Water Level Fluctuations in the Middle and Late Holocene in the Curonian Lagoon, Southeastern Baltic: Results of the Macrofossil and Phytolith Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Regional Setting
2.2. Radiocarbon Dating and Lithology
2.3. Macrofossil Analysis
2.4. Phytoliths and Other Microbiomorphs
3. Results
3.1. Radiocarbon Dating and Lithology
3.2. Macrofossil Analysis
3.3. Phytoliths and Other Microbiomorphs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blazhchishin, A.I. Palaeogeography and Evolution of Late Quaternary Sedimentation in the Baltic Sea; Jantarnyj Skaz: Kaliningrad, Russia, 1998; p. 160. (In Russsian) [Google Scholar]
- Uscinowicz, S. A relative sea level curve for the Polish Southern Baltic Sea. Quat. Int. 2006, 145–146, 86–105. [Google Scholar] [CrossRef]
- Sivkov, V.; Dorokhov, D.; Ulyanova, M. Submerged Holocene Wave-Cut Cliffs in the South-eastern Part of the Baltic Sea: Reinterpretation Based on Recent Bathymetrical Data. In The Baltic Sea Basin; Harff, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Vaikutienė, G.; Skipitytė, R.; Mažeika, J.; Martma, T.; Garbaras, A.; Barisevičiutė, R.; Remeikis, V. Environmental changes induced by human activities in the Northern Curonian Lagoon (Eastern Baltic): Diatoms and stable isotope data. Est. J. Earth Sci. 2017, 66, 93–108. [Google Scholar] [CrossRef]
- Kabailiene, M. The development of the spit of kursiu nerija and the kursiu marios bay. In On Some Problems of Geology and Paleogeography of the Quaternary Period in Lithuania, Transactions; Kabailiene, M., Ed.; Mintis: Vilnius, Lithuania, 1967; Volume 5, pp. 181–207, (In Russian with Lithuanian and English summaries). [Google Scholar]
- Kabailiene, M. Lagoon marl exposures at Nida. In Natural Environment, Man and Cultural History on the Coastal Areas of Lithuania: Excursion Guidebook of the NorFa Course in the Baltic Countries; Kabailiene, M., Ed.; Lithuanian Geological Survey: Vilnius, Lithuania, 1995; pp. 40–43. [Google Scholar]
- Kabailiene, M. Water level changes in SE Baltic based on diatom stratigraphy of Late Glacial and Holocene deposits. Geologija 1999, 29, 15–29. [Google Scholar]
- Zemlys, P.; Ferrarin, C.; Umgiesser, G.; Gulbinskas, S.; Bellafiore, D. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and twolayer flow in the Klaipeda Strait using finite element hydrodynamic model. Ocean Sci. 2013, 9, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Sergeev, A. Paleogeographical reconstruction of the Curonian spit area in late Neopleistocene—Holocene. Reg. Geol. Metallog. 2015, 62, 34–44. [Google Scholar]
- Kaminskas, D.; Rudnickaite, E.; Vaikutiene, G.; Bitinas, A.; Grigiene, A.; Buynevich, I.; Damusyte, A.; Pupienis, D.; Sinkunas, P. Middle and Late Holocene paleoenvironmental developement of the Curonian Lagoon, Lithuania. Quat. Int. 2019, 501, 240–249. [Google Scholar] [CrossRef]
- Druzhinina, O. Prospects on application of phytolith analysis in palaeoloimnology. Environ. Technol. Sci. 2020, 3, 139–142. (In Russian) [Google Scholar]
- Contreras, S.; Zucol, A. Late Quaternary vegetation history based on phytolith records in the eastern Chaco (Argentina). Quat. Int. 2019, 505, 21–33. [Google Scholar] [CrossRef]
- Dickau, R.; Whitney, B.S.; Iriarte, J. Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Rev. Palaeobot. Palynol. 2013, 193, 15–37. [Google Scholar] [CrossRef]
- Aleman, J.C.; Canal-Subitani, S.; Favier, C.; Bremond, L. Influence of the local environment on lacustrine sedimentary phytolith records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 414, 273–283. [Google Scholar] [CrossRef]
- Plumpton, H.; Whitney, B.; Mayle, F. Ecosystem turnover in palaeoecological records: The sensitivity of pollen and phytolith proxies to detecting vegetation change in southwestern Amazonia. Holocene 2019, 29, 1720–1730. [Google Scholar] [CrossRef] [Green Version]
- Yost, C.; Jackson, L.J.; Stone, J.R.; Cohen, A.S. Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ~74 ka Toba supereruption. J. Hum. Evol. 2018, 116, 75–94. [Google Scholar] [CrossRef] [PubMed]
- Golyeva, A. Various phytolith forms as bearers of different kinds of ecological information. In Plants, People and Places: Recent Studies in Phytolith Analysis; Madella, M., Zurro, D., Eds.; Oxbow Books: Oxford, UK, 2007; pp. 197–203. [Google Scholar]
- Golyeva, A. Microbiomorphic Complexes of Natural and Anthropogenic Landscapes: Genesis Geography Informative Capacity; LKI Publisher: Moscow, Russia, 2008; 240p. (In Russian) [Google Scholar]
- Romanis, T.; Sedov, S.; Lev, S.; Lebedeva, M.; Kondratev, K.; Yudina, A.; Abrosimov, K.; Golyeva, A.; Volkov, D. Landscape change and occupation history in the Central Russian Upland from Upper Palaeolithic to medieval: Paleopedological record from Zaraysk Kremlin. Catena 2021, 196, 104873. [Google Scholar] [CrossRef]
- Kanthilatha, N.; Boyd, W.; Parr, J.; Chang, N. Implications of phytolith and diatom assemblages in the cultural layers of prehistoric archaeological sites of Ban Non Wat and Nong Hua Raet in Northeast Thailand. Environ. Archaeol. 2017, 22, 15–27. [Google Scholar] [CrossRef]
- Piavtchenko, N.I. Peat Decomposition Degree and Techniques of Its Estimation; Krasnoyarsky Rabochiy: Krasnoyarsk, USSR, 1963; pp. 1–55. [Google Scholar]
- Korotkina, M.Y. Botanical analysis of peat. In Methods of Peat-Bog Investigation; Neustadt, M.I., Ed.; The People’s Commissariat for Agriculture of the RSFSR: Moscow, USSR, 1939; Part 2, pp. 5–59. [Google Scholar]
- Matyushenko, V.P. Identification of sedges in peat by radices. In Methods of Peat-Bog Investigation; Neustadt, M.I., Ed.; The People’s Commissariat for Agriculture of the RSFSR: Moscow, USSR, 1939; Part 1, pp. 93–102. [Google Scholar]
- Matyushenko, V.P. Identification of the arboreal remnants in peat. In Methods of Peat-Bog Investigation; Neustadt, M.I., Ed.; The People’s Commissariat for Agriculture of the RSFSR: Moscow, USSR, 1939; Part 1, pp. 103–115. [Google Scholar]
- Dombrovskaya, A.V.; Koreneva, M.M.; Tyuremnov, S.N. Atlas of Plant Residues found in Peat; State Energy Publisher: Moscow, USSR, 1959; pp. 1–90. [Google Scholar]
- Katz, N.Y.; Katz, S.V.; Skobeeva, E.I. Atlas of Plant Remnants in Peat; Nedra Publisher: Moscow, USSR, 1977; pp. 1–376. [Google Scholar]
- Juggins, S. C2 Version 1.7.6. 2014. Electronic Resource. Available online: https://www.staff.ncl.ac.uk/stephen.juggins/soft-ware/C2Home.htm (accessed on 1 February 2021).
- Piperno, D. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists; AltaMira Press: New York, NY, USA, 2006; 238p. [Google Scholar]
- ICPT. International code for phytolith nomenclature (ICPN) 2.0. Ann. Bot. 2019, 124, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Lampe, R.; Janke, W. The Holocene sea-level rise in the southern Baltic as reflected in coastal peat sequences. Pol. Geol. Inst. Spec. Pap. 2014, 11, 19–30. [Google Scholar]
- Gusakov, V.A.; Makhutova, O.N.; Gladyshev, M.I.; Golovatyuk, L.V.; Zinchenko, T.D. Ecological role of Cyprideis torosa and Heterocypris salina (Crustacea, Ostracoda) in saline rivers of the Lake Elton basin: Abundance, biomass, production, fatty acids. Zool Stud. 2021, 60, e53. [Google Scholar] [CrossRef] [PubMed]
- Glime, J.M. Arthropods: Crustacea—Ostracoda and Amphipoda. Chapt. 10-2. In Bryophyte Ecology; Glime, J.M., Ed.; Bryological Interaction; Michigan Technological University: Houghton, MI, USA; International Association of Bryologists: Seattle, WA, USA, 2017; Volume 2, Available online: http://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed on 15 December 2022).
- Lin, C.-H.; Chien, C.-W. Late Miocene otoliths from northern Taiwan: Insights into the rarely known Neogene coastal fish community of the subtropical northwest Pacific. Hist. Biol. 2022, 34, 361–382. [Google Scholar] [CrossRef]
Lithological Unit | Depth, cm | Sample ID | Date, cal yr BP |
---|---|---|---|
Peaty gyttja with peat interlayers at a depth of 85–83 and 80–78 cm | 90–50 | IGAN—6841 (depth 88 cm) Poz—110,588 (depth 53 cm) | 6865 6044 |
Dark-olive silty gyttja | 50–40 | IGAN—8582 (depth 45 cm) | 2867 |
Gyttja with shell interlayer | 40–38 | – | – |
Dark-olive gyttja | 38–25 | IGAN—8583 (depth 35 cm) | 681 |
No. | Depths, cm | Phytoliths | Plant Detritus | Cuticular Casts of Plant Cells | Hyphae of Soil Fungi | Coprolites of Soil Fauna | Diatoms | Sponge Spicules | Amorphous Organic Matter | Other Bio- Morphs |
---|---|---|---|---|---|---|---|---|---|---|
1 | 89–87 | Single | +++ | – | ++ | ++ | + | Single | + | Roots, pollen |
2 | 87–85 | – | + | – | – | – | +++ | – | +++ | |
3 | 85–83 | + | +++ | +++ | – | – | – | – | + | |
4 | 83–80 | ++ | +++ | – | – | – | + | – | Single | |
5 | 76–74 | – | + | – | – | – | Single | – | Single | |
6 | 70–68 | – | – | +++ | – | – | +++ | + | Single | |
7 | 64–62 | Single | ++ | – | – | – | – | – | Single | |
8 | 58–56 | Single | ++ | – | – | – | – | – | – | |
9 | 52–50 | – | +++ | – | – | – | – | Single | – | |
10 | 46–44 | – | ++ | – | + | ++ | – | – | Single | Roots, pollen |
11 | 42–40 | Single | + | – | + | + | ++ | Single | ++ | Roots, pollen |
12 | 40–38 | + | ++ | – | ++ | ++ | Single | – | – | |
13 | 38–36 | Single | + | – | – | – | ++ | Single | +++ | |
14 | 34–32 | – | +++ | ++ | – | – | Single | – | Single | |
15 | 28–25 | + | +++ | ++ | – | – | ++ | Single | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Druzhinina, O.; Napreenko, M.; Napreenko-Dorokhova, T.; Golyeva, A.; Bashirova, L. Water Level Fluctuations in the Middle and Late Holocene in the Curonian Lagoon, Southeastern Baltic: Results of the Macrofossil and Phytolith Analyses. Hydrology 2023, 10, 11. https://doi.org/10.3390/hydrology10010011
Druzhinina O, Napreenko M, Napreenko-Dorokhova T, Golyeva A, Bashirova L. Water Level Fluctuations in the Middle and Late Holocene in the Curonian Lagoon, Southeastern Baltic: Results of the Macrofossil and Phytolith Analyses. Hydrology. 2023; 10(1):11. https://doi.org/10.3390/hydrology10010011
Chicago/Turabian StyleDruzhinina, Olga, Maxim Napreenko, Tatiana Napreenko-Dorokhova, Alexandra Golyeva, and Leyla Bashirova. 2023. "Water Level Fluctuations in the Middle and Late Holocene in the Curonian Lagoon, Southeastern Baltic: Results of the Macrofossil and Phytolith Analyses" Hydrology 10, no. 1: 11. https://doi.org/10.3390/hydrology10010011
APA StyleDruzhinina, O., Napreenko, M., Napreenko-Dorokhova, T., Golyeva, A., & Bashirova, L. (2023). Water Level Fluctuations in the Middle and Late Holocene in the Curonian Lagoon, Southeastern Baltic: Results of the Macrofossil and Phytolith Analyses. Hydrology, 10(1), 11. https://doi.org/10.3390/hydrology10010011