Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Aridity Index
2.3. Standard Precipitation Index (SPI)
2.4. Statistical Methods
2.4.1. Mann–Kendall Test
2.4.2. Spearman’s Rho Test
2.4.3. Serial Autocorrelation Test
3. Results and Discussion
3.1. Summary of Statistical Parameters
3.2. Aridity Index
3.3. Change of Precipitation at Different Time Scales
3.4. Analysis of SPI-12
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Han, L.; Zhang, Z.; Zhang, Q.; Wan, X. Desertification assessments in the Hexi corridor of northern China’s Gansu Province by remote sensing. Nat. Hazard. 2015, 75, 2715–2731. [Google Scholar] [CrossRef]
- Yu, X.; Lu, C. Alpine Glacier Change in the Eastern Altun Mountains of Northwest China during 1972–2010. PLoS ONE 2015, 10, e0117262. [Google Scholar] [CrossRef] [PubMed]
- Wagan, B.; Zhang, Z.; Baopeing, F.; Wagan, H.; Han, S.; Ahmad, I.; Kabo-Bah, A.T. Using the SPI to interpret spatial and temporal conditions of drought in China. Outlook Agric. 2015, 44, 235–241. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. J. Hydrol. 2013, 494, 32–42. [Google Scholar] [CrossRef]
- Cooley, A.; Chang, H. Precipitation Intensity Trend Detection using Hourly and Daily Observations in Portland, Oregon. Climate 2017, 5, 10. [Google Scholar] [CrossRef]
- Paredes, D.; Trigo, R.M.; Garciaherrera, R.; Trigo, I.F. Understanding Precipitation Changes in Iberia in Early Spring: Weather Typing and Storm-Tracking Approaches. J. Hydrometeorol. 2006, 7, 101–113. [Google Scholar] [CrossRef]
- Endo, N.; Kadota, T.; Matsumoto, J.; Ailikun, B.; Yasunari, T. Climatology and Trends in Summer Precipitation Characteristics in Mongolia for the Period 1960–1998. J. Meteorol. Soc. Jpn. 2006, 84, 543–551. [Google Scholar] [CrossRef]
- Chang, H.; Kwon, W.-T. Spatial patterns of summer precipitation trends in South Korea, 1973-2005. Environ. Res. Lett. 2007, 2, 045012. [Google Scholar] [CrossRef]
- Mahfouz, P.; Mitri, G.; Jazi, M.; Karam, F. Investigating the Temporal Variability of the Standardized Precipitation Index in Lebanon. Climate 2016, 4, 27. [Google Scholar] [CrossRef]
- Mayowa, O.O.; Pour, S.H.; Shahid, S.; Mohsenipour, M.; Harun, S.B.; Heryansyah, A.; Ismail, T. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia. Journal of Earth System Science 2015, 124, 1609–1622. [Google Scholar] [CrossRef]
- Shahid, S. Spatio-temporal variability of rainfall over bangladesh during the time period 1969–2003. Social Sci. Electron. Publishing 2009, 45, 375–389. [Google Scholar]
- Sharma, S.; Singh, P.K. Long Term Spatiotemporal Variability in Rainfall Trends over the State of Jharkhand, India. Climate 2017, 5, 18. [Google Scholar] [CrossRef]
- Hanif, M.; Khan, A.H.; Adnan, S. Latitudinal precipitation characteristics and trends in Pakistan. J. Hydrol. 2013, 492, 266–272. [Google Scholar] [CrossRef]
- Niedźwiedź, T.; Twardosz, R.; Walanus, A. Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theor. Appl. Climatol. 2009, 98, 337–350. [Google Scholar] [CrossRef]
- Son, K.H.; Bae, D.H. Drought analysis according to shifting of climate zones to arid climate zone over Asia monsoon region. J. Hydrol. 2015, 529, 1021–1029. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Posadas, A.N.D.; Quiroz, R.; Bookhagen, B.; Liebmann, B. Precipitation Characteristics of the South American Monsoon System Derived from Multiple Datasets. J. Clim. 2012, 25, 4600–4620. [Google Scholar] [CrossRef]
- Gemmer, M.; Becker, S.; Jiang, T. Observed monthly precipitation trends in China 1951–2002. Theor. Appl. Climatol. 2004, 77, 39–45. [Google Scholar] [CrossRef]
- Becker, S.; Gemmer, M.; Jiang, T. Spatiotemporal analysis of precipitation trends in the Yangtze River catchment. Stoch. Environ. Res. Risk Assess. 2006, 20, 435–444. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Yang, T.; Peng, S.; Yu, Z.; Taylor, J.; Xing, W.; Zhao, C.; Sun, F. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 401–421. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Becker, S.; Zhang, Z.X.; Chen, Y.D.; Coulibaly, M. Trends and abrupt changes of precipitation extremes in the Pearl River basin, China. Atmos. Sci. Lett. 2009, 10, 132–144. [Google Scholar] [CrossRef]
- Yin, S.; Li, W.; Jeonf, J.H.; Guo, W. Diurnal Variations of Summer Precipitation in the Beijing Area and the Possible Effect of Topography and Urbanization. Adv. Atmos. Sci. 2011, 28, 725–734. [Google Scholar] [CrossRef]
- Gao, M.; Hou, X. Trends and Multifractal Analyses of Precipitation Data from Shandong Peninsula, China. Am. J. Environ. Sci. 2012, 8, 271–279. [Google Scholar]
- Jiang, F.Q.; Hu, R.J.; Wang, S.P.; Zhang, Y.W.; Tong, L. Trends of precipitation extremes during 1960–2008 in Xinjiang, the Northwest China. Theor. Appl. Climatol. 2012, 111, 133–148. [Google Scholar] [CrossRef]
- Yu, X. Glacier Variation and Its Effects in Hexi Corridor during 1970–2012; Chinese Academy of Sciences: Beijing, China, 2015. [Google Scholar]
- UNEP. World Atlas of Desertification; Edward Arnold: London, UK, 1992. [Google Scholar]
- Allen, R.G. Crop Evapotranspiration-Guidelines for computing crop water requirements. Fao Irrig. Drain. Paper 1998, 300, D05109. [Google Scholar]
- Huang, W.; Yang, X.; Li, M.; Zhang, X.; Wang, M.; Dai, S.; Ma, J. Evolution characteristics of seasonal drought in the south of China during the past 58 years based on standardized precipitation index. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2010, 26, 50–59. [Google Scholar]
- Paulo, A.A.; Pereira, L.S. Prediction of SPI Drought Class Transitions Using Markov Chains. Water Resour. Manag. 2007, 21, 1813–1827. [Google Scholar] [CrossRef]
- Tabari, H.; Abghari, H.; Talaee, P.H. Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol. Process. 2012, 26, 3351–3361. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Khan, F.I. Uncertainty-Driven Characterization of Climate Change Effects on Drought Frequency Using Enhanced SPI. Water Resour. Manag. 2014, 28, 15–40. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Moreira, E.E.; Coelho, C.A.; Paulo, A.A.; Pereira, L.S.; Mexia, J.T. SPI-based drought category prediction using loglinear models. J. Hydrol. 2008, 354, 116–130. [Google Scholar] [CrossRef]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Mergenthaler, M.J. Nonparametrics: Statistical Methods Based on Ranks. Technometrics 1979, 21, 272–273. [Google Scholar] [CrossRef]
- Sneyers, R. On the statistical analysis of series of observations. J. Biol. Chem. 1990, 258, 13680–13684. [Google Scholar]
- Phillips, C.L.; Parr, J.M. Signals, systems and transforms. Anaesthesia 2003, 34, 217–218. [Google Scholar]
- Jolliffe, I. Analysis of Climate Variability: Applications of Statistical Techniques; Springer: New York, NY, USA, 2010. [Google Scholar]
- Salas, J. Applied Modeling of Hydrologic Time Series; Water Resources Publications: Littleton, CO, USA, 1980. [Google Scholar]
- Wang, W.; Zhu, Y.; Xu, R.; Liu, J. Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Nat. Hazard. 2015, 75, 2437–2451. [Google Scholar] [CrossRef]
- Chen, D.; Dai, Y. Characteristics and analysis of typical anomalous summer rainfall patterns in Northwest China over the last 50 years. Chin. J. Atmos. Sci. 2009, 33, 1247–1258. [Google Scholar]
- Shen, L.; He, J.; Zhou, X.; Chen, L.; Zhu, C. The regional variabilities of the summer rainfall in China and its relation with anomalous moisture transport during the recent 50 years. Acta Meteorol. Sin. 2010, 68, 918–931. [Google Scholar]
- Zhang, Q.; Lv, J.; Yang, L.; Wei, J.; Peng, J. The interdecadal variation of precipitation pattern over China during summer and its relationship with the atmospheric internal dynamic processes and extraforcing factors. Chin. J. Atmos. Sci. 2007, 31, 1290–1300. [Google Scholar]
- Wang, K.; Jiang, H.; Zhao, H. Atmospheric water vapor transport from westerly and monsoon over the Northwest China. Adv. Water Sci. 2005, 16, 432–438. [Google Scholar]
- Wang, C.; Wang, S.; Yang, D.; Dong, A. The correlation between the Pacific sea surface temperature (SST) and precipitation over NW China. J. Trop. Meteorol. 2002, 18, 374–382. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Yusof, F.; Hui-Mean, F.; Suhaila, J.; Yusop, Z.; Kong, C.Y. Rainfall characterisation by application of standardised precipitation index (SPI) in Peninsular Malaysia. Theor. Appl. Climatol. 2014, 115, 503–516. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index. Water Resour. Manag. 2015, 29, 557–573. [Google Scholar] [CrossRef]
- Manatsa, D.; Mukwada, G.; Siziba, E.; Chinyanganya, T. Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 2010, 102, 287–305. [Google Scholar] [CrossRef]
