Ornamental Plant Growth in Different Culture Conditions and Fluoride and Chloride Removals with Constructed Wetlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Horizontal-Flow Domiciliary Constructed Wetland Design and Operation
2.2. Fluoride and Chloride Measurements
2.3. Plant Growth
2.4. Light Intensity and Temperature Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Variations of Temperature and Light Intensity During the Study
3.2. Plant Growth Features
3.3. Fluoride and Chloride Removals
3.3.1. Fluoride Removal
3.3.2. Chloride Removal
3.4. Comparison of the Results with Other Similar Studies
Study Site | Removal Treatment | Vegetation | Fluoride Removal (%) | Chloride Removal (%) | Reference |
---|---|---|---|---|---|
Venezuela | Hydroponics | Vetiveria zizanioides | 18–25 | [54] | |
India | Sorbent-Dried biomass | Parthenium sp. | 20–40 | [42] | |
India | Sorbent-Dried biomass | Vetiveria zizanioides | 40–90 | [55] | |
China | CW | Ceratophyllum demersum, Hydrilla verticillata, Potamogeton malaianus, Myriophyllum verticillatum, Elodea nuttallii | 10–40 | [26] | |
India | CW | Eichhornia crassipes | 30–80 | [56] | |
China | CW | Cannas and calamus | 14–37 | [27] | |
Canada | Non-planted CW | 40–50 | [45] | ||
USA | CW | Not mentioned | 15–38 | 35–58 | [46] |
Adsorption unit + CW | Not mentioned | 65 | [50] | ||
Mexico | CW | Canna hybrid, Alpinia purpurata and Hedychium coronarium | 30–43 | 29–32 | This study |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO (World Health Organization). Guidelines for Drinking-Water Quality: Incorporating First Addendum Recommendations; World Health Organization: Geneva, Switzerland, 2008; p. 668. Available online: https://apps.who.int/iris/handle/10665/43428 (accessed on 1 November 2023).
- Palmer, C.A.; Gilbert, J.A. Position of the academy of nutrition and dietetics: The impact of fluoride on health. J. Acad. Nutr. Diet. 2012, 112, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Federal Register: Beverages: Bottled Water. 2022. Available online: https://www.federalregister.gov/documents/2022/04/20/2022-08273/beverages-bottled-water (accessed on 2 October 2024).
- Kanduti, D.; Šterbenk, P.; Artnik, B. Fluoride: A review of use and effects on health. Mater. Sociomed. 2016, 28, 133. [Google Scholar] [CrossRef] [PubMed]
- Mahaboob, P.; Sujitha, N.S. Chronic fluoride toxicity and myocardial damage: Antioxidant offered protection in second generation rats. Toxicol. Int. 2011, 18, 99–104. [Google Scholar] [CrossRef]
- Choubisam, S.L. A brief and critical review of chronic fluoride poisoning (fluorosis) in domesticated water buffaloes (bubalus bubalis) in India: Focus on its impact on rural economy. J. Biomed. Res. Environ. Sci. 2022, 3, 96–104. [Google Scholar] [CrossRef]
- Duvva, L.K.; Panga, K.K.; Dhakate, R.; Himabindu, V. Health risk assessment of nitrate and fluoride toxicity in groundwater contamination in the semi-arid area of Medchal, South India. Appl. Water Sci. 2022, 12, 11. [Google Scholar] [CrossRef]
- Kalyani, S.; Rao, P.S.; Krishnaiah, A. Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 2004, 57, 1225–1229. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. 2008. Available online: https://www.fao.org/docrep/003/t0234e/t0234e05.htm (accessed on 4 October 2024).
- EPD Environmental Protection Division Ambient Wáter Quality Guidelines for Chloride. 2016. Available online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/chloride-or.pdf (accessed on 10 October 2024).
- ONU (United Nations Organization) Global Wastewater Status. 2024. Available online: https://unu.edu/inweh/tools-and-resources/global-wastewater-status (accessed on 2 October 2024).
- Demelash, H.; Beyene, A.; Abebe, Z.; Melese, A. Fluoride concentration in ground water and prevalence of dental fluorosis in Ethiopian Rift Valley: Systematic review and meta-analysis. BMC Pub. Health 2019, 19, 1298. [Google Scholar] [CrossRef]
- Giwa, A.; Memon, A.; Ahmad, J.; Ismail, T.; Abbasi, S.; Kamran, K. Assessment of high fluoride in water source and endemic fluorosis in the North-Eastern communities of Gombe State, Nigeria. Environ. Poll. Bioav. 2021, 33, 31–40. [Google Scholar] [CrossRef]
- Diwani, G.; Amin, S.; Attia, N.K.; Hawash, S.I. Fluoride pollutants removal from industrial wastewater. Bull. Nat. Res. Cent. 2022, 46, 143. [Google Scholar] [CrossRef]
- Chen, W.; Shen, Y.; Tsai, M.; Chang, F. Removal of chloride from electric arc furnace dust. J. Harz. Mater. 2011, 190, 639–644. [Google Scholar] [CrossRef]
- Mullaney, J.R.; Lorenz, D.L.; Arntson, A.D. Chloride in groundwater and surface water in areas underlain by the glacial aquifer system northern United States: U.S. Geological Survey Scientific Investigations Report 2009–5086. 2009. Available online: https://pubs.usgs.gov/sir/2009/5086/ (accessed on 20 October 2024).
- Vera-Puerto, I.; Marca, N.; Contreras, C.; Zuñiga, F.; López, J.; Sanguesa, C.; Correo, C.; Arias, C.; Valenzuela, M. Performance of vertical and horizontal treatment wetlands planted with ornamental plants in Central Chile: Comparative analysis of initial operations stage for effluent reuse in agriculture. Env. Sci. Pollut. Res. 2024, 31, 50398–50410. [Google Scholar] [CrossRef] [PubMed]
- de Campos, S.X.; Soto, M. The Use of Constructed wetlands to treat effluents for water reuse. Environments 2024, 11, 35. [Google Scholar] [CrossRef]
- Nani, G.; Sandoval-Herazo, M.; Martínez-Reséndiz, G.; Marín-Peña, O.; Zurita, F.; Sandoval, L.C. Influence of bed depth on the development of tropical ornamental plants in subsurface flow treatment wetlands for municipal wastewater treatment: A pilot-scale case. Plants 2024, 13, 1958. [Google Scholar] [CrossRef] [PubMed]
- Marín-Muñiz, J.L.; Zitácuaro-Contreras, I.; Ortega-Pineda, G.; López-Roldán, A.; Vidal-Álvarez, M.; Martínez-Aguilar, K.E.; Álvarez-Hernández, L.M.; Zamora-Castro, S. Phytoremediation performance with ornamental plants in monocultures and polycultures conditions using constructed wetlands technology. Plants 2024, 13, 1051. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Hernández, M.E.; Gallegos-Pérez, M.P.; Amaya-Tejeda, S.I. Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecol. Eng. 2020, 147, 105658. [Google Scholar] [CrossRef]
- Arias, C.; Vera-Puerto, L.; Rodríguez, T. Soluciones Basadas en la Naturaleza, Spanish Edition; First Iwa Publishing: London, UK, 2023; Available online: https://www.iwapublishing.com/books/9781789063028/soluciones-basadas-en-la-naturaleza-para-el-tratamiento-de-aguas-residuales (accessed on 25 May 2024).
