Integrated Exploitation of Rainwater and Groundwater: A Strategy for Water Self-Sufficiency in Ca Mau Province of the Mekong Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Interview Survey
2.2.2. Water Balance Calculations
- Wti and Wti−1: the volume of water stored in the reservoir (m3) in a given time period i, i − 1;
- The initial calculation period Wt1 = 0;
- Wti ≤ Wt, where Wt is the capacity of the tank;
- Wci: water volume entering the tank at time i (m3);
- Woi: volume of water discharged from the tank at time i (m3).
Scenario 1: Evaluating the Potential for Rainwater Harvesting through the Existing Roof Area
- Xi: the amount of rainfall at time i;
- A: the amount of rainwater at the beginning of the rainfall event that needs to be discharged; in this study, A = 3 mm based on experience.
Scenario 2: Determining the Minimum Roof Area/Size and Tank Capacity Requirements to Meet Water Demand Levels
Scenario 3: Determining Tank Requirements for Maximum Use of Rainwater in the Rainy Season and Essential Water Needs in the Dry Season
Scenario 4 Integrating Rain and Groundwater
3. Results and Discussion
3.1. Rainwater Harvesting for Domestic Use in Ca Mau Province
3.1.1. Interview Survey
3.1.2. Existing Context of Rainwater Harvesting for Ca Mau Residents
3.2. Rainwater Potential and Rainwater Harvesting Scenarios
3.2.1. Rainwater Characteristics Related to Harvesting Capacity
3.2.2. Potential of Rainfall Harvesting
3.3. Scale Requirements for Storage Tanks and Roof Catchments for Rainwater Harvesting Systems
3.3.1. Storage Tank and Roof Catchment Requirements for Different Water Supply Levels
3.3.2. Storage Tank Scale Required to Meet Basic Household Needs in the Dry and Rainy Seasons
3.4. Integration of Rainwater Harvesting with Groundwater Usage and the Potential for Artificial Groundwater Recharge
4. Conclusions
- To satisfy the basic water supply requirement (15 L/person-day) from rainwater, each person needs an average tank capacity of 3.1 m3 and a roof catchment area of 3.6 m2. The roof catchment area requirement is not overly large but allows for adaptive operation and maintenance to ensure the harvesting of good-quality rainwater. In the scenario where all available roof catchment areas are utilized, a tank capacity of 2.4 m3 per person can meet the basic water supply demand, and approximately 6% of households have achieved this. The scenario of utilizing rainwater entirely during the rainy season and meeting basic needs during the dry season demonstrates that the demand of 80 L/person-day during the rainy season and 15 L/person-day during the dry season can be met with a tank scale of 3.4 m3 per person. These options could be flexibly selected for different areas with different economic conditions and water demands.
- The integrated water supply scenario of rain and groundwater demonstrates the highest effectiveness, even with the current rainwater tank size, nearly achieving water balance. At a tank scale of 2.4 m3 per person, equivalent to 7.2 to 9.6 m3 per household, 64% of rainwater can be utilized for domestic use. The supplementary artificial groundwater recharge exceeds the amount of groundwater extraction by 1.79 times, resulting in minimal surplus water discharge into the environment. The artificial groundwater recharge system is relatively simple and not expensive, involving the addition of inverted U-shaped structures and the adaptation of groundwater extraction wells to serve both extraction and recharge purposes. This approach offers sustainability and potential water independence across rural areas of the VMD. However, many challenges exist, such as the willingness of people and financial constraints, especially for the poor, to apply or transform this approach, which may prolong its widespread acceptance. This approach can also be applied in urban areas, directly saving water costs and indirectly mitigating urban flooding while replenishing groundwater, but it needs strong support from local authorities via long-term official programs.