Evaluating Global Reanalysis Datasets as Input for Hydrological Modelling in the Sudano-Sahel Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Observed River Discharge Data
2.2.2. Spatial Datasets
2.2.3. Reanalysis Data
2.3. CFSR
2.4. ERA-Interim
2.5. WFDEI
2.6. Model Setup
2.7. Model Calibration and Uncertainty Analysis
3. Results
4. Discussion
4.1. Selection of Grid Points
4.2. Model Evaluation
4.3. Prediction Uncertainty
4.4. Effects of Spatial Resolution
4.5. Simulation of Evapotranspiration
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van de Giesen, N.; Hut, R.; Selker, J. The trans-African hydro-meteorological observatory (TAHMO). WIREs Water. 2014, 1, 341–348. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S.; Seo, J.Y. Hydrological evaluation of Lake Chad basin using space borne and hydrological model observations. Water 2016, 8, 205. [Google Scholar] [CrossRef]
- Buytaert, W.; Friesen, J.; Liebe, J.; Ludwig, R. Assessment and management of water resources in developing, semi-arid and arid regions. Water Resour. Manag. 2012, 26, 841–844. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Gioia, A.; Iacobellis, V.; Piccinni, A.F.; Ranieri, E. A rationale for pollutograph evaluation in ungauged areas, using daily rainfall patterns: Case studies of the Apulian region in Southern Italy. Appl. Environ. Soil Sci. 2016, 2016, 9327614. [Google Scholar] [CrossRef]
- Liu, Y.; Gupta, H.; Springer, E.; Wagener, T. Linking science with environmental decision making: Experiences from an integrated modeling approach to supporting sustainable water resources management. Environ. Model. Softw. 2008, 23, 846–858. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Maathuis, B.; Adem, A.A.; Demissie, S.S.; Langan, S.; Steenhuis, T.S. Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrol. Earth Syst. Sci. 2014, 18, 4871–4881. [Google Scholar] [CrossRef]
- Fuka, D.R.; MacAllister, C.A.; Degaetano, A.T.; Easton, Z.M. Using the Climate Forecast System Reanalysis dataset to improve weather input data for watershed models. Hydrol. Process. 2013, 28, 5613–5623. [Google Scholar] [CrossRef]
- Skinner, C.J.; Bellerby, T.J.; Greatrex, H.; Grimes, D.I.F. Hydrological modelling using ensemble satellite rainfall estimates in a sparsely gauged river basin: The need for whole ensemble calibration. J. Hydrol. 2015, 522, 110–122. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Lorenz, C.; Kunstmann, H. The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeorol. 2012, 13, 1397–1420. [Google Scholar] [CrossRef]
- Essou, G.R.C.; Sabarly, F.; Lucas-Picher, P.; Brissette, F.; Poulin, A. Can precipitation and temperature from meteorological reanalyses be used for hydrological modelling? J. Hydrometeorol. 2016, 17, 1929–1950. [Google Scholar] [CrossRef]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, L.; Chiew, F.H.S.; Vaze, J.; Cheng, L. The effect of spatial rainfall variability on water balance modelling for south-eastern Australian catchments. J. Hydrol. 2013, 493, 16–29. [Google Scholar] [CrossRef]
- Lobligeois, F.; Andréassian, V.; Perrin, C.; Tabary, P.; Loumagne, C. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events. Hydrol. Earth Syst. Sci. 2014, 18, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.A.F.; Strauch, M.; Srinivasan, R.; Abbaspour, K.; Gücker, B. Accuracy of grid precipitation data for Brazil: Application in river discharge modelling of the Tocantins catchment. Hydrol. Process. 2016, 30. [Google Scholar] [CrossRef]
- Andersson, J.C.M.; Pechlivanidis, I.G.; Gustafsson, D.; Donnelly, C.; Arheimer, B. Key factors for improving large-scale hydrological model performance. Eur. Water. 2015, 49, 77–88. [Google Scholar]
- Krogh, S.A.; Pomeroy, J.W.; McPhee, J. Physically based mountain hydrological modelling using reanalysis data in Patagonia. J. Hydrometeorol. 2015, 16, 172–193. [Google Scholar] [CrossRef]
