Development of New Xanthan-Aldehyde/Gelatin Nanogels for Enhancement of Ibuprofen Transdermal Delivery: In-Vitro/Ex-Vivo/In-Vivo Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. General Procedure for the Formulation of Nanogels
2.3. Optimization of the Formulation Process
2.4. Characterization of Nanogels
2.4.1. DLS Analysis (Mean Diameter and Polydispersity Index)
2.4.2. Zeta Potential
2.4.3. Encapsulation Rate
2.5. Structural Analysis of Nanogels
2.5.1. FTIR Analysis
2.5.2. X-Ray Analysis
2.5.3. SEM Analysis
2.6. In Vitro Dissolution Kinetics
2.7. Ex Vivo Transdermal Diffusion Study
2.8. In Vivo Anti-Inflammatory Activity
2.8.1. Patch Preparations for In Vivo Study
2.8.2. Animal Material and Ethics Statement
2.8.3. Experimental Design and Inflammation Induction
2.8.4. Statistical Analysis
3. Results and Discussion
3.1. Formulation Process of Ibuprofen Nanogels
3.1.1. Effects of Factors on Responses
- Encapsulation rate (ER)
- Mean diameter (MD)
- Polydispersity index
- Zeta potential (ZP)
3.1.2. Modeling and Prediction of Results
- Encapsulation rate
- Mean diameter
- Polydispersity index
- Zeta potential
3.2. Structural Characterization of Nanogels
3.2.1. FTIR Spectroscopy Analysis
3.2.2. X-Ray Diffraction Analysis (XRD)
3.2.3. Scanning Electron Microscopy Analysis
3.3. Results of In Vitro Dissolution Kinetics
3.4. Study of Ex Vivo Transdermal Diffusion
3.5. Results of In Vivo Anti-Inflammatory Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bacchi, S.; Palumbo, P.; Sponta, A.; Coppolino, M.F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: A review. Antiinflamm. Antiallergy Agents Med. Chem. 2012, 11, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Rainsford, K.D. Ibuprofen: Pharmacology, Efficacy and Safety. Inflammopharmacology 2009, 17, 275–342. [Google Scholar] [CrossRef] [PubMed]
- De Martino, M.; Chiarugi, A.; Boner, A.; Montini, G.; de’ Angelis, G.L. Working Towards an Appropriate Use of Ibuprofen in Children: An Evidence-Based Appraisal. Drugs 2017, 77, 1295–1311. [Google Scholar] [CrossRef] [PubMed]
- Doyle, G.; Furey, S.; Berlin, R.; Cooper, S.; Jayawardena, S.; Ashraf, E.; Baird, L. Gastrointestinal Safety and Tolerance of Ibuprofen at Maximum Over-the-Counter Dose. Aliment. Pharmacol. Ther. 1999, 13, 897–906. [Google Scholar] [CrossRef]
- Furey, S.A.; Waksman, J.A.; Dash, B.H. Nonprescription Ibuprofen: Side Effect Profile. Pharmacotherapy 1992, 12, 403–407. [Google Scholar] [CrossRef]
- Tanner, T.; Marks, R. Delivering Drugs by the Transdermal Route: Review and Comment. Skin. Res. Technol. 2008, 14, 249–260. [Google Scholar] [CrossRef]
- Rajput, R.; Narkhede, J.; Naik, J. Nanogels as Nanocarriers for Drug Delivery: A Review. ADMET DMPK 2020, 8, 1–15. [Google Scholar] [CrossRef]
- Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control Release 2016, 240, 109–126. [Google Scholar] [CrossRef]
- Gaikwad, S.S.; Akalade, N.V.; Salunkhe, K.S. Nanogel development and its application in transdermal drug delivery system. Curr. Nanomed. 2022, 12, 126–136. [Google Scholar] [CrossRef]
- Slamani, M.; Zaouadi, N.; Gharbi, D.; Nait Bachir, Y.; Hadj Ziane-Zafour, A. Formulation of an Oral Emulsion for the Delivery of Active Substances Contained in Atriplex halimus L. leaves. J. Fundam. Appl. Sci. 2020, 12, 35–48. [Google Scholar]
- Nait Bachir, Y.; Ouennoughi, N.; Daoud, K. Formulation, Characterization and In-Vitro Dissolution Study of Glimepiride, Β-Cyclodextrins Inclusion Complexes and Water Soluble Polymers Ternary Systems. Int. J. Pharma. Bio. Sci. 2013, 4, 272–287. [Google Scholar] [CrossRef]