- Jahangir, M.; Richards, K.; Healey, M.; Gill, L.; Muller, C.; Johnston, P.; Fenton, O. Carbon & nitrogen dynamics & greenhouse gas emissions in constructed wetlands treating wastewater: A review. Hydrol. Earth Syst. Sci. 2016, 20, 109–123. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Sandoval Herazo, L.C.; López-Méndez, M.C.; Sandoval-Herazo, M.; Meléndez-Armenta, R.Á.; González-Moreno, H.R.; Zamora, S. Treatment wetlands in Mexico for control of wastewater contaminants: A review of experiences during the last twenty-two years. Processes 2023, 11, 359. [Google Scholar] [CrossRef]
- Wu, S.; Carvalho, P.; Müller, J.; Manoj, V.; Dong, R. Sanitation in constructed wetlands: A review on the removal of human pathogens & fecal indicators. Sci. Total Environ. 2016, 541, 8–22. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, J.; Liu, Y.; Ba, K.; Chen, S.; Zhang, R. Removal of fluoride from water by five submerged plants. Bull. Environ. Cont. Toxicol. 2012, 89, 395–399. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Yu, Z.; Yi, X.; Ju, Y.; Huang, J.; Liu, R. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate. Water Sci. Technol. 2014, 70, 620–626. [Google Scholar] [CrossRef]
- Leiva, A.; Núñez, R.; Gómez, G.; López, D.; Vidal, G. Performance or ornamental plants in monoculture and polyculture horizontal subsurface flow constructed wetlands for treating wastewater. Ecol. Eng. 2018, 120, 116–125. [Google Scholar] [CrossRef]
- Liu, X.; Huang, S.; Tang, T.; Liu, X.; Scholz, M. Growth characteristic & nutrient removal capability of plants in subsurface vertical flow constructed wetlands. Ecol. Eng. 2012, 44, 189–198. [Google Scholar] [CrossRef]
- Youssef, T. Physiological Responses of Avicennia marina Seedlings to the Phytotoxic Effects of the Water-Soluble Fraction of Light Arabian Crude Oil. Environmentalist 2022, 22, 149–159. [Google Scholar] [CrossRef]
- Karungamye, P. Potential of Canna indica in constructed wetlands for wastewater treatment: A review. Conservation 2022, 2, 499–513. [Google Scholar] [CrossRef]
- Kobayashi, K.; McEwen, J.; Kaufman, A. Ornamental ginger, red and pink. Ornamental and flowers. Cooper Extensive Service. 2007. Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/of-37.pdf (accessed on 15 October 2024).
- Karaivazoglou, N.A.; Papakosta, D.K.; Divanidis, S. Effect of chloride in irrigation water and form of nitrogen fertilizer on Virginia (flue-cured) tobacco. Field Crops Res. 2005, 92, 61–74. [Google Scholar] [CrossRef]
- Singh, N.; Singh, G. Hedychium coronarium–an overview. Int. Res. J. Human. Eng. Pharmac. Sci. 2012, 2, 1–5. Available online: https://www.researchgate.net/publication/337919729_Hedychium_coronarium_An_Overview (accessed on 15 October 2024).
- Sarmento, P.; Carraro, A.; Teixera, A. Effect of cultivated species & retention time on the performance of constructed wetlands. Environ. Technol. 2013, 35, 961–965. [Google Scholar] [CrossRef]
- Méndez-Mendoza, M.; Bello-Mendoza, R.; Herrera-López, D.; Mejía-González, G.; Calixto-Romo, A. Performance of constructed wetlands with ornamental plants in the treatment of domestic wastewater under the tropical climate of South Mexico. Water Pract. Technol. 2015, 10, 110–123. [Google Scholar] [CrossRef]
- Sandoval-Herazo, M.; Martínez-Reséndiz, G.; Fernández, E.; Fernández-Lambert, G.; Sandoval, L. Plant biomass production in constructed wetlands treating swine wastewater in tropical climates. Fermentation 2021, 7, 296. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Zitácuaro-Contreras, I.; Ortega-Pineda, G.; Álvarez-Hernández, L.M.; Martínez-Aguilar, K.E.; López-Roldán, A.; Zamora, S. Bibliometric analysis of constructed wetlands with ornamental flowering plants: The importance of green technology. Processes 2023, 11, 1253. [Google Scholar] [CrossRef]
- Wambu, E.; Frau, F.; Machunda, R.; Pasape, L.; Barasa, S.; Ghiglieri, G. Water Defluoridation Methods Applied in Rural Areas Over the World. In Fluoride; Wambu, W., Lagat, J., Kiplagat, A., Eds.; IntechOpen: London, UK, 2022; pp. 1–26. [Google Scholar] [CrossRef]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current & new perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, S.; Wang, P.; Quian, J. Effects of vegetations on the removal of contaminants in aquatic environments: A review. J. Hydrodyn. Ser. B. 2014, 26, 497–511. [Google Scholar] [CrossRef]
- Apte, S.; Apte, S.; Kore, V.S.; Kore, S.V. Effects of vegetations on the removal of contaminants in aquatic environments: A review. Univ. J. Environ. Res. Technol. 2011, 1, 416–422. Available online: https://www.environmentaljournal.org/1-4/ujert-1-4-4.pdf (accessed on 18 October 2024).
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. App. Water Sci. 2007, 7, 1043–1067. [Google Scholar] [CrossRef]
- Dutta, N.; Usman, M.; Awais, M.; Luo, G.; Zhang, S. Efficacy of emerging technologies in addressing reductive dichlorination for environmental biorrremediation: A review. J. Haz. Mat. Lett. 2022, 3, 100065. [Google Scholar] [CrossRef]
- Chairawiwut, W.; McMartin, D.; Azam, S. Salts removal from synthetic solution-potash brine by non-planted constructed wetlands. Water 2016, 8, 113. [Google Scholar] [CrossRef]
- Alsaiari, A.; Tang, H. Field investigations of passive and active processes for acid mine drainage treatment: Are anions a concern? Ecol. Eng. 2018, 122, 100–106. [Google Scholar] [CrossRef]
- Cruz, J.F.; Cruz, G.J.F.; Ainassaari, K.; Gómez, M.M.; Solís, J.L.; Keiski, R.L. Microporous activation carbon made of sawdust from two forestry species for adsorption of methylene blue and heavy metals in aqueous system case of real polluted water. Rev. Mex. Ing. Quím. 2018, 17, 847–861. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; García-González, M.C.; Ruelas-Monjardín, L.; Moreno-Casasola, P. Influence of different porous media & ornamental vegetation on wastewater pollutant removal in vertical subsurface flow wetland microcosms. Environ. Eng. Sci. 2018, 35, 88–94. [Google Scholar] [CrossRef]
- Zamora-Castro, S.A.; Marín-Muñiz, J.L.; Sandoval, L.; Vidal-Álvarez, M.; Carrión-Delgado, J.M. Effect of ornamental plants, seasonality, and filter media material in fill-and-drain constructed wetlands treating rural community wastewater. Sustainability 2019, 11, 2350. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Liu, X.; Yu, Z.; Liu, R. Removal of fluoride and arsenic by hybrid constructed wetland system. Chem. Biodiv. 2019, 16, e1900078. [Google Scholar] [CrossRef] [PubMed]
- González-Moreno, H.R.; Marín-Muníz, J.L.; Sánchez-DelaCruz, E.; Nakase, C.; Del Ángel-Coronel, O.A.; Reyes-Gonzalez, D.; Nava-Valente, N.; Sandoval-Herazo, L.C. Bioelectricity generation and production of ornamental plants in vertical partially saturated constructed wetlands. Water 2021, 13, 143. [Google Scholar] [CrossRef]
- Zitácuaro-Contreras, I.; Vidal-Álvarez, M.; Hernández, M.; Zamora-Castro, S.; Betanzo-Torres, E.; Marín-Muñiz, J.L.; Sandoval-Herazo, L.C. Environmental, economic, and social potencialities of ornamental vegetation cultivated in constructed wetlands of Mexico. Sustainability 2021, 13, 6267. [Google Scholar] [CrossRef]
- Calheiros, C.; Bessa, V.; Mesquita, R.; Brix, H.; Rangel, A.; Castro, P. Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. Ecol. Eng. 2015, 79, 1–7. [Google Scholar] [CrossRef]
- Ruiz, C.; Rodríguez, O. Desarrollo de un sistema de tratamiento para la remoción de flúor del agua mediante el uso de Vetiver Vetiveria zizanoides L., en Guarataro, Yaracuy, Venezuela. 2015. Available online: https://www.vetiver.org/ICV4pdfs/BA16es.pdf (accessed on 5 October 2024).