- Nkiaka, E.; Rizwan, N.R.; Lovett, J.C. Analysis of rainfall variability in the Logone catchment, Lake Chad basin. Int. J. Climatol. 2016. [Google Scholar] [CrossRef]
- Nkiaka, E.; Rizwan, N.R.; Lovett, J.C. Evaluating global reanalysis precipitation datasets with rain gauge measurements in the Sudano-Sahel region: Case study of the Logone catchment, Lake Chad Basin. Meteorol. Appl. 2016, 24, 9–18. [Google Scholar] [CrossRef]
- Siam, M.S.; Demory, M.; Eltahir, E.A.B. Hydrological cycles over the Congo and upper Blue Nile basins: Evaluation of general circulation model simulations and reanalysis products. J. Clim. 2013, 26, 8881–8894. [Google Scholar] [CrossRef]
- Loth, P. The Return of the Water: Restoring the Waza Logone Floodplain in Cameroon; IUCN: Cambridge, UK, 2004. [Google Scholar]
- Nkiaka, E.; Rizwan, N.R.; Lovett, J.C. Using self-organizing maps to infill missing data in hydro-meteorological time series from the logone catchment, Lake Chad basin. Environ. Monit. Assess. 2016, 188, 400. [Google Scholar] [CrossRef] [PubMed]
- Morse, A.; Caminade, C.; Tompkins, A.; McIntyre, K.M. The QWeCI Project (Quantifying Weather and Climate Impacts on Health in Developing Countries); Final Report; Liverpool: University of Liverpool, UK, 2013. [Google Scholar]
- Gassman, P.W.; Sadegh, I.A.M.; Srinivasan, R. Applications of the SWAT model special section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Technical Report 406; Texas Water Resources Institute: Temple, TX, USA, 2011. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs: A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Eawag, Switzerland, 2015. [Google Scholar]
- Pathiraja, S.; Marshall, L.; Sharma, A.; Moradkhani, H. Hydrologic modeling in dynamic catchments: A data assimilation approach. Water Resour. Res. 2016, 52, 3350–3372. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Auerbach, D.A.; Easton, Z.M.; Walter, M.T.; Flecker, A.S.; Fuka, D.R. Evaluating weather observations and the climate forecast system reanalysis as inputs for hydrologic modelling in the tropics. Hydrol. Process. 2016, 30, 3466–3477. [Google Scholar] [CrossRef]
- Sintondji, L.O.; Zokpodo, B.; Ahouansou, D.M.; Vissin, W.E.; Agbossou, K.E. Modelling the water balance of Ouémé catchment at the Savè outlet in Benin: Contribution to the sustainable water resource management. Int. J. Agric. Sci. 2014, 4, 74–88. [Google Scholar]
- Giertz, S.; Diekkrugerm, B.; Jaeger, A.; Schopp, M. An interdisciplinary scenario analysis to assess the water availability and water consumption in the upper Oueme catchment in Benin. Adv. Geosci. 2006, 9, 3–13. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.I.F.; Allan, R.P.; Greatrex, H.; Rojas, O.; Leo, O. Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteorol. Appl. 2013, 20, 308–317. [Google Scholar] [CrossRef]
- Sperna Weiland, F.C.; Vrugt, J.A.; van Beek, R.P.H.; Weerts, A.H.; Bierkens, M.F.P. Significant uncertainty in global scale hydrological modeling from precipitation data errors. J. Hydrol. 2015, 529, 1095–1115. [Google Scholar] [CrossRef]
- Gascon, T.; Vischel, T.; Lebel, T.; Quantin, G.; Pellarin, T.; Quatela, V.; Leroux, D.; Galle, S. Influence of rainfall space-time variability over the Ouémé basin in Benin. Proc. Int. Assoc. Hydrol. Sci. 2015, 368, 102–107. [Google Scholar] [CrossRef]
- Fu, S.; Sonnenborg, T.O.; Jensen, K.H.; He, X. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model. Vadose Zone J. 2011, 10, 25–36. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouvier, C.; Ayral, P.-A.; Marchandise, A. Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation. Nat. Hazards Earth Syst. Sci. 2011, 11, 157–170. [Google Scholar] [CrossRef]
- Remesan, R.; Holman, I.P. Effect of baseline meteorological data selection on hydrological modelling of climate change scenarios. J. Hydrol. 2015, 528, 631–642. [Google Scholar] [CrossRef] [Green Version]
Parameter | Description | Model Process | Parameter Range Used |
---|---|---|---|
CN2 a | Curve number for moisture condition II | Surface runoff generation. High values lead to high surface flow | −0.5–0.15 |
GW_Delay | Groundwater delay | Groundwater (affects groundwater movement). It is the lag between the time water exits the soil profile and enters the shallow aquifer | 30–250 |
GW_REVAP | Groundwater “revap” coefficient | Affects the movement of water from the shallow aquifer to the unsaturated soil layers. Low values lead to high baseflow | 0.10–0.40 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur | Groundwater (when reduced streamflow increases) | 20–95 |
Revapmn | Threshold depth of water for “revap to occur” (mm) | Groundwater (when increased, base flow will increase) | 0–20 |
Rchrg_DP | Deep aquifer percolation | Groundwater (the fraction of percolation from the root zone which recharges the deep aquifer. Higher values lead to high percolation). | 0.05–0.50 |
Ch_K2 | Hydraulic conductivity of main channel | Channel infiltration | 1.69–6.0 |
ESCO | Soil evaporation compensation factor | Controls the soil evaporative demand from different soil depth. High values lead to low evapotranspiration | 0.25–0.95 |
SOL-AWC a | Available Water Capacity or available is calculated as the difference between field capacity the wilting point | Groundwater, evaporation. When increased less water is sent to the reach as more water is retained in the soil thus increasing evapotranspiration | −0.04–0.04 |
ALPHA_BF | Base flow alpha factor | Shows the direct index of groundwater flow response to changes in recharge | 0.3–0.9 |
Surlag | Surface runoff lag coefficient | Surface runoff | 1.5–5.0 |
Time Step | Evaluation Criteria | WFDEI | CFSR | ERA Interim | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gana | Katoa | Bongor | Lai | Gana | Katoa | Bongor | Lai | Gana | Katoa | Bongor | Lai | ||
Daily | NSE | 0.05 | 0.58 | 0.66 | 0.57 | −0.67 | 0.17 | 0.43 | 0.31 | −3.97 | −1.54 | −0.59 | −0.56 |
R2 | 0.64 | 0.68 | 0.68 | 0.6 | 0.65 | 0.62 | 0.57 | 0.51 | 0.47 | 0.44 | 0.38 | 0.31 | |
PBIAS (%) | −15.2 | 2.7 | 16.6 | 22.7 | −74.5 | −51.7 | −32.3 | −42.0 | −146.1 | −109.6 | −81 | −78.7 | |
p-factor | 0.61 | 0.64 | 0.6 | 0.68 | 0.78 | 0.80 | 0.81 | 0.78 | 0.63 | 0.65 | 0.66 | 0.62 | |
r-factor | 1.69 | 1.3 | 1.02 | 0.89 | 2.47 | 1.87 | 1.48 | 1.46 | 3.78 | 2.58 | 2.01 | 1.73 | |
Monthly | NSE | 0.43 | 0.75 | 0.77 | 0.67 | −0.28 | 0.39 | 0.59 | 0.49 | −3.12 | −1.17 | −0.38 | −0.31 |
R2 | 0.73 | 0.77 | 0.8 | 0.73 | 0.74 | 0.71 | 0.68 | 0.61 | 0.52 | 0.48 | 0.44 | 0.37 | |
PBIAS (%) | −16.2 | 3.5 | 17.7 | 23.6 | −66.9 | −45.4 | −26.8 | −36.6 | −163.3 | −125.5 | −94.8 | −91.4 | |
p-factor | 0.86 | 0.88 | 0.81 | 0.83 | 0.68 | 0.73 | 0.78 | 0.74 | 0.64 | 0.66 | 0.67 | 0.63 | |
r-factor | 1.65 | 1.26 | 1 | 0.87 | 2.04 | 1.55 | 1.25 | 1.23 | 3.41 | 2.6 | 2.09 | 1.86 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkiaka, E.; Nawaz, N.R.; Lovett, J.C. Evaluating Global Reanalysis Datasets as Input for Hydrological Modelling in the Sudano-Sahel Region. Hydrology 2017, 4, 13. https://doi.org/10.3390/hydrology4010013
Nkiaka E, Nawaz NR, Lovett JC. Evaluating Global Reanalysis Datasets as Input for Hydrological Modelling in the Sudano-Sahel Region. Hydrology. 2017; 4(1):13. https://doi.org/10.3390/hydrology4010013
Chicago/Turabian StyleNkiaka, Elias, N. R. Nawaz, and Jon C. Lovett. 2017. "Evaluating Global Reanalysis Datasets as Input for Hydrological Modelling in the Sudano-Sahel Region" Hydrology 4, no. 1: 13. https://doi.org/10.3390/hydrology4010013
APA StyleNkiaka, E., Nawaz, N. R., & Lovett, J. C. (2017). Evaluating Global Reanalysis Datasets as Input for Hydrological Modelling in the Sudano-Sahel Region. Hydrology, 4(1), 13. https://doi.org/10.3390/hydrology4010013