- Nait Bachir, Y. Effect of Polymers Dispersions on the Inclusion Complexe Formation Betwee n β- Cyclodextrin and Insoluble Drugs. Case Study: Atorvastatin Solubility Enhanc Ement in the Biological Co Nditions of the BloodMedium (In-Vitro Dissolut Ion Study). Int. J. Pharma Sci. Res. 2018, 9, 74–82. [Google Scholar]
- Zhang, Y.; Zhang, R.; Illangakoon, U.E.; Harker, A.H.; Thrasivoulou, C.; Parhizkar, M.; Edirisinghe, M.; Luo, C.J. Copolymer composition and nanoparticle configuration enhance in vitro drug release behavior of poorly water-soluble progesterone for oral formulations. Int. J. Nanomed. 2020, 15, 5389–5403. [Google Scholar] [CrossRef] [PubMed]
- Halfter, N.; Espinosa-Cano, E.; Pontes-Quero, G.M.; Ramírez-Jiménez, R.A.; Heinemann, C.; Möller, S.; Schnabelrauch, M.; Wiesmann, H.-P.; Hintze, V.; Aguilar, M.R. Ketoprofen-Based Polymer-Drug Nanoparticles Provide Anti-Inflammatory Properties to HA/Collagen Hydrogels. J. Funct. Biomater. 2023, 14, 160. [Google Scholar] [CrossRef]
- Shah, P.P.; Desai, P.R.; Patel, A.R.; Singh, M.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 2012, 33, 1607–1617. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Kale, M.A. Formulation and Molecular Docking Simulation Study of Luliconazole Nanosuspension–Based Nanogel for Transdermal Drug Delivery Using Modified Polymer. Mater. Today Chem. 2020, 18, 100364. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Smaldone, G.; Rosa, E.; Pecoraro, G.; Morelli, G.; Accardo, A. Fmoc-FF hydrogels and nanogels for improved and selective delivery of dexamethasone in leukemic cells and diagnostic applications. Sci. Rep. 2024, 14, 9940. [Google Scholar] [CrossRef]
- Maiti, S.; Khillar, P.S.; Mishra, D.; Nambiraj, N.A.; Jaiswal, A.K. Physical and Self–Crosslinking Mechanism and Characterization of Chitosan-Gelatin-Oxidized Guar Gum Hydrogel. Polym. Test. 2021, 97, 107155. [Google Scholar] [CrossRef]
- Guo, J.; Ge, L.; Li, X.; Mu, C.; Li, D. Periodate Oxidation of Xanthan Gum and Its Crosslinking Effects on Gelatin-Based Edible Films. Food Hydrocoll. 2014, 39, 243–250. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Zheng, X.; Zhang, A.; Zhang, X.; Tang, K. Pullulan Dialdehyde Crosslinked Gelatin Hydrogels with High Strength for Biomedical Applications. Carbohydr. Polym. 2019, 216, 45–53. [Google Scholar] [CrossRef]
- Ngwabebhoh, F.A.; Zandraa, O.; Patwa, R.; Saha, N.; Capáková, Z.; Saha, P. Self-Crosslinked Chitosan/Dialdehyde Xanthan Gum Blended Hypromellose Hydrogel for the Controlled Delivery of Ampicillin, Minocycline and Rifampicin. Int. J. Biol. Macromol. 2021, 167, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Nabi, I.; Nait Bachir, Y.; Djellouli, S.; Smain, M.; Hadj-Ziane-Zafour, A. In Vivo Antidiabetic Effect and Antioxidant Potential of Stevia Rebaudiana Mixed with Tragacanth Gum in Orange Nectar. Food Hydrocoll. Health. 2023, 4, 100147. [Google Scholar] [CrossRef]
- Nabi, I.; Megateli, I.; Nait Bachir, Y.; Djellouli, S.; Hadj-Ziane-Zafour, A. Effect of Stevia and Pectin Supplementation on Physicochemical Properties, Preservation and In-vivo Hypoglycemic Potential of Orange Nectar. J. Food Process. Preserv. 2021, 45, e15124. [Google Scholar] [CrossRef]
