Effective Adsorptive Removal of Coomassie Violet Dye from Aqueous Solutions Using Green Synthesized Zinc Hydroxide Nanoparticles Prepared from Calotropis gigantea Leaf Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials Required
2.2. Preparation of CV Dye Stock Solution
2.3. Green Synthesis of Zinc Hydroxide Nanoparticles
2.4. Analytical Measurements
2.5. Batch Adsorption Experiments
2.6. Experimental Design and Optimization of Process Parameters
2.7. Equilibrium Isotherm Modeling Studies
2.8. Thermodynamic Studies
2.9. Kinetic Modeling Studies
2.10. Regeneration and Reusability Studies
3. Results and Discussion
3.1. Selection of Suitable Plant Leaf Extract Zinc Hydroxide Nanoparticles for the Removal of CV Dye from Wastewater
3.2. Characterization of the Calotropis gigantea Leaf Extract Zinc Hydroxide Nanoparticles Adsorbent
3.3. Analysis of Batch Adsorption Studies for the Removal of CV Dye from Simulated Effluent
3.4. Analysis of Factorial Experimental Design and Optimization of Process Parameters
3.4.1. Analysis of Contour and Response Surface Plots
3.4.2. Validation of Process Model
3.5. Adsorption Isotherm Models Inference
Comparison of Maximum Adsorption Capacity (qmax) with Reported Adsorbents for the Decolorization of CV Dye
3.6. Inference from Thermodynamic Studies for the Removal of CV Dye
3.7. Adsorption Kinetic Models Inference
Adsorption Rate Mechanism Inference
3.8. Inference from CG-Zn(OH)2NPs Adsorbent Regeneration and Reusability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naghizadeh, A.; Mizwari, Z.M.; Ghoreishi, S.M.; Lashgari, S.; Derazkola, S.M.; Rezaie, B. Biogenic and eco-benign synthesis of silver nanoparticles using jujube core extract and its performance in catalytic and pharmaceutical applications: Removal of industrial contaminants and in-vitro antibacterial and anticancer activities. Environ. Technol. Innov. 2021, 23, 101560. [Google Scholar] [CrossRef]
- Khormali, K.; Mizwari, Z.M.; Ghoreishi, S.M.; Derazkola, S.M.; Khezri, B. Novel Dy2O3/ZnO-Au ternary nanocomposites: Green synthesis using pomegranate fruit extract, characterization and their photocatalytic and antibacterial properties. Bioorg. Chem. 2021, 115, 105204. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Mofijur, M.; Rafa, N.; Chowdhury, A.T.; Chowdhury, S.; Nahrin, M.; Islam, S.; Ong, H.C. Green approaches in synthesising nanomaterials for environmental bioremediation: Technological advancements, applications, benefits and challenges. Environ. Res. 2022, 204, 111967. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Noman, M.; Shahid, M.; Niazi, M.B.K.; Hussain, S.; Manzoor, N.; Wang, X.; Li, B. Green synthesis of silver nanoparticles transformed synthetic textile dye into less toxic intermediate molecules through LC-MS analysis and treated the actual wastewater. Environ. Res. 2020, 191, 110142. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Saxena, A.; Shukla, S.; Sekar, S.; Senapathi, V.; Wu, J. Environmental contamination by heavy metals and associated human health risk assessment: A case study of surface water in Gomti river basin, India. Environ. Sci. Pollut. Res. 2021, 28, 56105–56116. [Google Scholar] [CrossRef]
- Divya, J.M.; Palak, K.; Vairavel, P. Optimization, kinetics, equilibrium isotherms, and thermodynamics studies of Coomassie violet dye adsorption using Azadirachta indica (neem) leaf adsorbent. Desalination Water Treat. 2020, 190, 353–382. [Google Scholar] [CrossRef]