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaramillo, P.; Nazemi, A. Assessing urban water security under changing climate: Challenges and ways forward. Sustain. Cities Soc. 2018, 41, 907–918. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Ercin, A.E.; Hoekstra, A.Y. Water footprint scenarios for 2050: A global analysis. Environ. Int. 2014, 64, 71–82. [Google Scholar] [CrossRef] [PubMed]
- De Fraiture, C.; Wichelns, D. Satisfying future water demands for agriculture. Agric. Water Manag. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- Allan, C.; Xia, J.; Pahl-Wostl, C. Climate change and water security: Challenges for adaptive water management. Curr. Opin. Environ. Sustain. 2013, 5, 625–632. [Google Scholar] [CrossRef]
- Oki, T.; Agata, Y.; Kanae, S.; Saruhashi, T.; Yang, D.; Musiake, K. Global assessment of current water resources using total runoff integrating pathways. Hydrol. Sci. J. 2001, 46, 983–995. [Google Scholar] [CrossRef]
- Wolfe, S.; Brooks, D.B. Water scarcity: An alternative view and its implications for policy and capacity building. Nat. Resour. Forum 2003, 27, 99–107. [Google Scholar] [CrossRef]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Thuc, T.; Van Thang, N.; Huong, H.T.L.; Van Khiem, M.; Hien, N.X.; Phong, D.H. Climate Change and Sea Level Rise Scenarios for Vietnam; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2016. [Google Scholar]
- Loc, H.H.; Low Lixian, M.; Park, E.; Dung, T.D.; Shrestha, S.; Yoon, Y.-J. How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta, a review. Sci. Total Environ. 2021, 794, 148651. [Google Scholar] [CrossRef]
- Duc Tran, D.; Thi Bich Thuc, P.; Park, E.; Thi Thanh Hang, P.; Ba Man, D.; Wang, J. Extent of saltwater intrusion and freshwater exploitability in the coastal Vietnamese Mekong Delta assessed by gauging records and numerical simulations. J. Hydrol. 2024, 630, 130655. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 2012, 59, 143–156. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Fukuda, Y.; Pohan, Y.E.; Deguchi, T. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards 2011, 59, 1753–1771. [Google Scholar] [CrossRef]
- Chen, C.-T.; Hu, J.-C.; Lu, C.-Y.; Lee, J.-C.; Chan, Y.-C. Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol. 2007, 95, 30–47. [Google Scholar] [CrossRef]
- Dong, S.; Samsonov, S.; Yin, H.; Ye, S.; Cao, Y. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. Earth Sci. 2014, 72, 677–691. [Google Scholar] [CrossRef]
- Kim, Y.; Han, M.; Kabubi, J.; Sohn, H.-G.; Nguyen, D.-C. Community-based rainwater harvesting (CB-RWH) to supply drinking water in developing countries: Lessons learned from case studies in Africa and Asia. Water Sci. Technol. Water Supply 2016, 16, 1110–1121. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Dao, A.D.; Kim, T.; Han, M. A sustainability assessment of the rainwater harvesting system for drinking water supply: A case study of Cukhe Village, Hanoi, Vietnam. Environ. Eng. Res. 2013, 18, 109–114. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Dang, V.H.; Tran, D.D.; Cham, D.D.; Hang, P.T.; Nguyen, H.T.; Truong, H.V.; Tran, P.H.; Duong, M.B.; Nguyen, N.T.; Le, K.V.; et al. Assessment of Rainfall Distributions and Characteristics in Coastal Provinces of the Vietnamese Mekong Delta under Climate Change and ENSO Processes. Water 2020, 12, 1555. [Google Scholar] [CrossRef]