- Raziei, T.; Bordi, I.; Pereira, L.S.; Sutera, A. Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets. Hydrol. Earth Syst. Sci. Discuss. 2010, 14, 1919–1930. [Google Scholar] [CrossRef]
Name | Station ID | Longitude (°E) | Latitude (°N) | Elevation (m a.s.l.) |
---|---|---|---|---|
Wuwei | 52679 | 102.67 | 37.92 | 1532 |
Yongchang | 52674 | 101.97 | 38.23 | 1976 |
Shandan | 52661 | 101.08 | 38.80 | 1765 |
Zhangye | 52652 | 100.43 | 38.93 | 1483 |
Gaotai | 52546 | 99.83 | 39.37 | 1332 |
Jiuquan | 52533 | 98.48 | 39.77 | 1477 |
Yumen | 52436 | 97.03 | 40.27 | 1526 |
Guazhou | 52424 | 95.77 | 40.53 | 1171 |
Dunhuang | 52418 | 94.68 | 40.15 | 1139 |
Class | SPI Value |
---|---|
Non-Dry | SPI ≥ 0 |
Mildly dry | −1 < SPI < 0 |
Moderately dry | −1.5 < SPI≤ −1 |
Severely/extremely dry | SPI ≤ −1.5 |
Station | Min (mm) | Max (mm) | Mean (mm) | SD (mm) | CV (%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Wuwei | 0 | 114.50 | 14.13 | 12.58 | 89.03 | 2.23 | 6.55 |
Yongchang | 0 | 122.40 | 17.22 | 17.02 | 98.84 | 1.90 | 4.21 |
Shandan | 0 | 107.80 | 17.04 | 16.60 | 97.42 | 1.67 | 2.48 |
Zhangye | 0 | 90.30 | 11.02 | 10.78 | 97.82 | 1.82 | 3.52 |
Gaotai | 0 | 93.20 | 9.39 | 8.50 | 90.52 | 2.41 | 8.05 |
Jiuquan | 0 | 92.40 | 7.45 | 6.84 | 91.81 | 3.10 | 13.07 |
Yumen | 0 | 100.1 | 5.84 | 4.46 | 76.37 | 4.04 | 26.97 |
Guazhou | 0 | 58.30 | 4.23 | 3.79 | 89.60 | 3.19 | 14.21 |
Dunhuang | 0 | 60.70 | 3.59 | 3.77 | 105.01 | 3.69 | 18.03 |
Station | Min (mm) | Max (mm) | Mean (mm) | SD (mm) | CV (%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Wuwei | 101.60 | 251.30 | 169.52 | 40.66 | 23.98 | 0.27 | −0.73 |
Yongchang | 110.50 | 294.60 | 206.58 | 37.57 | 18.19 | 0.28 | 0.42 |
Shandan | 97.80 | 301.20 | 204.52 | 44.55 | 21.78 | 0.30 | 0.13 |
Zhangye | 71.60 | 216.30 | 132.22 | 34.88 | 26.38 | 0.46 | 0.29 |
Gaotai | 54.90 | 209.90 | 112.68 | 32.74 | 29.06 | 0.91 | 1.32 |
Jiuquan | 41.40 | 165.60 | 89.28 | 30.39 | 34.03 | 0.82 | 0.11 |
Yumen | 33.60 | 156.50 | 70.10 | 25.53 | 36.41 | 1.61 | 3.21 |
Guazhou | 19.00 | 127.70 | 50.75 | 18.97 | 37.39 | 1.65 | 5.31 |
Dunhuang | 11.60 | 105.50 | 43.12 | 20.32 | 47.13 | 1.04 | 1.04 |
Station | Precipitation (mm/a) | ET0 (mm/d) | Aridity Index | Class |
---|---|---|---|---|
Wuwei | 169.52 | 2.44 | 0.19 | Arid |
Yongchang | 206.58 | 2.57 | 0.22 | Semi-arid |
Shandan | 204.52 | 2.80 | 0.20 | Arid |
Zhangye | 132.22 | 2.59 | 0.14 | Arid |
Gaotai | 112.68 | 2.57 | 0.12 | Arid |
Jiuquan | 89.28 | 3.06 | 0.08 | Arid |
Yumen | 70.10 | 3.84 | 0.05 | Hyper-arid |
Guazhou | 50.75 | 4.63 | 0.03 | Hyper-arid |
Dunhuang | 43.12 | 3.94 | 0.03 | Hyper-arid |
Station | Spring | Summer | Autumn | Winter | Annual |
---|---|---|---|---|---|
Wuwei | 0.12 | 0.11 | 0.07 | −0.26 | −0.06 |
Yongchang | 0.20 | 0.15 | 0.13 | −0.05 | −0.03 |
Shandan | −0.01 | −0.19 | 0.07 | −0.29 | −0.19 |
Zhangye | 0.04 | −0.22 | −0.03 | −0.16 | −0.19 |