- Parimelazhagan, V.; Yashwath, P.; Pushparajan, D.A.; Carpenter, J. Rapid removal of toxic Remazol brilliant blue-R dye from aqueous solutions using Juglans nigra shell biomass activated carbon as potential adsorbent: Optimization, isotherm, kinetic, and thermodynamic investigation. Int. J. Mol. Sci. 2022, 23, 12484. [Google Scholar] [CrossRef]
- Badawi, A.K.; Elkodous, M.A.; Aliv, G.A.M. Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: An overview. RSC Adv. 2021, 11, 36528–36553. [Google Scholar] [CrossRef]
- Vairavel, P.; Rampal, N.; Jeppu, G. Adsorption of toxic Congo red dye from aqueous solution using untreated coffee husks: Kinetics, equilibrium, thermodynamics and desorption study. Int. J. Environ. Anal. Chem. 2021; in press. [Google Scholar] [CrossRef]
- Debamita, C.; Nakul, R.; Gautham, J.P.; Vairavel, P. Process optimization, isotherm, kinetics, and thermodynamics studies for removal of Remazol Brilliant Blue—R dye from contaminated water using adsorption on guava leaf powder. Desalination Water Treat. 2020, 185, 318–343. [Google Scholar] [CrossRef]
- Wamg, H.; Xing, H.; Yan, K.; Han, D.; Chen, J. Oyster shell derived hydroxyapatite microspheres as an effective adsorbent for remediation of Coomassie brilliant blue. Adv. Powder Technol. 2022, 33, 103425. [Google Scholar] [CrossRef]
- Ewuzie, U.; Saliu, O.D.; Dulta, K.; Ogunniyi, S.; Bajeh, A.O.; Iwuozor, K.O.; Ighalo, J.O. A review on treatment technologies for printing and dyeing wastewater (PDW). J. Water Process. Eng. 2022, 50, 103273. [Google Scholar] [CrossRef]
- Sun, L.; Mo, Y.; Zhang, L. A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: State-of-the-art and future prospects. Chemosphere 2022, 294, 133801. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Joshiba, G.J.; Femina, C.C.; Varshini, P.; Priyadharshini, S.; Arun Karthick, M.S.; Jothirani, R. A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination Water Treat. 2019, 172, 395–416. [Google Scholar] [CrossRef]
- Liu, Z.; Khan, T.A.; Islam, M.A.; Tabrez, U. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. Bioresour. Technol. 2022, 354, 127168. [Google Scholar] [CrossRef] [PubMed]
- Benettayeb, A.; Seihoub, F.Z.; Pal, P.; Ghosh, S.; Usman, M.; Chia, C.H.; Usman, M.; Sillanpaa, M. Chitosan Nanoparticles as Potential Nano-Sorbent for Removal of Toxic Environmental Pollutants. Nanomaterials 2023, 13, 447. [Google Scholar] [CrossRef]
- Batra, V.; Kaur, I.; Pathania, D.; Sonu; Chaudhary, V. Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Appl. Surf. Sci. Adv. 2022, 11, 100314. [Google Scholar] [CrossRef]
- Haque, S.; Faidah, H.; Ashgar, S.S.; Abujamel, T.S.; Mokhtar, J.A.; Almuhayawi, M.S.; Harakeh, S.; Singh, R.; Srivastava, N.; Gupta, V.K. Green Synthesis of Zn(OH)2/ZnO-Based Bionanocomposite using Pomegranate Peels and Its Application in the Degradation of Bacterial Biofilm. Nanomaterials 2022, 12, 3458. [Google Scholar] [CrossRef]
- Kordy, M.G.M.; Abdel-Gabbar, M.; Soliman, H.A.; Aljohani, G.; BinSabt, M.; Ahmed, I.A.; Shaban, M. Phyto-capped Ag nanoparticles: Green synthesis, characterization, and catalytic and antioxidant activities. Nanomaterials 2022, 12, 373. [Google Scholar] [CrossRef]