- Harikumar, P.; Jaseela, C.; Megha, T. Defluoridation of water using biosorbents. Nat. Sci. 2012, 4, 245–251. [Google Scholar] [CrossRef]
- Sivakumar, D.; Shankar, D.; Prathima, V.; Valarmathi, M. Constructed wetland treatment of textile industry wastewater using aquatic macrophytes. Int. J. Environ. Sci. 2013, 3, 1223–1232. [Google Scholar]
- Tejeda, A.; Torres-Bojorges, Á.X.; Zurita, F. Carbamazepine removal in three pilot-scale hybrid wetlands planted with ornamental species. Ecol. Eng. 2017, 98, 410–417. [Google Scholar] [CrossRef]
- Zurita, F.; White, J.R. Comparative study of three two-stage hybrid ecological wastewater treatment systems for producing high nutrient, reclaimed water for irrigation reuse in developing countries. Water 2014, 6, 213–228. [Google Scholar] [CrossRef]
- Hernández, M.; Vega, M.; Giácoman, G.; Quintal, C. Hybrid constructed wetlands for domestic wastewater treatment in Yucatan, Mexico, using Typha dominguensis and Sagittaria lancifolia. Int. Proc. Chem. Biol. Environ. Eng. 2018, 103, 1–6. [Google Scholar]
- Zurita, F.; Carreón-Álvarez, A. Performance of three pilot-scale hybrid constructed wetlands for total coliforms and Escherichia coli removal from primary effluent—A 2-year study in a subtropical climate. J. Water Health 2015, 13, 446–458. [Google Scholar] [CrossRef]
- Mittal, Y.; Noori, M.T.; Saeed, T.; Yadav, A.K. Influences of evapotranspiration on wastewater treatment and electricity generation performance of constructed wetland integrated microbial fuel cell. J. Water Proc. Eng. 2023, 53, 103580. [Google Scholar] [CrossRef]
- Milani, M.; Marzo, A.; Toscano, A.; Consoli, S.; Cirelli, G.; Ventura, D.; Barbagallo, S. Evapotranspiration from horizontal subsurface Flow constructed wetlands with different perennial plant species. Water 2019, 11, 2159. [Google Scholar] [CrossRef]
- Woraharn, S.; Meeinkuirt, W.; Phusantisampan, T.; Chayapan, P. Rhizofiltration of cadmium and zinc in hydroponic systems. Water Air Soil. Poll. 2021, 232, 204. [Google Scholar] [CrossRef]
- Woraharn, S.; Meeinkuirt, W.; Phusantisampan, T.; Avakul, P. Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environ. Sci. Poll. Res. 2021, 28, 35157–35170. [Google Scholar] [CrossRef] [PubMed]
Ornamental Plant | Maximum Root Length (cm) | Maximum Root Volume (cm3) | Maximum Height (cm) | Wilting Degree a (# Plants) | D-P b | RGR (gg−1d−1) |
---|---|---|---|---|---|---|
C. hybrids | 93.0 ±14.2 a | 551 ± 33.2 a | 59.2 ±16.2 a | w1 | d1 | 0.009 ± 0.002 a |
H. coronarium | 49.0 ± 6.6 b | 81 ± 15.08 b | 40.8 ± 3.2 b | w2 (1) | d1 | 0.004 ± 0.002 b |
A. purpurata | 64.0 ± 11.9 b | 97 ± 48.6 b | 30.3 ± 6.7 b | w1 | d1 | 0.006 ± 0.002 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Muñiz, J.L.; Hernández, M.E.; Zamora Castro, S. Ornamental Plant Growth in Different Culture Conditions and Fluoride and Chloride Removals with Constructed Wetlands. Hydrology 2024, 11, 182. https://doi.org/10.3390/hydrology11110182
Marín-Muñiz JL, Hernández ME, Zamora Castro S. Ornamental Plant Growth in Different Culture Conditions and Fluoride and Chloride Removals with Constructed Wetlands. Hydrology. 2024; 11(11):182. https://doi.org/10.3390/hydrology11110182
Chicago/Turabian StyleMarín-Muñiz, José Luis, María E. Hernández, and Sergio Zamora Castro. 2024. "Ornamental Plant Growth in Different Culture Conditions and Fluoride and Chloride Removals with Constructed Wetlands" Hydrology 11, no. 11: 182. https://doi.org/10.3390/hydrology11110182
APA StyleMarín-Muñiz, J. L., Hernández, M. E., & Zamora Castro, S. (2024). Ornamental Plant Growth in Different Culture Conditions and Fluoride and Chloride Removals with Constructed Wetlands. Hydrology, 11(11), 182. https://doi.org/10.3390/hydrology11110182