Groundwater Geochemistry in the Karst-Fissure Aquifer System of the Qinglian River Basin, China
Abstract
1. Introduction
2. Study Area
2.1. Geological Structure
2.2. Landform
3. Materials and Methods
3.1. Sample Collection and Analysis
3.2. Analytical Methods
4. Results
4.1. Hydrochemical Characteristics of Groundwater
4.2. Results of Isotopic Values of 2H and 18O
5. Discussion
5.1. Hydrogeochemical Properties of the Igneous-Fissure Water
5.2. Hydrogeochemical Properties of the Karst Water
5.3. Hydrogeochemical Properties of Groundwater in the Karst Hyporheic Zone
5.4. Isotopic Values of 2H and 18O
6. Conclusions
- It is the first specific analysis of the groundwater geochemistry in the karst-fissure aquifer system of the Qinglian River Basin in northern Guangdong Province. Further quantified assessment on the contribution ratio of factors affecting water quality is recommended.
- Weathering of silicate minerals, oxidation of pyrite and chlorite, cation exchange reactions, and precipitation are the primary sources of dissolved chemicals in the igneous-fissure water from the eroded tectonic mountains.
- The natural chemical substances in the karst water are mostly derived from the weathering of carbonate minerals (calcite and dolomite) and cation exchange reactions. Moreover, the PCA suggests that the most relevant parameters in the karst water are possibly from anthropogenic activities, which are also closely related to groundwater quality in karst areas. Furthermore, the chemical composition of the deep karst water from the karst basin is mainly influenced by the weathering of carbonate and cation exchange reactions and is less affected by human activities.
- The hydrogeochemical properties of groundwater in the karst hyporheic zone are influenced by the weathering of silicates and carbonates, and the promotion effect of dissolution of anorthite or Ca-containing minerals. In addition, the mixing effects of evaporation, isotope exchange in water–rock interaction, and deep groundwater recharge in the karst hyporheic zone are the strongest in the Qinglian River Basin, as indicated by δ2H and δ18O analyses. The hydrogeochemical characteristics of the karst interaction zone are so unique that further studies are recommended.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, P.; Li, Y.; Groves, C.; Hong, A. Coupled hydrogeochemical evaluation of a vulnerable karst aquifer impacted by septic effluent in a protected natural area. Sci. Total Environ. 2019, 658, 1475–1484. [Google Scholar] [CrossRef]
- Lyu, Y.; Hu, W.; Yang, Y. Research progress of hydrological cycle in karst critical zone. Adv. Water Sci. 2019, 30, 123–138. [Google Scholar]
- Egbueri, J.C.; Ezugwu, C.K.; Unigwe, C.O.; Onwuka, O.S.; Onyemesili, O.C.; Mgbenu, C.N. Multidimensional analysis of the contamination status, corrosivity and hydrogeochemistry of groundwater from parts of the Anambra Basin, Nigeria. Anal. Lett. 2021, 54, 2126–2156. [Google Scholar] [CrossRef]
- Xanke, J.; Ender, A.; Grimmeisen, F.; Goeppert, N.; Goldscheider, N. Hydrochemical evaluation of water resources and human impacts on an urban karst system, Jordan. Hydrogeol. J. 2020, 28, 2173–2186. [Google Scholar] [CrossRef]
- Huang, G.; Liu, C.; Sun, J.; Zhang, M.; Jing, J.; Li, L. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta. Sci. Total Environ. 2018, 625, 510–518. [Google Scholar] [CrossRef]
- Al-Awah, H.; Redwan, M.; Rizk, S. Groundwater hydrogeochemistry impacted by industrial activities in Ain Sukhna Industrial Area, north-western part of the Gulf of Suez, Egypt. Sustainability 2023, 15, 12787. [Google Scholar] [CrossRef]
- Cuoco, E.; Darrah, T.H.; Buono, G.; Verrengia, G.; De Francesco, S.; Eymold, W.K.; Tedesco, D. Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian Plain (Southern Italy). Implications for geochemical survey. Environ. Monit. Assess. 2015, 187, 46. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Kanojia, N.; Kalra, S.; Dua, K. Chemical speciation of chromium and arsenic and biogeochemicalcycle in the aquatic system. In Hydrogeochemistry of Aquatic Ecosystems; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2023; pp. 155–179. [Google Scholar]
