., Pereira, J.P., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Simms, A. Africa: Up in Smoke?: Second Report from the Working Group on Climate Change and Development; Murphy, M., Ed.; The New Economics FoundationOxfam GB: London, UK, 2006; pp. 4–44. [Google Scholar]
- Luo, T.; Young, R.; Reig, P. Aqueduct Projected Water Stress Country Rankings; Technical Note; World Resources Institute: Washington, DC, USA, 2015. [Google Scholar]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kusangaya, S.; Warburton, M.L.; Archer van Garderen, E.; Jewitt, G.P.W. Impacts of climate change on water resources in southern Africa: A review. Phys. Chem. Earth 2014, 67–69, 47–54. [Google Scholar] [CrossRef]
- Taulo, J.L.; Gondwe, K.J.; Sebitosi, A. Ben Energy supply in Malawi: Options and issues. J. Energy South. Africa 2015, 26, 19–32. [Google Scholar] [CrossRef] [Green Version]
- ESCOM. The Effect of the Current Rainfall on Water Levels and Electricity Supply (Generation). Available online: http://www.escom.mw/rainfall-effect-waterlevels.php (accessed on 22 March 2017).
- Shela, O.N. Naturalisation of Lake Malawi levels and Shire River flows. In Proceedings of the 1st WARFSA/WaterNet Symposium: Sustainable Use of Water Resources, Maputo, Mozambique, 1–2 November 2000; pp. 1–2. [Google Scholar]
- Mtilatila, L.; Bronstert, A.; Bürger, G.; Vormoor, K. Meteorological and hydrological drought assessment in Lake Malawi and Shire River Basins (1970–2013). Hydrol. Sci. J. accepted for publication.
- Beck, L.; Bernauer, T. How will combined changes in water demand and climate affect water availability in the Zambezi river basin? Glob. Environ. Chang. 2011, 21, 1061–1072. [Google Scholar] [CrossRef]
- Mujere, N.; Mazvimavi, D. Impact of climate change on reservoir reliability. Afr. Crop Sci. 2012, 20, 545–551. [Google Scholar] [CrossRef]
- Stevens, T.; Madani, K. Future climate impacts on maize farming and food security in Malawi. Sci. Rep. 2016, 6, 36241. [Google Scholar] [CrossRef] [Green Version]
- Tadross, M.; Jack, C.; Hewitson, B. On RCM-based projections of change in southern African summer climate. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Arnell, N.W.; Hudson, D.A.; Jones, R.G. Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa. J. Geophys. Res. D Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Yanda, P. Climate Change, Adaptation and Higher Education-Securing our Future. In SARUA Leadership Dialogue Series Volume 2 Number 4; Kotecha, P., Ed.; SARUA: Cape Town, South Africa, 2010. [Google Scholar]
- Conway, D.; Curran, P.G.K.E. Policy Brief: Climate Risks to Hydro-Power Supply in Easte rn and Southern Africa; Grantham Research Institute on Climate Change and Environment: London, UK, 2018. [Google Scholar]
- GOM. Malawi Electricity Investment Plan; Department of Energy Affairs: Lilongwe, Malawi, 2010. [Google Scholar]
- Milleniun Challenge Corporation. Investment Outlook-Business Opportunities in Malawi Power Sector. Lilongwe, Malawi, 2015. Available online: https://www.mcc.gov/resources/pub-full/star-report-malawi (accessed on 7 August 2020).
- Harrison, G.P.; Whittington, H.W. Susceptibility of the Batoka Gorge hydroelectric scheme to climate change. J. Hydrol. 2002, 264, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Kaunda, C.S.; Mtalo, F. Impacts of environmenta degradation and climate change on electricity generation in Malawi. Int. J. Energy Environ. 2013, 4, 1101–1112. [Google Scholar]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Kumambala, P.G.; Ervine, A. Water Balance Model of Lake Malawi and its Sensitivity to Climate Change. Open Hydrol. J. 2010, 4, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Mazvimavi, D. Climate change, water availability and supply. In Climate Change, Adaptation and Higher Education: Securing Our Future; Kotecha, P., Ed.; SARUA: Cape Town, South Africa, 2010. [Google Scholar]
- Ngigi, S.N. Climate Change Adaptation Strategies: Water Resources Options for Smallholder Farming Systems in Sub-Saharan Africa; The Earth Institute at Columbia University: New York, NY, USA, 2012. [Google Scholar]
- Makungwa, S. Adaptation, Agrivulture and Food Security. In Climate Change, Adaptation and Higher Education: Securing our Future; Kotecha, P., Ed.; SARUA: Cape Town, South Africa, 2010. [Google Scholar]
- Saka, J.D.K.; Sibale, P.; Hachigonta, S.; Sibanda, L.M.; Thomas, T.S. Southern African Agriculture and Climate Change: A Comprehensive Analysis-Malawi; International Food Policy Research: Washington, DC, USA, 2012. [Google Scholar]
- Lotz-Sisitka, H. Knowledge Questions Associated with the Public Health and Climate Change Relation: Some Implications for Universities in Southern Africa. In Climate Change, Adaptation and Higher Education: Securing Our Future; Kotecha, P., Ed.; SARUA: Cape Town, South Africa, 2010. [Google Scholar]
- Bhave, A.G.; Bulcock, L.; Dessai, S.; Conway, D.; Jewitt, G.; Dougill, A.J.; Kolusu, S.R.; Mkwambisi, D. Lake Malawi’s threshold behaviour: A stakeholder-informed model to simulate sensitivity to climate change. J. Hydrol. 2020, 584, 124671. [Google Scholar] [CrossRef]
- Arndt, C.; Schlosser, A.; Strzepek, K.; Thurlow, J. Climate change and economic growth prospects for Malawi: An uncertainty approach. J. Afr. Econ. 2014, 23, 83–107. [Google Scholar] [CrossRef] [Green Version]
- Yamba, F.D.; Walimwipi, H.; Jain, S.; Zhou, P.; Cuamba, B.; Mzezewa, C. Climate change/variability implications on hydroelectricity generation in the Zambezi River Basin. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Kachaje, O.; Kasulo, V.; Chavula, G. The potential impacts of climate change on hydropower: An assessment of Lujeri micro hydropower scheme, Malawi. Afr. J. Environ. Sci. Technol. 2016, 10, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Munthali, G.; Saka, J.; Kamdonyo, D.; Kasulo, V.; Nkhokwe, J.; Kainja, S. Drought Case Study for Malawi; Department of Meteorological Services: Blantyre, Malawi, 2003. [Google Scholar]
- Jury, M.R.; Mwafulirwa, N.D. Climate variability in Malawi, Part 1: Dry summers, statistical associations and predictability. Int. J. Climatol. 2002, 22, 1289–1302. [Google Scholar] [CrossRef]
- Chavula, G.; Brezonik, P.; Bauer, M. Land Use and Land Cover Change (LULC) in the Lake Malawi Drainage Basin, 1982–2005. Int. J. Geosci. 2011, 2, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Palamuleni, L.G.; Ndomba, P.M.; Annegarn, H.J. Evaluating land cover change and its impact on hydrological regime in Upper Shire river catchment, Malawi. Reg. Environ. Chang. 2011, 11, 845–855. [Google Scholar] [CrossRef]
- Calder, I.R.; Hall, R.L.; Bastable, H.G.; Gunston, H.M.; Shela, O.; Chirwa, A.; Kafundu, R. The impact of land use change on water resources in sub-Saharan Africa: A modelling study of Lake Malawi. J. Hydrol. 1995, 170, 123–135. [Google Scholar] [CrossRef]
- Osborn, T.J.; Jones, P.D. The CRUTEM4 land-surface air temperature data set: Construction, previous versions and dissemination via Google earth. Earth Syst. Sci. Data 2014, 6, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M. GPCC Full Data Monthly Product Version 2018 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historical Data; DWD: Offenbach, Germany, 2018. [Google Scholar]
- Mtilatila, L. Seasonal Prediction of Summer Rainfall in Southern Africa. Master’s Thesis, Monash University, Melboune, Australia, 2010. [Google Scholar]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, 27–29 August 1968; pp. 517–524. [Google Scholar]
- Bashir, B.; Fouli, H. Studying the spatial distribution of maximum monthly rainfall in selected regions of Saudi Arabia using geographic information systems. Arab. J. Geosci. 2015, 8, 9929–9943. [Google Scholar] [CrossRef]
- Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadyay, B. Development of a new high spatial resolution (0.25° × 0.25°) Long Period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region data sets of different spatial resolutions and time period. Mausam 2014, 1, 1–18. [Google Scholar]
- Jones, C.; Giorgi, F.; Asrar, G. The Coordinated Regional Downscaling Experiment: CORDEX: An International Downscaling Link to CMIP5; CLIVAR Project Office: Qingdao, China, 2011. [Google Scholar]
- Shongwe, M.E.; Van Oldenborgh, G.J.; Van Den Hurk, B.J.J.M.; De Boer, B.; Coelho, C.A.S.; Van Aalst, M.K. Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa. J. Clim. 2009, 22, 3819–3837. [Google Scholar] [CrossRef]
- Pinto, I.; Lennard, C.; Tadross, M.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.-J.; Shongwe, M.E. Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models. Clim. Chang. 2016, 135, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Marchese, A.F.; Sillmann, J.; Immé, G. When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bond-lamberty, B.; Sands, R.; Smith, S.J.; Janetos, A.; Edmonds, J. Implications of Limiting CO2 Concentrations for Land Use and Energy. Science 2009, 324, 1183–1186. [Google Scholar] [CrossRef]
- Chow, V.; Maidment, D.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Toddin, E. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrol. Earth Syst. Sci. Discuss. 2007, 1549–1592. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, L.; Kumar, R.; Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 2010, 46, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Samaniego, L.; Attinger, S. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour. Res. 2013, 49, 360–379. [Google Scholar] [CrossRef]
- Rakovec, O.; Kumar, R.; Attinger, S.; Samaniego, L. Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res. 2016, 7779–7792. [Google Scholar] [CrossRef]
- Samaniego, L.; Kumar, R.; Jackisch, C. Predictions in a data-sparse region using a regionalized grid-based hydrologic model driven by remotely sensed data. Hydrol. Res. 2011, 42, 338–355. [Google Scholar] [CrossRef]
- Poméon, T.; Diekkrüger, B.; Kumar, R. Computationally efficient multivariate calibration and validation of a grid-based hydrologic model in sparsely gauged West African river basins. Water 2018, 10, 1418. [Google Scholar] [CrossRef] [Green Version]
- Eisner, S.; Flörke, M.; Chamorro, A.; Daggupati, P.; Donnelly, C.; Huang, J.; Hundecha, Y.; Koch, H.; Kalugin, A.; Krylenko, I.; et al. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Clim. Chang. 2017, 141, 401–417. [Google Scholar] [CrossRef]
- Kumar, R.; Livneh, B.; Samaniego, L. Toward computationally efficient large-scale hydrologic predictions with a multiscale regionalization scheme. Water Resour. Res. 2013, 49, 5700–5714. [Google Scholar] [CrossRef]
- Tolson, B.A.; Shoemaker, C.A. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res. 2007, 43, 1–16. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare and grass. Proc. R. Soc. Lond. Ser. A 1948, 193, 120–145. [Google Scholar]
- FAO. Crop Evapotransipiration-Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Kidd, C.H. A Water Resources Evaluation of Lake Malawi and the Shire River; WMO: Geneva, Switzerland, 1983. [Google Scholar]
- Neuland, H. Abnormal high water levels of Lake Malawi?—An attempt to assess the future behaviour of the lake water levels. Geo. J. 1984, 323–324. [Google Scholar]
- Drayton, R.S. Variations in the level of Lake Malawi. Hydrol. Sci. J. 1984, 29, 1–12. [Google Scholar] [CrossRef]
- Team R Core. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Prudhomme, C.; Wilby, R.L.; Crooks, S.; Kay, A.L.; Reynard, N.S. Scenario-neutral approach to climate change impact studies: Application to flood risk. J. Hydrol. 2010, 390, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Keller, L.; Rössler, O.; Martius, O.; Weingartner, R. Comparison of Scenario-neutral Approaches to Estimate Future Flood Characteristics. Hydrol. Process. 2019, 4, 535–550. [Google Scholar] [CrossRef]
- Wetterhall, F.; Graham, L.P.; Andréasson, J.; Rosberg, J.; Yang, W. Using ensemble climate projections to assess probabilistic hydrological change in the Nordic region. Nat. Hazards Earth Syst. Sci. 2011, 11, 2295–2306. [Google Scholar] [CrossRef]
- Sunyer, M.A.; Madsen, H.; Ang, P.H. A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res. 2012, 103, 119–128. [Google Scholar] [CrossRef]
- Nijzink, R.C.; Samaniego, L.; Mai, J.; Kumar, R.; Thober, S.; Zink, M.; Schäfer, D.; Savenije, H.H.G.; Hrachowitz, M. The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models. Hydrol. Earth Syst. Sci. 2016, 20, 1151–1176. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, L.; Kumar, R.; Zink, M. Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeorol. 2013, 14, 47–68. [Google Scholar] [CrossRef]