Gaotai | 0.13 | −0.22 | 0.05 | 0.14 | −0.26 |
Jiuquan | 0.06 | −0.02 | −0.16 | 0.05 | −0.17 |
Yumen | −0.03 | −0.08 | −0.12 | 0.22 | −0.22 |
Guazhou | −0.00 | −0.09 | 0.04 | 0.12 | −0.04 |
Dunhuang | −0.05 | 0.03 | −0.05 | −0.04 | −0.16 |
Station | Test | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | ||
Wuwei | ZS | 1.60 | −1.20 | 1.26 | −0.60 | 1.02 | −0.52 | 0.40 | 0.00 | 0.93 | 0.40 | 0.81 | 1.21 |
ZD | 1.63 | −1.27 | 1.34 | −0.70 | 1.14 | −0.69 | 0.38 | 0.11 | 1.03 | 0.42 | 0.75 | 1.37 | |
B (mm/a) | 0.25 | −0.20 | 0.21 | −0.11 | 0.18 | −0.11 | 0.06 | 0.02 | 0.16 | 0.07 | 0.12 | 0.21 | |
Yongchang | ZS | 1.72 | 0.82 | 1.66 | 0.53 | 1.13 | −0.32 | 1.79 | −0.01 | 0.76 | 0.23 | 0.49 | 0.32 |
ZD | 1.73 | 0.83 | 1.71 | 0.32 | 1.21 | −0.30 | 1.86 | 0.05 | 0.87 | 0.24 | 0.40 | 0.45 | |
B (mm/a) | 0.26 | 0.13 | 0.26 | 0.05 | 0.19 | −0.05 | 0.28 | 0.01 | 0.14 | 0.04 | 0.06 | 0.07 | |
Shandan | ZS | 2.03 * | −1.36 | 1.48 | −0.27 | 0.60 | −0.25 | 1.05 | −0.23 | 0.18 | 1.06 | 1.54 | 1.37 |
ZD | 2.11 * | −1.48 | 1.42 | −0.34 | 0.68 | −0.15 | 0.96 | −0.18 | 0.15 | 0.93 | 1.66 | 1.32 | |
B (mm/a) | 0.08 | −0.23 | 0.22 | −0.05 | 0.11 | −0.02 | 0.15 | −0.03 | 0.02 | 0.15 | 0.25 | 0.20 | |
Zhangye | ZS | 1.47 | 0.39 | 0.57 | −0.99 | 1.17 | −0.78 | 0.00 | −1.58 | 0.38 | 0.74 | 0.65 | 1.76 |
ZD | 1.54 | 0.49 | 0.59 | −0.92 | 1.30 | −0.80 | 0.03 | −1.58 | 0.28 | 0.45 | 0.61 | 1.70 | |
B (mm/a) | 0.24 | 0.08 | 0.09 | −0.14 | 0.20 | −0.12 | 0.00 | −0.24 | 0.04 | 0.07 | 0.10 | 0.26 | |
Gaotai | ZS | 1.52 | −0.97 | 1.09 | −0.50 | 0.39 | 0.81 | 0.43 | −0.86 | 0.37 | 0.39 | 0.33 | 1.29 |
ZD | 1.83 | 0.27 | 2.54 | −0.89 | 1.12 | −0.86 | −0.23 | −0.52 | 0.22 | 0.78 | 1.00 | 3.19 | |
B (mm/a) | 0.28 | 0.04 | 0.37 | −0.14 | 0.17 | −0.14 | −0.04 | −0.08 | 0.03 | 0.12 | 0.16 | 0.45 | |
Jiuquan | ZS | 0.87 | −1.27 | 1.66 | −1.07 | 0.26 | −0.54 | 0.75 | −1.29 | 0.62 | 0.74 | 1.33 | 0.73 |
ZD | 0.91 | −1.26 | 1.73 | −1.05 | 0.40 | −0.53 | 0.58 | −1.48 | 0.67 | 0.69 | 1.32 | 0.80 | |
B (mm/a) | 0.14 | −0.20 | 0.26 | −0.16 | 0.06 | −0.08 | 0.09 | −0.23 | 0.11 | 0.11 | 0.20 | 0.13 | |
Yumen | ZS | 1.96 * | −0.73 | 2.04 * | −1.54 | 1.11 | −1.37 | −0.46 | −0.81 | 0.76 | 0.33 | 0.57 | 2.54 * |
ZD | 2.29 * | −0.77 | 2.10 * | −1.57 | 1.03 | −1.38 | −0.41 | −0.94 | 0.86 | 0.40 | 0.64 | 2.79 * | |
B (mm/a) | 0.04 | −0.12 | 0.13 | −0.24 | 0.16 | −0.21 | −0.06 | −0.15 | 0.13 | 0.06 | 0.10 | 0.09 | |
Guazhou | ZS | −0.07 | −0.49 | 1.38 | −0.90 | 0.66 | −1.19 | −1.43 | −1.53 | 0.73 | −0.20 | −0.18 | 1.70 |
ZD | −0.07 | −0.54 | 1.32 | −0.86 | 0.59 | −1.19 | −1.29 | −1.55 | 0.89 | −0.22 | −0.12 | 1.55 | |
B (mm/a) | −0.01 | −0.09 | 0.20 | −0.14 | 0.09 | −0.18 | −0.20 | −0.24 | 0.14 | −0.04 | −0.02 | 0.24 | |
Dunhuang | ZS | −0.71 | −1.18 | 1.51 | −0.40 | 2.09 * | −1.09 | −1.10 | −1.72 | 1.90 | 0.59 | 0.02 | 1.37 |
ZD | −0.84 | −1.50 | 1.72 | −0.40 | 2.08 * | −1.16 | −1.12 | −1.53 | 2.14 | 0.65 | 0.06 | 1.53 | |
B (mm/a) | −0.13 | −0.23 | 0.26 | −0.06 | 0.13 | −0.18 | −0.17 | −0.24 | 0.32 | 0.10 | 0.01 | 0.24 |
Station | Test | Season | ||||
---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Annual | ||
Wuwei | ZS | 1.42 | −0.28 | 0.54 | −0.50 | 0.77 |
ZD | 1.44 | −0.46 | 0.68 | −0.56 | 0.62 | |
B (mm/a) | 0.25 | −0.20 | 0.21 | −0.11 | 0.10 | |
Yongchang | ZS | 2.48 * | 0.98 | 1.55 | −0.04 | 2.20 * |
ZD | 2.60 * | 1.01 | 1.63 | 0.00 | 2.62 * | |
B (mm/a) | 0.26 | 0.13 | 0.26 | 0.05 | 0.38 | |
Shandan | ZS | 1.74 | −0.54 | 0.67 | −2.30 * | 1.09 |
ZD | 1.71 | −0.37 | 0.60 | −2.34 * | 1.11 | |
B (mm/a) | 0.32 | −0.23 | 0.22 | −0.05 | 0.17 | |
Zhangye | ZS | 1.58 | −0.14 | −0.41 | −1.49 | 0.15 |
ZD | 1.66 | −0.07 | −0.51 | −1.52 | 0.15 | |
B (mm/a) | 0.24 | 0.08 | −0.09 | −0.14 | 0.02 | |
Gaotai | ZS | 3.02 * | 0.07 | −0.01 | −2.48 * | 0.94 |
ZD | 3.24 * | 0.05 | −0.06 | −2.59 * | 0.91 | |
B (mm/a) | 0.28 | 0.04 | −0.37 | −0.14 | 0.14 | |
Jiuquan | ZS | 1.60 | −1.05 | −0.70 | −2.18 * | 0.22 |
ZD | 1.65 | −1.08 | −0.67 | −2.21 * | 0.20 | |
B (mm/a) | 0.14 | −0.20 | −0.26 | −0.16 | 0.03 | |
Yumen | ZS | 2.26 * | −0.74 | −0.07 | −1.98 * | −0.02 |
ZD | 2.15 * | −0.80 | −0.11 | −2.07 * | −0.05 | |
B (mm/a) | 0.34 | −0.12 | −0.31 | −0.24 | −0.01 | |
Guazhou | ZS | −0.70 | −0.46 | −1.26 | −1.05 | −1.02 |
ZD | −0.72 | −0.50 | −1.20 | −1.05 | −1.05 | |
B (mm/a) | −0.01 | −0.09 | −0.20 | −0.14 | −0.16 | |
Dunhuang | ZS | −0.29 | −0.05 | −1.39 | −1.05 | −0.00 |
ZD | −0.25 | −0.03 | −1.33 | −1.19 | −0.09 | |
B (mm/a) | −0.13 | −0.23 | −0.26 | −0.06 | −0.01 |
Station | The most Severe Drought | Percent of Drought Years during the Study Period | ||
---|---|---|---|---|
SPI-12 | Year | Moderate (%) | Severe/Extreme (%) | |
Wuwei | −2.88 | 1992 | 8.91 | 6.93 |
Yongchang | −2.88 | 1992 | 8.91 | 6.93 |
Shandan | −2.88 | 1986 | 8.91 | 6.93 |
Zhangye | −2.88 | 1986 | 8.91 | 6.93 |
Gaotai | −2.72 | 1984 | 5.94 | 8.12 |
Jiuquan | −3.09 | 1986 | 6.34 | 6.34 |
Yumen | −3.82 | 1986 | 6.34 | 6.34 |
Guazhou | −4.06 | 2008 | 6.53 | 5.94 |
Dunhuang | −2.88 | 2009 | 9.11 | 6.93 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Zhao, G.; Zhao, W.; Yan, T.; Yuan, X. Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China. Hydrology 2017, 4, 29. https://doi.org/10.3390/hydrology4020029
Yu X, Zhao G, Zhao W, Yan T, Yuan X. Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China. Hydrology. 2017; 4(2):29. https://doi.org/10.3390/hydrology4020029
Chicago/Turabian StyleYu, Xinyang, Gengxing Zhao, Weijun Zhao, Tingting Yan, and Xiujie Yuan. 2017. "Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China" Hydrology 4, no. 2: 29. https://doi.org/10.3390/hydrology4020029
APA StyleYu, X., Zhao, G., Zhao, W., Yan, T., & Yuan, X. (2017). Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China. Hydrology, 4(2), 29. https://doi.org/10.3390/hydrology4020029