Next Article in Journal
Change in Future Rainfall Characteristics in the Mekrou Catchment (Benin), from an Ensemble of 3 RCMs (MPI-REMO, DMI-HIRHAM5 and SMHI-RCA4)
Previous Article in Journal
Radioactive Seepage through Groundwater Flow from the Uranium Mines, Namibia
Article Menu

Export Article

Open AccessArticle
Hydrology 2017, 4(1), 13;

Evaluating Global Reanalysis Datasets as Input for Hydrological Modelling in the Sudano-Sahel Region

School of Geography, University of Leeds, Leeds LS2 9JT, UK
Author to whom correspondence should be addressed.
Academic Editor: Luca Brocca
Received: 2 December 2016 / Revised: 9 February 2017 / Accepted: 10 February 2017 / Published: 16 February 2017
Full-Text   |   PDF [2278 KB, uploaded 16 February 2017]   |  


This paper investigates the potential of using global reanalysis datasets as input for hydrological modelling in the data-scarce Sudano-Sahel region. To achieve this, we used two global atmospheric reanalyses (Climate Forecasting System Reanalysis and European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim) datasets and one global meteorological forcing dataset WATCH Forcing Data methodology applied to ERA-Interim (WFDEI). These datasets were used to drive the Soil and Water Assessment Tool (SWAT) in the Logone catchment in the Lake Chad basin. Model performance indicators after calibration showed that, at daily and monthly time steps, only WFDEI produced Nash Sutcliff Efficiency (NSE) and Coefficient of Determination (R2) values above 0.50. Despite a general underperformance compared to WFDEI, CFSR performed better than the ERA-Interim. Model uncertainty analysis after calibration showed that more than 60% of all daily and monthly observed streamflow values at all hydrometric stations were bracketed within the 95 percent prediction uncertainty (95PPU) range for all datasets. Results from this study also show significant differences in simulated actual evapotranspiration estimates from the datasets. Overall results showed that biased corrected WFDEI outperformed the two reanalysis datasets; meanwhile CFSR performed better than the ERA-Interim. We conclude that, in the absence of gauged hydro-meteorological data, WFDEI and CFSR could be used for hydrological modelling in data-scarce areas such as the Sudano-Sahel region. View Full-Text
Keywords: reanalysis; SWAT; CFSR; ERA-Interim; WFDEI; Logone catchment; Sudano-Sahel reanalysis; SWAT; CFSR; ERA-Interim; WFDEI; Logone catchment; Sudano-Sahel

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Nkiaka, E.; Nawaz, N.R.; Lovett, J.C. Evaluating Global Reanalysis Datasets as Input for Hydrological Modelling in the Sudano-Sahel Region. Hydrology 2017, 4, 13.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Hydrology EISSN 2306-5338 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top