- Vanderkelen, I.; van Lipzig, N.P.M.; Thiery, W. Modelling the water balance of Lake Victoria (East Africa)—Part 1: Observational analysis. Hydrol. Earth Syst. Sci. 2018, 22, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Vanderkelen, I.; van Lipzig, N.P.M.; Thiery, W. Modelling the water balance of Lake Victoria (East Africa)—Part 2: Future projections. Hydrol. Earth Syst. Sci. 2018, 22, 12–19. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC (Ed.) Adoption to the PAris Agreement; United Nations: Bonn, Germany, 2015; Volume 8, pp. 513–519. [Google Scholar]
- Brailovskaya, V. Essays in Development Economics, Case of Malawi. Ph.D. Thesis, University of California, Santa Cruz, CA, USA, 2018. [Google Scholar]
- World Bank. Africa’s Power Infrastructure: Investment, Integration, Efficiency; Foster, V., Briceno-Garmendia, C., Eds.; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- De Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A. Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Sci. Total Environ. 2018, 634, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Stickler, C.M.; Coe, M.T.; Costa, M.H.; Nepstad, D.C.; McGrath, D.G.; Dias, L.C.P.; Rodrigues, H.O.; Soares-Filho, B.S. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl. Acad. Sci. USA 2013, 110, 9601–9606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronstert, A.; Kolokotronis, V.; Schwandt, D.; Straub, H. Comparison and evaluation of regional climate scenarios for hydrological impact analysis: General scheme and application example. Int. J. Climatol. 2007, 27, 1579–1594. [Google Scholar] [CrossRef]
Station | Latitude | Longitude | Elevation (m.a.s.l.) | Installed Hydroelectrical Power, HEP (MW) | Net Hydraulic Head (m) |
---|---|---|---|---|---|
Nkula A and B | −15.5261 | 34.82 | ~346 | 124 | 55.2 |
Tedzani I, II and III | −15.5594 | 34.7772 | ~291 | 92.7 | 44.8 |
Kapichira I and II | −15.9011 | 34.7531 | ~112 | 129.6 | 54 |
Total | 346.3 |
RCMs | RCA4- | X | X | X | X | X | X | X | X | X | X | -SMHI | Climate Centres |
REMO2015- | X | -MPI | |||||||||||
REMO2009- | X | X | -MPI | ||||||||||
RACMO22T- | X | X | -KNMI | ||||||||||
HIRHAM5- | X | -DMI | |||||||||||
CCLM-4-8-17- | X | X | X | X | -CLM | ||||||||
CNRM-CM5 - | EC-EARTH - | MPI-ESM-LR - | CanESM2 - | CSIRO-Mk3.6.0 - | IPSL-CM5A- | MIROC5- | Nor-ESM1-M - | GFDL-ESM2M- | HAdGEM2-ES- | ||||
GCMs |
Period | 2021–2050 | 2071–2100 | ||||||
---|---|---|---|---|---|---|---|---|
Scenarios | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | ||||
Ensemble Change | Range | Ensemble Change | Range | Ensemble Change | Range | Ensemble Change | Range | |
Temperature Mean Change (° Celsius) | +1.32 | +0.98, +1.85 | +1.55 | +0.99, +2.12 | +2.3 | +1.8, +3.2 | +4.2 | +3.4, +5 |
Precipitation Mean Change (%) | −2.2 | −11, +3 | −0.63 | −14, +26 | −4.6 | −15, +6 | −7.1 | −16, +3 |
Lake Level Mean Change (m) | −1.1 | −1.9, +0.5 | −0.5 | −2.1, +3.3 | −1.5 | −2.2, +0.2 | −2.1 | −2.4, +0.2 |
Flow Mean Change at Liwonde (%) | −49 | −70, +24 | −23 | −76, +203 | −59 | −78, +7 | −75 | −82, +4 |
Electricity Production Mean Change (%) | −2.5 | −13, +0.1 | −0.7 | −24, +0.1 | −5 | −29, +0.07 | −24 | −38, −0.07 |
Electricity Reliability Mean (Days) 1 | 46 | 190, 0 | 16 | 264, 0 | 89 | 284, 3 | 259 | 318, 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mtilatila, L.; Bronstert, A.; Shrestha, P.; Kadewere, P.; Vormoor, K. Susceptibility of Water Resources and Hydropower Production to Climate Change in the Tropics: The Case of Lake Malawi and Shire River Basins, SE Africa. Hydrology 2020, 7, 54. https://doi.org/10.3390/hydrology7030054
Mtilatila L, Bronstert A, Shrestha P, Kadewere P, Vormoor K. Susceptibility of Water Resources and Hydropower Production to Climate Change in the Tropics: The Case of Lake Malawi and Shire River Basins, SE Africa. Hydrology. 2020; 7(3):54. https://doi.org/10.3390/hydrology7030054
Chicago/Turabian StyleMtilatila, Lucy, Axel Bronstert, Pallav Shrestha, Peter Kadewere, and Klaus Vormoor. 2020. "Susceptibility of Water Resources and Hydropower Production to Climate Change in the Tropics: The Case of Lake Malawi and Shire River Basins, SE Africa" Hydrology 7, no. 3: 54. https://doi.org/10.3390/hydrology7030054
APA StyleMtilatila, L., Bronstert, A., Shrestha, P., Kadewere, P., & Vormoor, K. (2020). Susceptibility of Water Resources and Hydropower Production to Climate Change in the Tropics: The Case of Lake Malawi and Shire River Basins, SE Africa. Hydrology, 7(3), 54. https://doi.org/10.3390/hydrology7030054