- Mitra, S.; Islam, F.; Das, R.; Urmee, H.; Akter, A.; Idris, A.M.; Kandaker, M.U.; Almikhlafi, M.A.; Sharma, R.; Emran, T.B. Pharmacological potential of Avicennia alba leaf extract: An experimental analysis focusing on antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activity. BioMed Res. Int. 2022, 2022, 7624189. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.; Rawat, M.; Samddar, P.; Kumar, P. Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Rajivgandhi, G.; Gnanamangai, B.M.; Prabha, T.H.; Poornima, S.; Maruthupandy, M.; Alharbi, N.S.; Kadaikunnan, S.; Li, W. Biosynthesized zinc oxide nanoparticles (ZnO NPs) using actinomycetes enhance the anti-bacterial efficacy against K. Pneumoniae. J. King Saud Univ. Sci. 2022, 34, 101731. [Google Scholar] [CrossRef]
- Patil, S.P. Calotropis gigantea assisted green synthesis of nanomaterials and their applications: A review. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Kemala, P.; Idroes, R.; Khairan, K.; Ramli, M.; Jalil, Z.; Idroes, G.M.; Tallei, T.E.; Helwani, Z.; Safitri, E.; Iqhrammullah, M.; et al. Green synthesis and antimicrobial activities of silver nanoparticles using Calotropis gigantea from Ie Seu-Um Geothermal area, Aceh Province, Indonesia. Molecules 2022, 27, 5310. [Google Scholar] [CrossRef]
- Agarwal, H.; Venkatkumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour.-Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Kaur, M.; Gautam, A.; Guleria, P.; Singh, K.; Kumar, V. Green synthesis of metal nanoparticles and their environmental applications. Curr. Opin. Environ. Sci. Health 2022, 29, 100390. [Google Scholar] [CrossRef]
- Aswathi, V.P.; Meera, S.; Ann Maria, C.G.; Nidhin, M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: A critical review. Nanotechnol. Environ. Eng. 2022; in press. [Google Scholar] [CrossRef]
- Khan, M.; Ware, P.; Shimpi, N. Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN Appl. Sci. 2021, 3, 528. [Google Scholar] [CrossRef]
- Faisal, S.; Jan, H.; Shah, S.A.; Shah, S.; Khan, A.; Akbar, M.T.; Rizwan, M.; Jan, F.; Wajidullah; Akhtar, N.; et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega 2021, 6, 9709–9722. [Google Scholar] [CrossRef]
- Kaliannan, D.; Palaninaicker, S.; Palanivel, V.; Mahadeo, M.A.; Ravindra, B.N.; Jae-Jin, S. A novel approach to preparation of nano-adsorbent from agricultural wastes (Saccharum officinarum leaves) and its environmental application. Environ. Sci. Pollut. Res. 2019, 26, 5305–5314. [Google Scholar] [CrossRef]
- Ahodashti, M.S.; Mizwari, Z.M.; Hashemi, Z.; Rajabalipour, S.; Ghoreishi, S.M.; Derazkola, S.M.; Ebrahimzadeh, M.A. Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environ. Technol. Innov. 2021, 23, 101607. [Google Scholar] [CrossRef]
- Manojkumar, U.; Kaliannan, D.; Srinivasan, V.; Balasubramanian, B.; Kamyab, H.; Mussa, Z.H.; Palaniyappan, J.; Mesbah, M.; Chelliapan, S.; Palaninaicker, S. Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity. Chemosphere 2023, 323, 138263. [Google Scholar] [CrossRef]
- Abel, S.; Tesfaye, J.L.; Shanmugam, R.; Dwarampudi, L.P.; Lamessa, G.; Nagaprasad, N.; Benti, M.; Krishnaraj, R. Green synthesis and characterizations of zinc oxide (ZnO) nanoparticles using aqueous leaf extracts of coffee (Coffea arabica) and its application in environmental toxicity reduction. J. Nanomater. 2021, 3413350. [Google Scholar] [CrossRef]
- Zafar, M.N.; Dar, Q.; Nawaz, F.; Zafar, M.N.; Iqbal, M.; Nazar, M.F. Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J. Mater. Res. Technol. 2019, 8, 713–725. [Google Scholar] [CrossRef]
- Liang, D.; Tian, X.; Zhang, Y.; Zhu, G.; Gao, Q.; Liu, J.; Yu, X. A weed-derived hierarchical porous carbon with a large specific surface area for efficient dye and antibiotic removal. Int. J. Mol. Sci. 2022, 23, 6146. [Google Scholar] [CrossRef] [PubMed]
- Necer, I.L.; Oukebdane, K.; Didi, M.A. Central composite design optimization study of the sorption of Bemacid blue Anthraquinone dye by Fe3O4-bentonite from a cupric medium. Int. J. Environ. Anal. 2022; in press. [Google Scholar] [CrossRef]
- Vairavel, P.; Murty, V.R. Optimization of batch process parameters for Congo red color removal by Neurospora crassa live fungal biomass with wheat bran dual adsorbent using response surface methodology. Desalination Water Treat. 2018, 103, 84–101. [Google Scholar] [CrossRef]
- Kaur, P.; Kumari, S.; Sharma, P. Response surface methodology adhering central composite design for the optimization of Zn (II) adsorption using rice husk nanoadsorbent. Chem. Phys. Lett. 2022, 801, 139684. [Google Scholar] [CrossRef]
- Taheri, S.; Sedghi-Asl, M.; Ghaedi, M.; Mohammadi-Asl, Z.; Rahmanian, M. Magnetic layered double hydroxide composite as new adsorbent for efficient Cu (II) and Ni (II) ions removal from aqueous samples: Adsorption mechanism investigation and parameters optimization. J. Environ. Manage. 2023, 329, 117009. [Google Scholar] [CrossRef]
- Oraon, A.; Ram, M.; Gupta, A.K.; Dutta, S.; Saxena, V.K.; Gaurav, G.K. An efficient waste garlic skins biochar nanocomposite: An advanced cleaner approach for secondary waste utilization. J. Mol. Liq. 2022, 364, 119997. [Google Scholar] [CrossRef]
- Yu, L.; Bi, J.; Song, Y.; Wang, M. Isotherm, thermodynamics, and kinetics of Methyl orange adsorption onto magnetic resin of chitosan microspheres. Int. J. Mol. Sci. 2022, 23, 13839. [Google Scholar] [CrossRef]
- Brahma, D.; Saikia, H. Synthesis of ZrO2/MgAl-LDH composites and evaluation of its isotherm, kinetics and thermodynamic properties in the adsorption of Congo red dye. Chem. Thermodyn. Therm. Anal. 2022, 7, 100067. [Google Scholar] [CrossRef]
- Meghana, C.; Juhi, B.; Rampal, N.; Vairavel, P. Isotherm, kinetics, process optimization and thermodynamics studies for removal of Congo red dye from aqueous solutions using Nelumbo nucifera (lotus) leaf adsorbent. Desalination Water Treat. 2020, 207, 373–397. [Google Scholar] [CrossRef]
- Loutfi, M.; Mariouch, R.; Mariouch, I.; Belfaquir, M.; ElYoubi, M.S. Adsorption of Methylene blue dye from aqueous solutions onto natural clay: Equilibrium and kinetic studies. Mater. Today Proc. 2023, 72, 3638–3643. [Google Scholar] [CrossRef]
- Gemici, B.T.; Ozel, H.U.; Ozel, H.B. Removal of Methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis. Environ. Technol. Innov. 2021, 22, 101501. [Google Scholar] [CrossRef]
- Akin, K.; Ugraskan, V.; Isik, B.; Cakar, F. Adsorptive removal of Crystal violet from wastewater using sodium alginate-gelatin-montmorillonite ternary composite microbeads. Int. J. Biol. Macromol. 2022, 223, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Danish, M.; Ansari, K.B.; Danish, M.; Khatoon, A.; Khan Rao, R.A.; Zaidi, S.; Aftab, R.A. A comprehensive investigation of external mass transfer and intraparticle diffusion for batch and continuous adsorption of heavy metals using pore volume and surface diffusion model. Sep. Purif. Technol. 2022, 292, 120996. [Google Scholar] [CrossRef]
- Benjelloun, M.; Miyah, Y.; Evrendilek, G.A.; Zerrouq, F.; