CFD Simulation and Design of Non-Newtonian Fluid Polymer Grinding Pump Under Turbulent Flow
Abstract
:1. Introduction
2. Experimental Method
2.1. Non-Newtonian Fluid Model
- Power-law model
- : shear stress
- : The rheological coefficient of the fluid
- : Shear rate
- n: The rheological index; if n = 1, the model is a Newtonian fluid model
- b.
- Bingham plastic model
- : Shear stress
- : Yield stress of the fluid
- : Plastic viscosity
- c.
- Casson model
- : Cassitt viscosity
2.2. Turbulence Models
Non-Newtonian Turbulent Viscosity
- : The base viscosity of the fluid (the viscosity of a non-Newtonian fluid, depending on the selected model such as the power-law model or the Bingham plastic model).
- : Turbulent viscosity
2.3. Application of the Eulerian Model
- Mass conservation: Describing the continuity equation of the fluid;
- Momentum conservation: Describing the Navier–Stokes equation of the fluid (including the stress-shear rate relationship for non-Newtonian fluids);
- Energy conservation: Describing changes in the temperature field (if heat transfer is a part of the simulation).
2.4. Governing Equations
- Mass conservation equation (continuity equation)
- : Fluid density
- : Velocity vectors
- b.
- Equation for conservation of momentum
- : pressure
- : The effective viscosity of the fluid
- : Volumetric forces (e.g., gravity)
- c.
- Equation for conservation of energy
- : Specific heat capacity
- : Temperature
- : Thermal conductivity
- : Source items (e.g., heat source)
3. Results Discussed
3.1. Basic Performance Analysis of Grinding Mixing Pump (M3)
3.1.1. Pressure Profile Analysis
3.1.2. Velocity Profile Analysis
3.1.3. Shear Stress Analysis of Turntables
3.1.4. Polymer Distribution
3.2. Analysis of the Effect of Grinding Mixing Pump Stage (M1, M2, M3)
3.2.1. Pressure Profile Analysis
3.2.2. Velocity Profile Analysis
3.2.3. Polymer Distribution
- ①
- Viscosity distribution
- ②
- Volume fraction distribution
3.3. Diameter Effect Analysis of Grinding Mixing Pumps (M4, M3, M5)
3.3.1. Pressure Profile Analysis
3.3.2. Velocity Profile Analysis
3.3.3. Polymer Distribution
- ①
- Viscosity distribution
- ②
- Volume fraction distribution
3.4. Analysis of the Effect of the Number of Teeth of the Grinding Mixing Pump (M3, M6)
3.4.1. Pressure Profile Analysis
3.4.2. Velocity Profile Analysis
3.4.3. Polymer Distribution
- ①
- Viscosity distribution
- ②
- Volume fraction distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, B. CFD Investigation of Turbulence Models for Mechanical Agitation of Non-Newtonian Fluids in Anaerobic Digesters. Water Res. 2011, 45, 2082–2094. [Google Scholar] [CrossRef]
- Rodríguez-Rivero, C.; Nogareda, J.; Martín, M.; del Valle, E.M.M.; Galán, M.A. CFD Modeling and Its Validation of Non-Newtonian Fluid Flow in a Microparticle Production Process Using Fan Jet Nozzles. Powder Technol. 2013, 246, 617–624. [Google Scholar] [CrossRef]
- Niazi, M.; Ashrafizadeh, S.N.; Hashemabadi, S.H.; Karami, H. CFD Simulation of Drag-Reducing Fluids in a Non-Newtonian Turbulent Pipe Flow. Chem. Eng. Sci. 2024, 285, 119612. [Google Scholar] [CrossRef]
- Rasouli, M.; Mousavi, S.M.; Azargoshasb, H.; Jamialahmadi, O.; Ajabshirchi, Y. CFD Simulation of Fluid Flow in a Novel Prototype Radial Mixed Plug-Flow Reactor. J. Ind. Eng. Chem. 2018, 64, 124–133. [Google Scholar] [CrossRef]
- Sorgun, M.; Ulker, E.; Uysal, S.O.K.; Muftuoglu, T.D. CFD Modeling of Turbulent Flow for Non-Newtonian Fluids in Rough Pipes. Ocean Eng. 2022, 247, 110777. [Google Scholar] [CrossRef]
- Ershadnia, R.; Amooie, M.A.; Shams, R.; Hajirezaie, S.; Liu, Y.; Jamshidi, S.; Soltanian, M.R. Non-Newtonian Fluid Flow Dynamics in Rotating Annular Media: Physics-Based and Data-Driven Modeling. J. Pet. Sci. Eng. 2020, 185, 106641. [Google Scholar] [CrossRef]
- Li, B.; Huang, C.; Liu, L.Y.; Yao, L.; Ning, B.; Yang, L. Separation Efficiency Prediction of Non-Newtonian Oil-Water Swirl-Vane Separators in Offshore Platform Based on GA-BP Neural Network. Ocean Eng. 2024, 296, 116984. [Google Scholar] [CrossRef]
- Bridgeman, J. Computational Fluid Dynamics Modelling of Sewage Sludge Mixing in an Anaerobic Digester. Adv. Eng. Softw. 2012, 44, 54–62. [Google Scholar] [CrossRef]
