A Test of Factors Influencing One-Dimensional Mini-Disk Infiltrometer Experiments on Repacked Loam Soil Columns
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Experimental Methods
2.3. Infiltration Parameters
2.4. Data Analysis
3. Results and Discussion
3.1. Operator
3.2. Sample Size
3.3. Packing Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Armenise, E.; Simmons, R.W.; Ahn, S.; Garbout, A.; Doerr, S.H.; Mooney, S.J.; Sturrock, C.J.; Ritz, K. Soil Seal Development under Simulated Rainfall: Structural, Physical and Hydrological Dynamics. J. Hydrol. 2018, 556, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Viviani, G.; Iovino, M. Wastewater Reuse Effects on Soil Hydraulic Conductivity. J. Irrig. Drain. Eng. 2004, 130, 476–484. [Google Scholar] [CrossRef]
- Assouline, S.; Narkis, K. Effects of Long-Term Irrigation with Treated Wastewater on the Hydraulic Properties of a Clayey Soil. Water Resour. Res. 2011, 47, 1–13. [Google Scholar] [CrossRef]
- Xiubin, H.; Zhanbin, H. Zeolite Application for Enhancing Water Infiltration and Retention in Loess Soil. Resour. Conserv. Recycl. 2001, 34, 45. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Bondì, C.; Castellini, M.; Iovino, M. Compost Amendment Impact on Soil Physical Quality Estimated from Hysteretic Water Retention Curve. Water 2022, 14, 1002. [Google Scholar] [CrossRef]
- Bondì, C.; Castellini, M.; Iovino, M. Temporal Variability of Physical Quality of a Sandy Loam Soil Amended with Compost. Biologia 2024. [Google Scholar] [CrossRef]
- Gibert, O.; Hernández, M.; Vilanova, E.; Cornellà, O. Guidelining Protocol for Soil-Column Experiments Assessing Fate and Transport of Trace Organics; European Union: Brussels, Belgium, 2014; Volume 3. [Google Scholar]
- Oliviera, I.B.; Demond, A.H.; Salehzadeh, A. Packing of Sands for the Production of Homogeneous Porous Media. Soil Sci. Soc. Am. J. 1996, 60, 49–53. [Google Scholar] [CrossRef]
- Lewis, J.; Sjöstrom, J. Optimizing the Experimental Design of Soil Columns in Saturated and Unsaturated Transport Experiments. J. Contam. Hydrol. 2010, 115, 1–13. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Tian, J.; Imhoff, P.T. Preparing and Characterizing Repacked Columns for Experiments in Biochar-Amended Soils. MethodsX 2021, 8, 101205. [Google Scholar] [CrossRef]
- Griffiths, J.C.; Rosenfeld, M.A. Operator Variation in Experimental Research. J. Geol. 1954, 62, 74–91. [Google Scholar] [CrossRef]
- Zobisch, M.A.; Klingspor, P.; Oduor, A.R. The Accuracy of Manual Runoff and Sediment Sampling from Erosion Plots. J. Soil. Water Conserv. 1996, 51, 231–233. [Google Scholar]
- Black, C.A. Operator Variation. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; Inc. Book Series: Agronomy Monographs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 50–53. [Google Scholar]
- Bagarello, V.; Di Piazza, G.V.; Ferro, V. Manual Sampling and Tank Size Effects on the Calibration Curve of Plot Sediment Storage Tanks. Trans. Am. Soc. Agric. Eng. 2004, 47, 1105–1112. [Google Scholar] [CrossRef]
- Belanger, N.; Van Rees, K.C.J. Sampling Forest Soils. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press and Taylor & Francis Group.: Boca Raton, FL, USA, 2008; pp. 15–24. [Google Scholar]
- Pennock, D.; Yates, T.; Braidek, J. Soil Sampling Design. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press and Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 1–14. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E.; Youngs, E.G. Single-Ring and Double- or Concentric-Ring Infiltrometers. In Methods of Soil Analysis, Part 4, Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 821–826. [Google Scholar]