- Megdal, S.B.; Dillon, P. Policy and economics of managed aquifer recharge and water banking. Water 2015, 7, 592–598. [Google Scholar] [CrossRef]
- Dillon, P. Future management of aquifer recharge. Hydrogeol. J. 2005, 13, 313–316. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef]
- Maliva, R.G. Economics of managed aquifer recharge. Water 2014, 6, 1257–1279. [Google Scholar] [CrossRef]
- Megdal, S.B.; Dillon, P.; Seasholes, K. Water banks: Using managed aquifer recharge to meet water policy objectives. Water 2014, 6, 1500–1514. [Google Scholar] [CrossRef]
- Fernandez Escalante, E.; Calero Gil, R.; San Miguel Fraile, M.Á.; Sánchez Serrano, F. Economic assessment of opportunities for managed aquifer recharge techniques in Spain using an Advanced Geographic Information System (GIS). Water 2014, 6, 2021–2040. [Google Scholar] [CrossRef]
- Niazi, A.; Prasher, S.O.; Adamowski, J.; Gleeson, T. A system dynamics model to conserve arid region water resources through aquifer storage and recovery in conjunction with a dam. Water 2014, 6, 2300–2321. [Google Scholar] [CrossRef]
- Arshad, M.; Guillaume, J.H.A.; Ross, A. Assessing the feasibility of managed aquifer recharge for irrigation under uncertainty. Water 2014, 6, 2748–2769. [Google Scholar] [CrossRef]
- Joffre, O.M.; Bosma, R.H.; Bregt, A.K.; van Zwieten, P.A.M.; Bush, S.R.; Verreth, J.A.J. What drives the adoption of integrated shrimp mangrove aquaculture in Vietnam? Ocean Coast. Manag. 2015, 114, 53–63. [Google Scholar] [CrossRef]
- Van Linh, D. Investigate and Evaluate Modern Geodynamics to Complete Climate Change Scenarios and Propose Adaptation Solutions in the Vietnamese Mekong Delta (Điều tra, đánh giá địa động lực hiện đại để hoàn thiện kịch bản biến đổi khí hậu và đề xuất các giảp pháp thí); The Vietnam Geological Department: Ho Chi Minh, Vietnam, 2015. [Google Scholar]
- Vuong, B.T.; Chan, N.D.; Nam, L.H. Assessing the Impact of Climate Change on Groundwater Resources in the Mekong Delta, Proposing Solutions to Respond (Đánh giá tác động cùa biến đôi khí hậu đến tài nguyên nước dưới đất vùng ĐBSCL, đề xuất các giải pháp ứng phó); a National Report; Hanoi, Vietnam, 2013. [Google Scholar]
- Thi Nhung, T.; Le Vo, P.; Van Nghi, V.; Quoc Bang, H. Salt intrusion adaptation measures for sustainable agricultural development under climate change effects: A case of Ca Mau Peninsula, Vietnam. Clim. Risk Manag. 2019, 23, 88–100. [Google Scholar] [CrossRef]
- Giusto, B.D.; Le, T.M.; Nguyen, T.T.; Nguyen, T.T.; Vu, N.U.; Lavallee, J.P. Development versus Adaptation? Facing Climate Change in Ca Mau, Vietnam. Atmosphere 2021, 12, 1160. [Google Scholar] [CrossRef]
- Karlsrud, K.; Vangelsten, B.; Frauenfelder, R. Subsidence and Shoreline Retreat in the Ca Mau Province—Vietnam Causes, Consequences and Mitigation Options. Geotech. Eng. 2017, 48, 26–32. [Google Scholar]
- Minderhoud, P.S.J.; Erkens, G.; Pham, V.H.; Bui, V.T.; Erban, L.; Kooi, H.; Stouthamer, E. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett. 2017, 12, 64006. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.V.; Tran, D.D.; Pham, B.T.; Khoi, N.D.; Tran, H.P.; Nguyen, T.N. Exploring Freshwater Regimes and Impact Factors in the Coastal Estuaries of the Vietnamese Mekong Delta. Water 2019, 11, 782. [Google Scholar] [CrossRef]
- Thanh, N.D.; Tan, P. Van Non-parametric testing of changing trends of some meteorological factors for the period 1961–2007 (Kiểm nghiệm phi tham số xu thế biến đổi của một số yếu tố khí tượng cho giai đoạn 1961–2007). Vietnam J. Sci. Technol. 2012, 28, 129–135. [Google Scholar]