- Sadeghi, M.; Sontti, S.G.; Zheng, E.; Zhang, X. Computational Fluid Dynamics (CFD) Simulation of Three–Phase Non–Newtonian Slurry Flows in Industrial Horizontal Pipelines. Chem. Eng. Sci. 2023, 270, 118513. [Google Scholar] [CrossRef]
- Valdés, J.P.; Becerra, D.; Rozo, D.; Cediel, A.; Torres, F.; Asuaje, M.; Ratkovich, N. Comparative Analysis of an Electrical Submersible Pump’s Performance Handling Viscous Newtonian and Non-Newtonian Fluids through Experimental and CFD Approaches. J. Pet. Sci. Eng. 2020, 187, 106749. [Google Scholar] [CrossRef]
- Aldi, N.; Buratto, C.; Casari, N.; Dainese, D.; Mazzanti, V.; Mollica, F.; Munari, E.; Occari, M.; Pinelli, M.; Randi, S.; et al. Experimental and Numerical Analysis of a Non-Newtonian Fluids Processing Pump. Energy Procedia 2017, 126, 762–769. [Google Scholar] [CrossRef]
- Gu, D.; Xu, H.; Ye, M.; Wen, L. Design of Impeller Blades for Intensification on Fluid Mixing Process in a Stirred Tank. J. Taiwan Inst. Chem. Eng. 2022, 138, 104475. [Google Scholar] [CrossRef]
- Amani, E.; Ahmadpour, A.; Aghajari, M.J. Large-Eddy Simulation of Turbulent Non-Newtonian Flows: A Comparison with State-of-the-Art RANS Closures. Int. J. Heat Fluid Flow 2023, 99, 109076. [Google Scholar] [CrossRef]
- Heydari, O.; Sahraei, E.; Skalle, P. Investigating the Impact of Drillpipe’s Rotation and Eccentricity on Cuttings Transport Phenomenon in Various Horizontal Annuluses Using Computational Fluid Dynamics (CFD). J. Pet. Sci. Eng. 2017, 156, 801–813. [Google Scholar] [CrossRef]
- Ramírez-Muñoz, J.; Márquez-Baños, V.E.; Alvarez-Vega, J.; Mompremier, R.; Núñez, J.G.; Guadarrama-Pérez, R. Hydrodynamics Performance of Newtonian and Shear-Thinning Fluids in a Tank Stirred with a High Shear Impeller: Effect of Liquid Height and off-Bottom Clearance. Chem. Eng. Res. Des. 2023, 192, 44–54. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Song, X.; Zhang, X.; Gong, Y.; Peng, C. Study on the Influence of Non-Newtonian Fluid Characteristics on the Hydraulic Performance and Internal Flow Field of Multiphase Pump. Chem. Eng. Res. Des. 2024, 202, 178–190. [Google Scholar] [CrossRef]
- Dyck, N.J.; Parker, M.J.; Straatman, A.G. The Impact of Boundary Treatment and Turbulence Model on CFD Simulations of the Ranque-Hilsch Vortex Tube. Int. J. Refrig. 2022, 141, 158–172. [Google Scholar] [CrossRef]
- Singh, J.P.; Kumar, S.; Mohapatra, S.K. Modelling of Two Phase Solid-Liquid Flow in Horizontal Pipe Using Computational Fluid Dynamics Technique. Int. J. Hydrogen Energy 2017, 42, 20133–20137. [Google Scholar] [CrossRef]
- Lilibeth, N.; Ricardo, G.; Jannike, S. Viscous effects on gas-liquid hydrodynamics for bubble size determinations in different Newtonian and non-Newtonian fluids using a CFD-PBM model. Chem. Eng. Sci. 2023, 282, 119324. [Google Scholar] [CrossRef]
- Nirmalkar, N.; Chhabra, R.P.; Poole, R.J. On creeping flow of a Bingham plastic fluid past a square cylinder. J. Non-Newton. Fluid Mech. 2012, 171, 17–30. [Google Scholar] [CrossRef]
- Divya, B.B.; Manjunatha, G.; Rajashekhar, C.; Vaidya, H.; Prasad, K.V. Analysis of temperature dependent properties of a peristaltic MHD flow in a non-uniform channel: A Casson fluid model. Ain Shams Eng. J. 2021, 12, 2181–2191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Wang, C.; Zhang, J.; Li, X.; Wang, X.; Zheng, X.; He, X. CFD Simulation and Design of Non-Newtonian Fluid Polymer Grinding Pump Under Turbulent Flow. ChemEngineering 2025, 9, 49. https://doi.org/10.3390/chemengineering9030049
Du H, Wang C, Zhang J, Li X, Wang X, Zheng X, He X. CFD Simulation and Design of Non-Newtonian Fluid Polymer Grinding Pump Under Turbulent Flow. ChemEngineering. 2025; 9(3):49. https://doi.org/10.3390/chemengineering9030049
Chicago/Turabian StyleDu, Hong, Chenxi Wang, Jian Zhang, Xianjie Li, Xiujun Wang, Xuecheng Zheng, and Xin He. 2025. "CFD Simulation and Design of Non-Newtonian Fluid Polymer Grinding Pump Under Turbulent Flow" ChemEngineering 9, no. 3: 49. https://doi.org/10.3390/chemengineering9030049
APA StyleDu, H., Wang, C., Zhang, J., Li, X., Wang, X., Zheng, X., & He, X. (2025). CFD Simulation and Design of Non-Newtonian Fluid Polymer Grinding Pump Under Turbulent Flow. ChemEngineering, 9(3), 49. https://doi.org/10.3390/chemengineering9030049