- Warrick, A.W. Appendix 1: Spatial Variability. In Enviromental Soil Physics; Hillel, D., Ed.; Academic Press: San Diego, CA, USA, 1998; pp. 655–675. [Google Scholar]
- Bagarello, V.; Caltabellotta, G.; Iovino, M. Manual Packing and Soil Reuse Effects on Determination of Saturated Hydraulic Conductivity of a Loam Soil. Geoderma 2022, 405, 115465. [Google Scholar] [CrossRef]
- Anat, A.; Duke, H.R.; Corey, A.T. Steady Upward Flow from Water Tables Steady Upward Flow from Water Tables; Colorado State University: Fort Collins, CO, USA, 1965; Volume 7, Hydrology Papers. [Google Scholar]
- Reicosky, D.C.; Voorhees, W.B.; Radke, J.K. Unsaturated Water Flow Through a Simulated Wheel Track. Soil Sci. Soc. Am. J. 1981, 45, 3–8. [Google Scholar] [CrossRef]
- Bagarello, V.; Iovino, M.; Elrick, D. A Simplified Falling-Head Technique for Rapid Determination of Field-Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2004, 68, 66–73. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, T.; Yin, Z.; Hu, Y.; Yang, X. Effects of Time Step Length and Positioning Location on Ring-Measured Infiltration Rate. Catena 2017, 157, 344–356. [Google Scholar] [CrossRef]
- Teng, J.; Kou, J.; Zhang, S.; Sheng, D. Evaluating the Influence of Specimen Preparation on Saturated Hydraulic Conductivity Using Nuclear Magnetic Resonance Technology. Vadose Zone J. 2019, 18, 1–7. [Google Scholar] [CrossRef]
- METER Group. Mini Disk Infiltrometer Manual; METER Group: Pullman, WA, USA, 2021. [Google Scholar]
- Gonzalez-Sosa, E.; Braud, I.; Dehotin, J.; Lassabatère, L.; Angulo-Jaramillo, R.; Lagouy, M.; Branger, F.; Jacqueminet, C.; Kermadi, S.; Michel, K. Impact of Land Use on the Hydraulic Properties of the Topsoil in a Small French Catchment. Hydrol. Process 2010, 24, 2382–2399. [Google Scholar] [CrossRef]
- Fodor, N.; Sándor, R.; Orfanus, T.; Lichner, L.; Rajkai, K. Evaluation Method Dependency of Measured Saturated Hydraulic Conductivity. Geoderma 2011, 165, 60–68. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.; Anastasiou, K.; Kerkides, P. A Note on One- and Three-Dimensional Infiltration Analysis from a Mini Disc Infiltrometer. Water 2018, 10, 1783. [Google Scholar] [CrossRef]
- Bromly, M.; Hinz, C.; Aylmore, L.A.G. Relation of Dispersivity to Properties of Homogeneous Saturated Repacked Soil Columns. Eur. J. Soil. Sci. 2007, 58, 293–301. [Google Scholar] [CrossRef]
- Fatehnia, M.; Tawfiq, K.; Abichou, T. Comparison of the Methods of Hydraulic Conductivity Estimation from Mini Disk Infiltrometer. Electron. J. Geotech. Eng. 2014, 19 E, 1047–1063. [Google Scholar]
- Bordoloi, S.; Hussain, R.; Garg, A.; Sreedeep, S.; Zhou, W.H. Infiltration Characteristics of Natural Fiber Reinforced Soil. Transp. Geotech. 2017, 12, 37–44. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Aly, A.A.; Al-Omran, A.M.; Alkhasha, A. Impact of Biochar, Bentonite, and Compost on Physical and Chemical Characteristics of a Sandy Soil. Arab. J. Geosci. 2018, 11, 670. [Google Scholar] [CrossRef]
- Haverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. Three-dimensional Analysis of Infiltration from the Disc Infiltrometer: 2. Physically Based Infiltration Equation. Water Resour. Res. 1994, 30, 2931–2935. [Google Scholar] [CrossRef]
- Ghosh, B.; Pekkat, S. Effect of Initial Compaction State on Near-Saturated Hydraulic Conductivity. J. Irrig. Drain. Eng. 2019, 145, 04019028. [Google Scholar] [CrossRef]
- Roy, D.; Jia, X.; Chu, X.; Jacobs, J.M. Hydraulic Conductivity Measurement for Three Frozen and Unfrozen Soils in the Red River of the North Basin. Trans. ASABE 2021, 64, 761–770. [Google Scholar] [CrossRef]
- Naik, A.P.; Pekkat, S. An Appraisal on the Soil Wetting Water Retention Characteristic Curve Determined from Mini Disk Infiltrometer and Sensor Measurements. Acta Geophys. 2023, 71, 961–982. [Google Scholar] [CrossRef]
- Autovino, D.; Bagarello, V.; Caltabellotta, G.; Varadi, F.K.; Zanna, F. One-Dimensional Infiltration in a Layered Soil Measured in the Laboratory with the Mini-Disk Infiltrometer. J. Hydrol. Hydromech. 2024, 72, 149–157. [Google Scholar] [CrossRef]
- Bagarello, V.; Caltabellotta, G.; Iovino, M. Soil Reuse Effects on Determination of Saturated Hydraulic Conductivity of Different Loamy Soils. Eur. J. Soil. Sci. 2024, 75, e13454. [Google Scholar] [CrossRef]
- Angulo-Jaramillo, R.; Bagarello, V.; Iovino, M.; Lassabatère, L. Infiltration Measurements for Soil Hydraulic Characterization; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-31786-1. [Google Scholar]
- Bagarello, V.; Caltabellotta, G.; Concialdi, P.; Iovino, M. Comparing Two Methods to Perform a Beerkan Infiltration Run in a Loam Soil at Different Dates. J. Hydrol. 2023, 617, 129095. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of Indicators and Pore Volume-Function Characteristics to Quantify Soil Physical Quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Close, K.R.; Frasier, G.; Dunn, G.H.; Loftis, J.C. Tension Infiltrometer Contact Interface Evaluation by Use of a Potassium Iodide Tracer. Trans. Am. Soc. Agric. Eng. 1998, 41, 995–1004. [Google Scholar] [CrossRef]
- Horton, R.E. An Approach Toward a Physical Interpretation of Infiltration-Capacity. Soil Sci. Soc. Am. J. 1940, 5, 399–417. [Google Scholar] [CrossRef]
- Lassabatère, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments-BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Tindall, J.A.; Kunkel, J.R.; Anderson, D.E. Unsaturated Zone Hydrology for Scientists and Engineers; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Mallants, D.; Mohanty, B.P.; Jacques, D.; Feyen, J. Spatial Variability of Hydraulic Properties in a Multi-Layered Soil Profile. Soil. Sci. 1996, 161, 167–181. [Google Scholar] [CrossRef]
- Tsegaye, T.; Hill, R.L. Intensive Tillage Effects on Spatial Variability of Soil Physical Properties. Soil. Sci. 1998, 163, 143–154. [Google Scholar] [CrossRef]
- Muñoz-Carpena, R.; Regalado, C.M.; Álvarez-Benedi, J.; Bartoli, F. Field Evaluation of the New Philip-Dunne Permeameter for Measuring Saturated Hydraulic Conductivity. Soil. Sci. 2002, 167, 9–24. [Google Scholar] [CrossRef]
- Bagarello, V.; Castellini, M.; Iovino, M.; Sgroi, A. Testing the Concentric-Disk Tension Infiltrometer for Field Measurement of Soil Hydraulic Conductivity. Geoderma 2010, 158, 427–435. [Google Scholar] [CrossRef]
- Wells, R.R.; Römkens, M.J.M.; Parlange, J.-Y.; DiCarlo, D.A.; Steenhuis, T.S.; Prasad, S.N. A Simple Technique for Measuring Wetting Front Depths for Selected Soils. Soil Sci. Soc. Am. J. 2007, 71, 669–673. [Google Scholar] [CrossRef]
- Reynolds, W.D. An Assessment of Borehole Infiltration Analyses for Measuring Field-Saturated Hydraulic Conductivity in the Vadose Zone. Eng. Geol. 2013, 159, 119–130. [Google Scholar] [CrossRef]
- Communar, G.; Keren, R.; Li, F. Deriving Boron Adsorption Isotherms from Soil Column Displacement Experiments. Soil Sci. Soc. Am. J. 2004, 68, 481–488. [Google Scholar] [CrossRef]
- Plummer, M.A.; Hull, L.C.; Fox, D.T. Transport of Carbon-14 in a Large Unsaturated Soil Column. Vadose Zone J. 2004, 3, 109–121. [Google Scholar] [CrossRef]
- Shan, J.; Zhang, Y.; Wu, S.; Lin, Z.; Li, L.; Wu, Q. Pore Characteristics of Pervious Concrete and Their Influence on Permeability Attributes. Constr. Build. Mater. 2022, 327, 126874. [Google Scholar] [CrossRef]
- Luo, Y.; Wen, T.; Lin, X.; Chen, X.; Shao, L. Quantitative Analysis of Pore-Size Influence on Granite Residual Soil Permeability Using CT Scanning. J. Hydrol. 2024, 645, 132133. [Google Scholar] [CrossRef]
- Bagarello, V.; Caltabellotta, G.; Fusco, M.; Vaccaro, G.; Autovino, D. Investigating Soil Compaction and Its Impact on Physical and Hydraulic Properties Using a Simple Testing Apparatus. Water 2025, 17, 723. [Google Scholar] [CrossRef]
Reference | Soils | Aims of the MDI Application | Size of the Columns | Soil Column Preparation | N * |
---|---|---|---|---|---|
Assouline and Narkis [3] | Clayey | Evaluating the impact of 15 years of irrigation with treated wastewater on soil hydraulic properties and flow processes compared to the use of freshwater | 10 cm long × 5.2 cm in diameter | Air-dried, crushed and sieved soil. The <2 mm fraction of the aggregates was kept for the study. Packing method not described | 2 |
Fatehnia et al. [31] | Poorly graded sand | Comparing methods to determine soil hydraulic conductivity from infiltration data | Not described | Not described | 3 |
Bordoloi et al. [32] | Inorganic low plastic silt | Determining infiltration rates in compacted natural fiber-reinforced soil composite | 17 cm long × 15.5 cm in diameter | Static compaction of the soil at a fixed moisture content. Compaction in three equal layers along the longitudinal axis of the mold at established densities | 3 |
Alghamdi et al. [33] | Sandy | Testing the impact of biochar, bentonite and compost on soil physical characteristics | 30 cm long × 5 cm in diameter | Soil hand-mixed, air-dried and sieved at 2 mm. Columns filled to obtain a given bulk density value. Packing method not described | 3 |
Kargas et al. [29] | Sandy-loam; Loam; Silty-clay-loam | Investigating differences between three- (3D) and one- (1D) dimensional infiltration and determining the γ parameter of the Haverkamp et al.’s [34] infiltration model | 30 cm long × 30 cm in diameter (3D experiment) and 50 cm long × 4.5 cm in diameter (1D experiment) | Air-dried soil, passed through a 2 mm sieve. Packing method not described | 1 |
Ghosh et al. [35] | Sand; Clay-loam | Testing the effect of the initial compaction state on near-saturated soil hydraulic conductivity | 30 cm long × 20 cm in diameter | Mass of air-dried soil mixed with a given amount of water to obtain the desired soil water content. Soil packed in three layers by an equal number of blows with a 1.7 kg rammer on each layer. Number of blows varying with the state of compaction for a particular soil | 4 |
Roy et al. [36] | Silty-clay-loam; Silty-clay; Sandy-loam | Determining hydraulic conductivity of three types of soil in both frozen and unfrozen conditions with five initial soil water contents | 17.8 cm long × 20.3 cm in diameter | Use of fixed amounts of soil and water to obtain a given initial water content. Soil columns prepared layer by layer to attain a pre-established bulk density value | 3 |
Naik and Pekkat [37] | Loam; Silt-loam | Using the MDI for estimating water retention characteristic curve parameters | 25 cm long × 30 cm in diameter | Nearly dry soil. Soil compacted in three layers by maintaining a uniform bulk density | 6 |
Autovino et al. [38] | Loam; Clay | Determining the impact of soil layering on 1D infiltration processes established with the MDI | 20–23 cm long × 5.3 cm in diameter | Air-dried and passed through a 2 mm sieve. Partition of the soil mass into three equal parts. First third poured in the cylinder and soil compacted by a wood pestle. Then, the rotation of the pestle around its vertical axis. Application of the same procedure with the second and third parts | 9 |
Parameter | Operator | Min | Max | Mean | CV (%) |
---|---|---|---|---|---|
irmed (mm/h) | V | 68.4 | 169.0 | 109.9 a | 21.0 |
Z | 89.3 | 180.6 | 119.6 a | 19.5 | |
i0H (mm/h) | V | 381.5 | 1304.3 | 685.6 a | 29.1 |
Z | 342.0 | 1398.4 | 741.3 a | 33.0 | |
ifH (mm/h) | V | 56.0 | 122.8 | 81.1 a | 20.6 |
Z | 63.9 | 128.5 | 85.6 a | 18.5 | |
kH (1/h) | V | 21.0 | 85.8 | 48.1 a | 29.5 |
Z | 21.7 | 97.1 | 49.1 a | 34.6 | |
dwf (cm) | V | 10.5 | 11.6 | 11.0 a | 2.6 |
Z | 10.5 | 11.3 | 10.9 b | 2.1 |
Parameter | Min | Max | Mean | CV (%) | Nr | |||
---|---|---|---|---|---|---|---|---|
a = 0.05 | a = 0.1 | a = 0.15 | a = 0.25 | |||||
irmed (mm/h) | 68.4 | 180.6 | 114.8 | 20.5 | 64.6 | 16.1 | 7.2 | 2.6 |
i0H (mm/h) | 342.0 | 1398.4 | 713.5 | 31.4 | 151.4 | 37.8 | 16.8 | 6.1 |
ifH (mm/h) | 56.0 | 128.5 | 83.4 | 19.6 | 59.0 | 14.8 | 6.6 | 2.4 |
kH (1/h) | 21.0 | 97.1 | 48.6 | 32.0 | 157.7 | 39.4 | 17.5 | 6.3 |
dwf (cm) | 10.5 | 11.6 | 10.9 | 2.5 | 0.9 | 0.2 | 0.1 | 0.04 |
Parameter | Statistic | Packing Method | |||
---|---|---|---|---|---|
P1 | P2 | P3 | P4 | ||
irmed (mm/h) | Min | 31.2 | 36.4 | 93.5 | 104.8 |
Max | 70.8 | 113.9 | 180.6 | 154.1 | |
Mean | 48.5 a | 81.8 b | 123.9 c | 132.4 c | |
CV (%) | 27.0 | 31.2 | 20.8 | 9.7 | |
i0H (mm/h) | Min | 277.7 | 435.7 | 408.6 | 556.8 |
Max | 957.4 | 856.3 | 1398.4 | 1280.2 | |
Mean | 519.9 a | 590.9 a | 805.1 b | 939.5 b | |
CV (%) | 31.9 | 21.0 | 36.5 | 21.9 | |
ifH (mm/h) | Min | 30.3 | 33.0 | 63.9 | 83.1 |
Max | 55.1 | 89.0 | 128.5 | 109.8 | |
Mean | 40.9 a | 64.4 b | 88.4 c | 97.8 c | |
CV (%) | 20.1 | 30.2 | 20.9 | 8.2 | |
kH (1/h) | Min | 28.1 | 28.9 | 23.3 | 36.0 |
Max | 108.4 | 76.2 | 97.1 | 86.5 | |
Mean | 54.8 ab | 52.6 a | 53.7 ab | 67.1 b | |
CV (%) | 39.9 | 24.1 | 40.6 | 22.0 | |
dwf (cm) | Min | 10.7 | 11.6 | 10.5 | 8.3 |
Max | 11.4 | 13.1 | 11.3 | 11.0 | |
Mean | 11.1 a | 12.0 b | 10.9 c | 10.4 d | |
CV (%) | 1.6 | 3.1 | 1.8 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagarello, V.; Barone, S.; Caltabellotta, G.; Varadi, F.K.; Zanna, F.; Autovino, D. A Test of Factors Influencing One-Dimensional Mini-Disk Infiltrometer Experiments on Repacked Loam Soil Columns. Hydrology 2025, 12, 85. https://doi.org/10.3390/hydrology12040085
Bagarello V, Barone S, Caltabellotta G, Varadi FK, Zanna F, Autovino D. A Test of Factors Influencing One-Dimensional Mini-Disk Infiltrometer Experiments on Repacked Loam Soil Columns. Hydrology. 2025; 12(4):85. https://doi.org/10.3390/hydrology12040085
Chicago/Turabian StyleBagarello, Vincenzo, Stefano Barone, Gaetano Caltabellotta, Florina Kati Varadi, Francesco Zanna, and Dario Autovino. 2025. "A Test of Factors Influencing One-Dimensional Mini-Disk Infiltrometer Experiments on Repacked Loam Soil Columns" Hydrology 12, no. 4: 85. https://doi.org/10.3390/hydrology12040085
APA StyleBagarello, V., Barone, S., Caltabellotta, G., Varadi, F. K., Zanna, F., & Autovino, D. (2025). A Test of Factors Influencing One-Dimensional Mini-Disk Infiltrometer Experiments on Repacked Loam Soil Columns. Hydrology, 12(4), 85. https://doi.org/10.3390/hydrology12040085