- Planners, C.E. Improved Watershed Management (Decentralized Level), Local Governance and Capacity Building-Guidelines for Estimating Water Balance; LDK Consultants Engineers & Planners SA: Kifisia, Greece, 2019. [Google Scholar]
- Central Population and Housing Census Steering Committee Vietnam, Hanoi. Population and Housing Census at 0:00 on April 1, 2019—Implementation Organization and Preliminary Results (Tổng điều tra dân số và nhà ở thời điểm 0 giờ ngày 1 tháng 4 năm 2019—tổ chức thực hiện và kết quả sơ bộ); Statistical Publishing House: Hanoi, Vietnam, 2019. [Google Scholar]
- Shaffril, H.A.M.; Krauss, S.E.; Samsuddin, S.F. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci. Total Environ. 2018, 644, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Sultana, P.; Thompson, P.M. Adaptation or conflict? Responses to climate change in water management in Bangladesh. Environ. Sci. Policy 2017, 78, 149–156. [Google Scholar] [CrossRef]
- Hafizi Md Lani, N.; Yusop, Z.; Syafiuddin, A. A review of rainwater harvesting in Malaysia: Prospects and challenges. Water 2018, 10, 506. [Google Scholar] [CrossRef]
- Hajani, E.; Rahman, A. Reliability and cost analysis of a rainwater harvesting system in peri-urban regions of Greater Sydney, Australia. Water 2014, 6, 945–960. [Google Scholar] [CrossRef]
- Kim, K.; Yoo, C. Hydrological modeling and evaluation of rainwater harvesting facilities: Case study on several rainwater harvesting facilities in Korea. J. Hydrol. Eng. 2009, 14, 545–561. [Google Scholar] [CrossRef]
- World Bank Group. Vietnam: Toward a Safe, Clean, and Resilient Water System; World Bank Group: Washington, DC, USA, 2019. [Google Scholar]
- Vinh, D.H. Analyze Water Demand and Investigate and Evaluate the Current Status of Water Sources in the Coastal Provinces of the Vietnamese Mekong Delta (Phân tích nhu cầu dùng nước và điều tra, đánh giá thực trạng các nguồn nước đến các tỉnh ven biển ĐBSCL); 2019. [Google Scholar]
- Minister of Construction. Water Supply Planning for the Vietnamese Mekong Delta until 2030, a Vision in 2050 (In Vietnamese: Quy hoạch cấp nước vùng Đồng Bằng sông Cửu Long đến năm 2030, tầm nhìn đến năm 2050); Minister of Construction: Hanoi, Vietnam, 2016. [Google Scholar]
Station | Ca Mau | Cai Nuoc | Dam Doi | Nam Can | NT U Minh | Song Doc | Tran Van Thoi | Thoi Binh | U Minh | Vien An Dong | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | |||||||||||
Amount of Rainfall (mm) | |||||||||||
Average | 2378 | 2148 | 1932 | 2329 | 2455 | 2353 | 2237 | 2363 | 2428 | 2149 | 2247 |
Median | 2304 | 2115 | 1893 | 2250 | 2415 | 2381 | 2180 | 2336 | 2429 | 2114 | 2199 |
Max | 3549 | 3151 | 2516 | 2964 | 3258 | 3406 | 3306 | 2885 | 3291 | 3385 | 2906 |
Min | 1932 | 1554 | 1408 | 1781 | 1894 | 1695 | 1542 | 2014 | 1668 | 1024 | 1908 |
Standard deviation | 306 | 365 | 314 | 316 | 365 | 359 | 381 | 252 | 360 | 467 | 236 |
Cv | 0.13 | 0.17 | 0.16 | 0.14 | 0.15 | 0.15 | 0.17 | 0.11 | 0.15 | 0.22 | 0.11 |
Cs | 0.72 | 0.28 | 0.37 | 0.75 | 0.33 | 0.23 | 0.45 | 0.32 | 0.01 | 0.22 | 1.43 |
Continuous days without rain (days) | |||||||||||
Average | 77 | 96 | 107 | 101 | 87 | 84 | 86 | 82 | 82 | 108 | 91 |
Median | 62 | 81 | 113 | 101 | 78 | 79 | 78 | 72 | 68 | 96 | 83 |
Max | 153 | 174 | 171 | 187 | 162 | 150 | 158 | 138 | 171 | 185 | 141 |
Min | 23 | 35 | 32 | 34 | 18 | 29 | 30 | 30 | 21 | 29 | 39 |
Standard deviation | 39 | 45 | 38 | 44 | 41 | 38 | 36 | 36 | 41 | 39 | 33 |
Cv | 0.50 | 0.47 | 0.36 | 0.43 | 0.47 | 0.45 | 0.42 | 0.43 | 0.50 | 0.36 | 0.36 |
Cs | 1.18 | 1.03 | 0.46 | 0.02 | 0.64 | 0.36 | 0.69 | 0.83 | 1.05 | 0.90 | 0.78 |
Station | Ca Mau | Cai Nuoc | Dam Doi | Nam Can | NT U Minh | Song Doc | Thoi Binh | Tran Van Thoi | U Minh | Vien An Dong |
---|---|---|---|---|---|---|---|---|---|---|
Capacity | ||||||||||
Rainfall availability for harvesting (L/person-day) | 130.0 | 113.3 | 106.5 | 110.7 | 127.5 | 114.9 | 130.1 | 125.1 | 134.0 | 122.8 |
Tank volume required (m3) | 68.3 | 43.9 | 63.3 | 33.2 | 33.2 | 47.9 | 44.6 | 49.8 | 42.8 | 75.9 |
Water Demand (Liter/Person/Day) | 15 | 30 | 60 | 80 | 100 |
---|---|---|---|---|---|
Station | |||||
Ca Mau | 2.5 | 3.0 | 3.4 | 3.5 | 3.6 |
Cai Nuoc | 2.4 | 3.0 | 3.3 | 3.4 | 3.4 |
Dam Doi | 2.9 | 3.4 | 3.8 | 3.9 | 4.0 |
Nam Can | 2.8 | 3.3 | 3.6 | 3.7 | 3.8 |
NT U Minh | 2.3 | 2.9 | 3.2 | 3.3 | 3.4 |
Song Doc | 2.1 | 2.5 | 2.9 | 2.9 | 2.9 |
Thoi Binh | 2.2 | 2.7 | 2.9 | 3.0 | 3.1 |
Tran Van Thoi | 2.0 | 2.4 | 2.8 | 2.9 | 2.9 |
U Minh | 2.1 | 2.5 | 2.9 | 3.0 | 3.0 |
Vien An Dong | 2.8 | 3.3 | 3.6 | 3.8 | 3.8 |
Average | 2.4 | 2.9 | 3.2 | 3.3 | 3.4 |
Characteristic | Excess Rainfall Runoff | Rainwater Harvesting Volume | Groundwater Extraction Volume | Artificial Groundwater Recharge Volume | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tank Volume (m3) | 0.8 | 2.4 | 3.4 | 0.8 | 2.4 | 3.4 | 0.8 | 2.4 | 3.4 | 0.8 | 2.4 | 3.4 |
Station | ||||||||||||
Ca Mau | 12.5 | 2.9 | 1.5 | 15.1 | 19.6 | 20.8 | 13.6 | 9.4 | 6.8 | 15.1 | 20.2 | 20.3 |
Cai Nuoc | 12.8 | 3.4 | 1.8 | 13.0 | 17.6 | 18.6 | 15.8 | 11.4 | 11.2 | 13.4 | 18.2 | 18.7 |
Dam Doi | 9.1 | 1.8 | 1.0 | 13.0 | 17.4 | 18.4 | 15.9 | 11.8 | 12.4 | 12.9 | 15.8 | 15.6 |
Nam Can | 11.5 | 2.8 | 1.6 | 13.3 | 18.1 | 19.2 | 15.5 | 11.0 | 10.8 | 12.9 | 16.7 | 16.8 |
NT U Minh | 14.8 | 3.6 | 1.6 | 14.8 | 18.9 | 20.4 | 14.0 | 10.2 | 8.0 | 15.5 | 22.6 | 23.1 |
Song Doc | 11.2 | 2.4 | 1.2 | 13.4 | 18.3 | 19.6 | 15.3 | 10.7 | 12.4 | 12.6 | 16.5 | 16.4 |
Thoi Binh | 13.1 | 2.6 | 1.1 | 14.6 | 19.5 | 20.7 | 14.2 | 9.6 | 11.2 | 15.4 | 21.1 | 21.4 |
Tran Van Thoi | 11.8 | 2.5 | 1.1 | 13.8 | 18.5 | 19.7 | 15.0 | 10.5 | 9.6 | 14.5 | 19.0 | 19.2 |
U Minh | 16.0 | 4.3 | 2.2 | 14.4 | 19.4 | 21.0 | 14.4 | 9.7 | 10.0 | 15.1 | 21.9 | 22.3 |
Vien An Dong | 9.2 | 2.6 | 1.4 | 14.2 | 17.8 | 18.7 | 14.7 | 11.4 | 9.6 | 15.5 | 18.5 | 18.8 |
Average | 12.2 | 2.9 | 1.5 | 14.0 | 18.5 | 19.7 | 14.8 | 10.6 | 10.2 | 14.3 | 19.0 | 19.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinh, D.H.; Tran, D.D.; Cham, D.D.; Hang, P.T.T.; Man, D.B.; Mon, D.; Hai Tung, L.; Kiem, L.V.; Nguyen, T.D.; Tuyen, D.T.N. Integrated Exploitation of Rainwater and Groundwater: A Strategy for Water Self-Sufficiency in Ca Mau Province of the Mekong Delta. Hydrology 2024, 11, 55. https://doi.org/10.3390/hydrology11040055
Vinh DH, Tran DD, Cham DD, Hang PTT, Man DB, Mon D, Hai Tung L, Kiem LV, Nguyen TD, Tuyen DTN. Integrated Exploitation of Rainwater and Groundwater: A Strategy for Water Self-Sufficiency in Ca Mau Province of the Mekong Delta. Hydrology. 2024; 11(4):55. https://doi.org/10.3390/hydrology11040055
Chicago/Turabian StyleVinh, Dang Hoa, Dung Duc Tran, Dao Dinh Cham, Phan Thi Thanh Hang, Duong Ba Man, Danh Mon, Luu Hai Tung, Le Van Kiem, Thien Duc Nguyen, and Duong Thi Ngoc Tuyen. 2024. "Integrated Exploitation of Rainwater and Groundwater: A Strategy for Water Self-Sufficiency in Ca Mau Province of the Mekong Delta" Hydrology 11, no. 4: 55. https://doi.org/10.3390/hydrology11040055
APA StyleVinh, D. H., Tran, D. D., Cham, D. D., Hang, P. T. T., Man, D. B., Mon, D., Hai Tung, L., Kiem, L. V., Nguyen, T. D., & Tuyen, D. T. N. (2024). Integrated Exploitation of Rainwater and Groundwater: A Strategy for Water Self-Sufficiency in Ca Mau Province of the Mekong Delta. Hydrology, 11(4), 55. https://doi.org/10.3390/hydrology11040055