- Nait Bachir, Y.; Zafour, A.; Medjkane, M. Formulation of Stable Microcapsules Suspensions Content Salvia Officinalis Extract for Its Antioxidant Activity Preservation. J. Food Process. Preserv. 2018, 42, e13446. [Google Scholar] [CrossRef]
- Nait Bachir, Y.; Sahraoui, N.; Cheurfa, Z.; Medjkane, M.; Ziane, A.H. Formulation of a Natural Nanosystem Based on β- Cyclodextrin/Arginine/Xanthan to Increase Antifungal Activity of Salvia Officinalis Essential Oil from Algeria (Bejaïa, Kalaa n’Ath Abas). J. Res. Pharm. 2022, 26, 581–597. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Higuchi Equation: Derivation, Applications, Use and Misuse. Int. J. Pharm. 2011, 418, 6–12. [Google Scholar] [CrossRef]
- Samaha, D.; Shehayeb, R.; Kyriacos, S. Modeling and Comparison of Dissolution Profiles of Diltiazem Modified-Release Formulations. Dissolut. Technol. 2009, 16, 41–46. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert. Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Trovatti, E.; Freire, C.S.R.; Pinto, P.C.; Almeida, I.F.; Costa, P.; Silvestre, A.J.D.; Neto, C.P.; Rosado, C. Bacterial Cellulose Membranes Applied in Topical and Transdermal Delivery of Lidocaine Hydrochloride and Ibuprofen: In Vitro Diffusion Studies. Int. J. Pharm. 2012, 435, 83–87. [Google Scholar] [CrossRef]
- Sabale, V.; Vora, S. Formulation and Evaluation of Microemulsion-Based Hydrogel for Topical Delivery. Int. J. Pharm. Investig. 2012, 2, 140. [Google Scholar] [CrossRef]
- Stahl, J.; Wohlert, M.; Kietzmann, M. The Effect of Formulation Vehicles on the in Vitro Percutaneous Permeation of Ibuprofen. BMC Pharmacol. 2011, 11, 4–8. [Google Scholar] [CrossRef]
- Morris, C.J. Carrageenan-Induced Paw Edema in the Rat and Mouse. In Inflammation Protocols; Humana Press: Totowa, NJ, USA, 2003; Volume 225, pp. 115–122. [Google Scholar] [CrossRef]
- European Parliament. Directive 2010/63/EU. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj/eng (accessed on 11 February 2025).
- Gilligan, J.P.; Lovato, S.J.; Erion, M.D.; Jeng, A.Y. Modulation of carrageenan-induced hind paw edema by substance P. Inflammation 1994, 18, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, G.; Lonchin, S. Fabrication and Characterization of Collagen-Oxidized Pullulan Scaffold for Biomedical Applications. Int. J. Biol. Macromol. 2020, 164, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Mozafari, H.; Hojjatoleslamy, M.; Mohammadizadeh, M. Optimizing the Properties of Zodo Gum and Examining Its Potential for Amino Acid Binding by Periodate Oxidation. Int. J. Biol. Macromol. 2021, 167, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Sathigari, S.K.; Radhakrishnan, V.K.; Davis, V.A.; Parsons, D.L.; Babu, R.J. Amorphous-State Characterization of Efavirenz—Polymer Hot-Melt Extrusion Systems for Dissolution Enhancement. J. Pharm. Sci. 2012, 101, 3456–3464. [Google Scholar] [CrossRef]
- Colombo, M.; Orthmann, S.; Bellini, M.; Staufenbiel, S.; Bodmeier, R. Influence of Drug Brittleness, Nanomilling Time, and Freeze-Drying on the Crystallinity of Poorly Water-Soluble Drugs and Its Implications for Solubility Enhancement. AAPS PharmSciTech 2017, 18, 2437–2445. [Google Scholar] [CrossRef]
- Zu, Y.; Li, N.; Zhao, X.; Li, Y.; Ge, Y.; Wang, W.; Wang, K.; Liu, Y. In Vitro Dissolution Enhancement of Micronized L-Nimodipine by Antisolvent Re-Crystallization from Its Crystal Form H. Int. J. Pharm. 2014, 464, 1–9. [Google Scholar] [CrossRef]
- Pattnaik, S.; Swain, K.; Mallick, S.; Lin, Z. Effect of Casting Solvent on Crystallinity of Ondansetron in Transdermal Films. Int. J. Pharm. 2011, 406, 106–110. [Google Scholar] [CrossRef]