- Wang, Y.; Jiao, J.J.; Cherry, J.A. Occurrence and geochemical behavior of arsenic in a coastal aquifer–aquitard system of the Pearl River Delta, China. Sci. Total Environ. 2012, 427–428, 286–297. [Google Scholar] [CrossRef]
- Luo, L.; Liang, X.; Luo, M.; Zhou, H. Characterizing the hierarchical groundwater flow systems in Karstic Xiangxi River Basin, West Hubei, Central China. Appl. Geochem. 2022, 143, 105371. [Google Scholar] [CrossRef]
- Pu, J.; Yuan, D.; Xiao, Q.; Zhao, H. Hydrogeochemical characteristics in karst subterranean streams: A case history from Chongqing, China. Carbonates Evaporites 2015, 30, 307–319. [Google Scholar] [CrossRef]
- Hanshaw, B.B.; Back, W. Major geochemical processes in the evolution of carbonate—Aquifer systems. J. Hydrol. 1979, 43, 287–312. [Google Scholar] [CrossRef]
- Loh, Y.S.A.; Yidana, S.M.; Banoeng-Yakubo, B.; Sakyi, P.A.; Addai, M.O.; Asiedu, D.K. Determination of the mineral stability field of evolving groundwater in the Lake Bosumtwi impact crater and surrounding areas. J. Afr. Earth Sci. 2016, 121, 286–300. [Google Scholar] [CrossRef]
- Xia, Q.; He, J.; Li, B.; He, B.; Huang, J.; Guo, M.; Luo, D. Hydrochemical evolution characteristics and genesis of groundwater under long-term infiltration (2007–2018) of reclaimed water in Chaobai River, Beijing. Water Res. 2022, 226, 119222. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, X. Structural control effects on hot springs’ hydrochemistry in the northern Red River Fault Zone: Implications for geothermal systems in fault zones. J. Hydrol. 2023, 623, 129836. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Jia, S.; Lv, A. Possible hydrochemical processes influencing dissolved solids in surface water and groundwater of the Kaidu River Basin, Northwest China. Water 2020, 12, 467. [Google Scholar] [CrossRef]
- Barbieri, M. Isotopes in Hydrology and Hydrogeology. Water 2019, 11, 291. [Google Scholar] [CrossRef]
- Jin, K.; Rao, W.; Wang, S.; Zhang, W.; Zheng, F.; Li, T.; Lu, Y.; Zhang, Q. Stable isotopes (δ18O and δ2H) and chemical characteristics of soil solution in the unsaturated zone of an arid desert. J. Radioanal. Nucl. Chem. 2021, 330, 367–380. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Mu, W.; Zhu, G. Using isotopes (H, O, and Sr) and major ions to identify hydrogeochemical characteristics of groundwater in the Hongjiannao Lake Basin, Northwest China. Water 2020, 12, 1467. [Google Scholar] [CrossRef]
- Sun, H.; Sun, X.; Wei, X.; Chen, Z.; Liu, W.; Huang, X.; Li, X.; Yin, Z.; Liu, W. Formation mechanism of metasilicate mineral water in Chengde, Hebei Province: Evidence from rock weathering and water-rock interaction. Geol. China 2022, 49, 1088–1113. [Google Scholar]
- Qin, D.; Zhao, Z.; Guo, Y.; Liu, W.; Haji, M.; Wang, X.; Xin, B.; Li, Y.; Yang, Y. Using hydrochemical, stable isotope, and river water recharge data to identify groundwater flow paths in a deeply buried karst system. Hydrol. Process. 2017, 31, 4297–4314. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Zhang, G.; Zhu, H.; Wang, J.; Guo, Y. Hydrochemical and isotope (18O, 2H and 3H) characteristics of karst water in central Shandong Province: A case study of the Pingyi-Feixian Region. Minerals 2022, 12, 154. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, J.; Qian, H. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ. Earth Sci. 2013, 69, 2211–2225. [Google Scholar] [CrossRef]
- Mao, M.; Wang, X.; Zhu, X. Hydrochemical characteristics and pollution source apportionment of the groundwater in the east foothill of the Taihang Mountains, Hebei Province. Environ. Earth Sci. 2021, 80, 14. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, G.; Hou, Q.; Liu, C.; Zhang, Y.; Zhang, Q. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. J. Hydrol. 2019, 577, 124004. [Google Scholar] [CrossRef]
- Schiavo, M.; Giambastiani, B.M.S.; Greggio, N.; Colombani, N.; Mastrocicco, M. Geostatistical assessment of groundwater arsenic contamination in the Padana Plain. Sci. Total Environ. 2024, 931, 172998. [Google Scholar] [CrossRef] [PubMed]
- Silwal, C.; Karkee, B.; Dahal, K.; Nepal, M.; Acharya, S.; Khanal, M.; Pathak, D. Hydro-geochemical characterization and suitability analysis of spring water of the Mai Khola Watershed, Ilam, eastern Nepal. J. Nepal Geol. Soc. 2022, 63, 123–132. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; US Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Li, Y.; Bian, J.; Li, J.; Ma, Y.; Anguiano, J.H.H. Hydrochemistry and stable isotope indication of natural mineral water in Changbai Mountain, China. J. Hydrol.-Reg. Stud. 2022, 40, 101047. [Google Scholar] [CrossRef]
- Tian, M.; Di, Y. Petrogenesis of Jurassic granitic rocks in South China Block: Implications for events related to subduction of Paleo-Pacific plate. Open Geosci. 2024, 16, 20220601. [Google Scholar] [CrossRef]
- Cao, J.; Yang, X.; Du, J.; Wu, Q.; Kong, H.; Li, H.; Wan, Q.; Xi, X.; Gong, Y.; Zhao, H. Formation and geodynamic implication of the Early Yanshanian granites associated with W–Sn mineralization in the Nanling range, South China: An overview. Int. Geol. Rev. 2018, 60, 1744–1771. [Google Scholar] [CrossRef]
- Li, Z.; Li, X. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Chen, A.; Ng, Y.; Zhang, E.; Tian, M. (Eds.) Peak cluster depression karst landscape. In Dictionary of Geotourism; Springer: Singapore, 2020; p. 463. [Google Scholar]
- Wang, L.; Ma, S.; Jiang, J.; Zhao, Y.; Zhang, J. Spatiotemporal variation in ecosystem services and their drivers among different landscape heterogeneity units and terrain gradients in the southern hill and mountain belt, China. Remote Sens. 2021, 13, 1375. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Ball, J.W.; Donahoe, R.J.; Whittemore, D. Groundwater chemistry and water-rock interactions at Stripa. Geochim. Cosmochim. Acta 1989, 53, 1727–1740. [Google Scholar] [CrossRef]
- Fritz, S.J. A survey of charge-balance errors on published analyses of potable ground and surface waters. Groundwater 1994, 32, 539–546. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Q.; Peng, W.; Liu, X. Source apportionment and natural background levels of major ions in shallow groundwater using multivariate statistical method: A case study in Huaibei Plain, China. J. Environ. Manag. 2022, 301, 113806. [Google Scholar] [CrossRef]
- Cui, X.; Fei, Y.; Li, Y.; Tian, X.; Cao, S. Indicative significance of groundwater pollution on variation of hydrochemical types in Nanxiang Basin. J. China Hydrol. 2019, 39, 52–57. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar]
- Feth, J.H. Mechanisms controlling world water chemistry: Evaporation–crystallization process. Science 1971, 172, 870–872. [Google Scholar] [CrossRef]
- Négrel, P.; Allègre, C.J.; Dupré, B.; Lewin, E. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case. Earth Planet. Sci. Lett. 1993, 120, 59–76. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Y.; Groves, C.; Yuan, D.; Kambesis, P. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. J. Contam. Hydrol. 2009, 109, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Schoeller, H. Qualitative evaluation of groundwater resources. In Methods and Techniques of Groundwater Investigation and Development; UNESCO: Paris, France, 1967; pp. 44–52. [Google Scholar]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Gabellone, N.A.; Solari, L.; Claps, M.; Neschuk, N. Chemical classification of the water in a lowland river basin (Salado River, Buenos Aires, Argentina) affected by hydraulic modifications. Environ. Geol. 2008, 53, 1353–1363. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Q.; Gao, S.; Zhang, X.; Wang, Z.; Wu, P.; Zeng, J. Coupled controls of the infiltration of rivers, urban activities and carbonate on trace elements in a karst groundwater system from Guiyang, Southwest China. Ecotoxicol. Environ. Saf. 2023, 249, 114424. [Google Scholar] [CrossRef] [PubMed]
- GB8537-2018; Drinking Natural Mineral Water. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China Standardization Administration of China: Beijing, China, 2018.
- Asano, Y.; Uchida, T.; Ohte, N. Hydrologic and geochemical influences on the dissolved silica concentration in natural water in a steep headwater catchment. Geochim. Cosmochim. Acta 2003, 67, 1973–1989. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, X. Source and influencing factors of metasilicic acid in mixed geothermal waters. Geothermics 2024, 123, 103098. [Google Scholar] [CrossRef]
- Su, Y.H.; Feng, Q.; Zhu, G.F.; Si, J.H.; Zhang, Y.W. Identification and evolution of groundwater chemistry in the Ejin Sub-Basin of the Heihe River, Northwest China. Pedosphere 2007, 17, 331–342. [Google Scholar] [CrossRef]
- Singh, P.; Verma, P. Chapter 5—A Comparative Study of Spatial Interpolation Technique (IDW and Kriging) for Determining Groundwater Quality. In GIS and Geostatistical Techniques for Groundwater Science; Venkatramanan, S., Prasanna, M.V., Chung, S.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–56. [Google Scholar]
- Chandra, A.P.; Gerson, A.R. The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surf. Sci. Rep. 2010, 65, 293–315. [Google Scholar] [CrossRef]
- Choi, B.Y.; Yun, S.T.; Kim, K.H.; Kim, K.; Choh, S.J. Geologically controlled agricultural contamination and water–rock interaction in an alluvial aquifer: Results from a hydrochemical study. Environ. Earth Sci. 2013, 68, 203–217. [Google Scholar] [CrossRef]
- Quang Khai, H.; Tien Dung Tran, N.; Phu Le, V.; Hong Quan, N.; Dang, D.H. Groundwater in Southern Vietnam: Understanding geochemical processes to better preserve the critical water resource. Sci. Total Environ. 2022, 807, 151345. [Google Scholar]
- Xing, J.; Song, J.; Yuan, H.; Li, X.; Li, N.; Duan, L.; Qu, B.; Wang, Q.; Kang, X. Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China. Atmos. Res. 2017, 190, 10–20. [Google Scholar] [CrossRef]
- Wang, X.; Huang, X.; Xiong, K.; Hu, J.; Zhang, Z.; Zhang, J. Mechanism and evolution of soil organic carbon coupling with rocky desertification in south China karst. Forests 2022, 13, 28. [Google Scholar] [CrossRef]
- McDonnell, J.J. Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrol. Process. 2003, 17, 1869–1875. [Google Scholar] [CrossRef]
- Ye, N.; Li, Y.; Huang, B.; Xi, B.; Jiang, H.; Lu, Z.; Chen, Q.; You, D.; Xu, J. Hydrothermal silicification and its impact on Lower–Middle Ordovician carbonates in Shunnan area, Tarim Basin, NW China. Geol. J. 2022, 57, 3538–3557. [Google Scholar] [CrossRef]
- Duan, W.; Ruan, J.; Luo, W.; Li, T.; Tian, L.; Zeng, G.; Zhang, D.; Bai, Y.; Li, J.; Tao, T.; et al. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China. Geochim. Cosmochim. Acta 2016, 183, 250–266. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, L.; Ni, Z.; Yang, H.; Tu, S. Hydrogeochemical characterization and flow field of groundwater in the Qingyuan Basin of Guangdong Province. S. China Geol. 2023, 398, 672–685. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Barnes, C.J.; Allison, G.B. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J. Hydrol. 1988, 100, 143–176. [Google Scholar] [CrossRef]
- Cartwright, I.; Weaver, T.R.; Fifield, L.K. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia. Chem. Geol. 2006, 231, 38–56. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Shaw, S.E.; Flood, R.H. Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England Batholith, Australia. Contrib. Mineral. Petrol. 1977, 62, 313–328. [Google Scholar] [CrossRef]
- Harris, C.; Faure, K.; Diamond, R.E.; Scheepers, R. Oxygen and hydrogen isotope geochemistry of S- and I-type granitoids: The Cape Granite suite, South Africa. Chem. Geol. 1997, 143, 95–114. [Google Scholar] [CrossRef]
- Blattner, P.; Jin, C.; Xu, Y. Oxygen isotopes in mantle related and geothermally altered magmatites of the Transhimalayan (Gangdese) ranges. Contrib. Mineral. Petrol. 1989, 101, 438–446. [Google Scholar] [CrossRef]
- Blattner, P.; Abart, R.; Adams, C.J.; Faure, K.; Hui, L. Oxygen isotope trends and anomalies in granitoids of the Tibetan plateau. J. Asian Earth Sci. 2002, 21, 241–250. [Google Scholar] [CrossRef]
- Jun, J.; Liang, W.; Liqiang, S. Experimental study on hydrogen and oxygen isotope exchange in water-rock interaction of Lucaogou formation in Jimsar sag. Arab. J. Geosci. 2021, 14, 1367. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef]
- Koçak, E.; Balcılar, İ. Spatio-temporal variation of particulate matter with health impact assessment and long-range transport—Case study: Ankara, Türkiye. Sci. Total Environ. 2024, 938, 173650. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar] [CrossRef]
Landforms | Statistics | pH | H2SiO3 | TH | TDS | K+ | Na+ | Ca2+ | Mg2+ | HCO3− | Cl− | SO42− |
---|---|---|---|---|---|---|---|---|---|---|---|---|
− | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ||
Eroded tectonic mountains (N = 9) | Max 1 | 7.57 | 36.80 | 34.00 | 110.00 | 2.64 | 15.60 | 12.60 | 0.60 | 56.00 | 8.00 | 6.80 |
Min 2 | 5.86 | 17.90 | 3.30 | 25.00 | 0.88 | 2.32 | 1.06 | 0.05 | 11.00 | 1.00 | 0.10 | |
Ave 3 | 6.80 | 26.09 | 8.63 | 46.89 | 1.79 | 4.92 | 2.87 | 0.20 | 21.56 | 2.50 | 1.68 | |
Karst hyporheic zone (N = 6) | Max | 8.09 | 19.30 | 241.00 | 272.00 | 3.24 | 7.11 | 84.10 | 12.60 | 273.00 | 7.00 | 31.80 |
Min | 6.39 | 7.11 | 30.00 | 66.00 | 0.28 | 0.61 | 10.80 | 0.78 | 30.00 | 2.00 | 3.90 | |
Ave | 7.29 | 12.10 | 135.27 | 166.00 | 1.32 | 2.40 | 47.40 | 4.09 | 154.50 | 3.00 | 9.88 | |
Peak cluster valley (N = 20) | Max | 7.86 | 10.20 | 295.00 | 322.00 | 2.78 | 3.72 | 104.00 | 18.30 | 332.00 | 9.00 | 30.20 |
Min | 6.96 | 4.90 | 156.00 | 175.00 | 0.24 | 0.27 | 58.50 | 1.56 | 190.00 | 1.00 | 0.80 | |
Ave | 7.37 | 7.57 | 227.35 | 249.60 | 0.72 | 1.06 | 81.99 | 5.48 | 254.65 | 3.30 | 6.99 | |
Peak cluster depression (N = 14) | Max | 7.93 | 18.80 | 315.00 | 319.00 | 4.03 | 2.33 | 118.00 | 20.10 | 360.00 | 8.00 | 13.26 |
Min | 7.17 | 4.85 | 128.00 | 157.00 | 0.10 | 0.31 | 47.60 | 2.04 | 149.00 | 1.00 | 3.10 | |
Ave | 7.50 | 8.74 | 225.27 | 238.85 | 1.18 | 1.05 | 80.45 | 4.56 | 242.37 | 3.13 | 7.63 | |
Karst basin (N = 4) | Max | 7.48 | 32.90 | 327.00 | 411.00 | 28.60 | 13.40 | 122.00 | 17.10 | 292.00 | 17.00 | 81.30 |
Min | 7.07 | 9.40 | 201.00 | 237.00 | 0.46 | 1.19 | 59.50 | 5.03 | 218.00 | 5.00 | 6.90 | |
Ave | 7.22 | 16.73 | 246.75 | 325.75 | 8.30 | 6.29 | 84.88 | 8.45 | 240.25 | 11.50 | 33.83 |
Chemical Parameters | PCs—Igneous-Fissure Water | PCs—Karst Water | Pcs—Groundwater In The Karst Hyporheic Zone | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC3 | PC1 | PC2 | |
pH | 0.21 | –0.91 | –0.26 | –0.75 | 0.14 | –0.65 | 0.08 |
Ca2+ | 0.98 | 0.01 | 0.09 | 0.96 | 0.12 | –0.76 | 0.57 |
H2SiO3 | 0.72 | 0.01 | 0.85 | –0.09 | 0.07 | 0.79 | –0.48 |
K+ | 0.34 | 0.82 | 0.89 | –0.09 | –0.05 | 0.98 | –0.19 |
SO42− | 0.95 | 0.07 | 0.94 | 0.13 | 0.08 | –0.07 | 0.97 |
Cl− | 0.92 | 0.05 | 0.81 | 0.31 | 0.06 | 0.91 | –0.11 |
Mg2+ | 0.95 | 0.23 | 0.08 | –0.02 | 0.99 | –0.27 | 0.94 |
Na+ | 0.99 | 0.02 | 0.94 | 0.21 | –0.05 | 0.92 | –0.25 |
HCO3− | 0.99 | 0.00 | –0.13 | 0.88 | 0.30 | –0.72 | 0.59 |
Eigenvalues | 6.26 | 1.55 | 2.44 | 4.02 | 1.12 | 4.86 | 2.84 |
Explained variance (%) | 69.60 | 17.23 | 44.69 | 27.08 | 12.43 | 54.02 | 31.52 |
Cumulative % of variance | 69.60 | 86.83 | 44.69 | 71.77 | 84.20 | 54.02 | 85.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Ni, Z.; Huang, W.; Tu, S.; Jiang, S.; Zhuang, Z.; Zhao, L.; Yang, H. Groundwater Geochemistry in the Karst-Fissure Aquifer System of the Qinglian River Basin, China. Hydrology 2024, 11, 184. https://doi.org/10.3390/hydrology11110184
Xu L, Ni Z, Huang W, Tu S, Jiang S, Zhuang Z, Zhao L, Yang H. Groundwater Geochemistry in the Karst-Fissure Aquifer System of the Qinglian River Basin, China. Hydrology. 2024; 11(11):184. https://doi.org/10.3390/hydrology11110184
Chicago/Turabian StyleXu, Lanfang, Zehua Ni, Wenlong Huang, Shiliang Tu, Shoujun Jiang, Zhuohan Zhuang, Libo Zhao, and Hongyu Yang. 2024. "Groundwater Geochemistry in the Karst-Fissure Aquifer System of the Qinglian River Basin, China" Hydrology 11, no. 11: 184. https://doi.org/10.3390/hydrology11110184
APA StyleXu, L., Ni, Z., Huang, W., Tu, S., Jiang, S., Zhuang, Z., Zhao, L., & Yang, H. (2024). Groundwater Geochemistry in the Karst-Fissure Aquifer System of the Qinglian River Basin, China. Hydrology, 11(11), 184. https://doi.org/10.3390/hydrology11110184