- Nait Bachir, Y.; Nait Bachir, R.; Hadj-Ziane-Zafour, A. Nanodispersions Stabilized by β-Cyclodextrin Nanosponges: Application for Simultaneous Enhancement of Bioactivity and Stability of Sage Essential Oil. Drug Dev. Ind. Pharm. 2019, 45, 333–347. [Google Scholar] [CrossRef]
- Nait Bachir, Y.; Medjkane, M.; Benaoudj, F.; Sahraoui, N.; Hadj-ziane, A. Formulation of β-Cyclodextrin Nanosponges by Polycondensation Method: Application for Natural Drugs Delivery and Preservation. J. Mater. Process. Environ. 2017, 5, 80–85. [Google Scholar]
- Ren, Q.; Deng, C.; Meng, L.; Chen, Y.; Chen, L.; Sha, X.; Fang, X. In Vitro, Ex Vivo, and In Vivo Evaluation of the Effect of Saturated Fat Acid Chain Length on the Transdermal Behavior of Ibuprofen-Loaded Microemulsions. J. Pharm. Sci. 2014, 103, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Zhengguang, L.; Jie, H.; Yong, Z.; Jiaojiao, C.; Xingqi, W.; Xiaoqin, C. Study on the Transdermal Penetration Mechanism of Ibuprofen Nanoemulsions. Drug. Dev. Ind. Pharm. 2019, 45, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Li, W.; Li, W. The Effect of Clove Oil on the Transdermal Delivery of Ibuprofen in the Rabbit by in Vitro and in Vivo Methods. Drug Dev. Ind. Pharm. 2007, 33, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
Factors Tests | X1 | X2 | X3 | |||
---|---|---|---|---|---|---|
Level | Value | Level | Value | Level | Value | |
Test 1 | +1 | 15:10 | +1 | 2:1 | +1 | 8 h |
Test 2 | −1 | 5:10 | +1 | 2:1 | +1 | 8 h |
Test 3 | +1 | 15:10 | −1 | 1:2 | +1 | 8 h |
Test 4 | −1 | 5:10 | −1 | 1:2 | +1 | 8 h |
Test 5 | +1 | 15:10 | +1 | 2:1 | −1 | 2 h |
Test 6 | −1 | 5:10 | +1 | 2:1 | −1 | 2 h |
Test 7 | +1 | 15:10 | −1 | 1:2 | −1 | 2 h |
Test 8 | −1 | 5:10 | −1 | 1:2 | −1 | 2 h |
Test 9 | 0 | 10:10 | 0 | 1:1 | 0 | 5 h |
Mathematical Model | Equation |
---|---|
Zeroth-order equation | (4) |
First-order equation | (5) |
Higuchi equation | (6) |
Korsmeyer-Peppas equation | (7) |
N° | Groups | Treatments |
---|---|---|
1 | Negative control | No treatment |
2 | Commercial gel | 25 mg of ibuprofen (Commercial gel) |
3 | Commercial gel | 50 mg of ibuprofen (Commercial gel) |
4 | Nanogel patch | 25 mg of ibuprofen (Nanogel patch) |
5 | Nanogel patch | 50 mg of ibuprofen (Nanogel patch) |
Tests | Factor 1 | Factor 2 | Factor 3 | MD (nm) | P.I | ZP (mV) | E.R (%) |
---|---|---|---|---|---|---|---|
1 | +1 | +1 | +1 | 161.8 | 1.276 | 32 | 30.06 |
2 | −1 | +1 | +1 | 209.6 | 0.289 | 13.8 | 49.96 |
3 | +1 | −1 | +1 | 208.4 | 0.326 | 31.5 | 84.79 |
4 | −1 | −1 | +1 | 200.6 | 0.342 | 26.3 | 47.91 |
5 | +1 | +1 | −1 | 140.6 | 0.402 | 32.3 | 55.55 |
6 | −1 | +1 | −1 | 217.3 | 0.315 | 45.1 | 67.05 |
7 | +1 | −1 | −1 | 179.9 | 0.193 | 24.7 | 93.78 |
8 | −1 | −1 | −1 | 216.5 | 0.359 | 41 | 60.22 |
9 | 0 | 0 | 0 | 192.2 | 0.885 | 24.5 | 64.57 |
Responses | Mathematical Models | p Value | Model Significance | R2 | Q2 |
---|---|---|---|---|---|
Encapsulation rate (%) | Y = 61.54 + 4.88X1 − 10.51X2 − 7.98X3 − 12.73X1X2 − 0.63 X1X3 − 2.66X2X3 | 0.028 | Significant (p < 0.05) | 0.991 | 0.876 |
Mean diameter (nm) | Y = 191.87 − 19.16X1 − 9.51X2 +3.26X3 − 11.96X1X2 + 9.16X1X3 + 0.11X2X3 | 0.016 | Significant (p < 0.05) | 0.995 | 0.822 |
Polydispersity index | Y = 0.13 + 2.98X1 + 0.43X2 + 0.84X1X2 + 0.11X1X3 + 0.75X2X3 | 0.042 | Significant (p < 0.05) | 0.786 | 0.295 |
Zeta potential (mV) | Y = 30.13 − 0.71X1 − 0.03 X2 − 4.93X3 + 2.06X1X2 + 6.56 X1X3 − 2.96X2X3 | 0.189 | Not significant (p > 0.05) | 0.932 | 0.433 |
Substance | Wavenumber (cm−1) | Functional Group | Description | Refs. |
---|---|---|---|---|
Ibuprofen | 1461 | C=C | Characteristic peak of the benzene double bonds (C=C) | [35,36] |
1722 | C=O | Characteristic peak of the carboxylic acid group | ||
Xanthan-aldehyde | 1749 | C=O | Peak characteristic of the aldehyde group | |
3480 | O-H | Peak characteristic of the alcohol group | ||
2913 | C-H | Peak characteristic of the C-H group | ||
1230–1000 | C-O and C-O-O | Peak characteristic of C-O and C-O-O groups | ||
1439 | O-H | Peak characteristic of the O-H group in glucose molecules | ||
Gelatin | 1553 | NH2 | Peak characteristic of the amine group (NH2) | |
1650 | C=O | Peak characteristic of the amide group I. | ||
Nanogels | 1686 (new) | C=N | New peak characteristic of the imine group formed from Schiff’s base reaction | |
1749 (disappeared) | C=O | Disappearance of the peak characteristic of the aldehyde group (C=O) from xanthan-aldehyde | ||
1553 (decreased) | NH2 | Decrease in peak intensity characteristic of the amine group (NH2) from gelatin |
Formulation | Zeroth Order | First Order | Higuchi | Korsmeyer-Peppas | |||||
---|---|---|---|---|---|---|---|---|---|
R2 | K0 | R2 | K1 | R2 | KH | R2 | KKP | N | |
Nanogel | 0.507 | 0.597 | 0.187 | 0.021 | 0.801 | 8.365 | 0.893 | 0.926 | 2.210 |
Free ibuprofen | 0.517 | 0.176 | 0.253 | 0.016 | 0.810 | 2.466 | 0.859 | 0.687 | 1.599 |
Permeation Parameters | Nanogels | Ibuprofen Solution |
---|---|---|
Steady-state flux (mg.cm−2.h−1) | 0.378 ± 0.065 | 0.076 ± 0.007 |
Lag time (h) | 0.121 ± 0.011 | 0.119 ± 0.086 |
Steady-state permeability coefficient (cm.h−1) | 0.450 ± 0.077 | 0.070 ± 0.009 |
Amount of ibuprofen permeated after 6 h (mg.cm−2) | 2.412 ± 0.370 | 0.466 ± 0.067 |
Percentage of ibuprofen permeated after 6 h (%) | 84.953 ± 13.030 | 16.417 ± 2.345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nait Bachir, Y.; Mohamed Said, R.; Abdelli, M.L.; Namaoui, W.; Medjkane, M.; Boudjema, N.; Issaadi, H.M.; Restrepo Parra, E. Development of New Xanthan-Aldehyde/Gelatin Nanogels for Enhancement of Ibuprofen Transdermal Delivery: In-Vitro/Ex-Vivo/In-Vivo Evaluation. ChemEngineering 2025, 9, 35. https://doi.org/10.3390/chemengineering9020035
Nait Bachir Y, Mohamed Said R, Abdelli ML, Namaoui W, Medjkane M, Boudjema N, Issaadi HM, Restrepo Parra E. Development of New Xanthan-Aldehyde/Gelatin Nanogels for Enhancement of Ibuprofen Transdermal Delivery: In-Vitro/Ex-Vivo/In-Vivo Evaluation. ChemEngineering. 2025; 9(2):35. https://doi.org/10.3390/chemengineering9020035
Chicago/Turabian StyleNait Bachir, Yacine, Ramdane Mohamed Said, Mohamed Lamine Abdelli, Walid Namaoui, Meriem Medjkane, Nouara Boudjema, Halima Meriem Issaadi, and Elisabeth Restrepo Parra. 2025. "Development of New Xanthan-Aldehyde/Gelatin Nanogels for Enhancement of Ibuprofen Transdermal Delivery: In-Vitro/Ex-Vivo/In-Vivo Evaluation" ChemEngineering 9, no. 2: 35. https://doi.org/10.3390/chemengineering9020035
APA StyleNait Bachir, Y., Mohamed Said, R., Abdelli, M. L., Namaoui, W., Medjkane, M., Boudjema, N., Issaadi, H. M., & Restrepo Parra, E. (2025). Development of New Xanthan-Aldehyde/Gelatin Nanogels for Enhancement of Ibuprofen Transdermal Delivery: In-Vitro/Ex-Vivo/In-Vivo Evaluation. ChemEngineering, 9(2), 35. https://doi.org/10.3390/chemengineering9020035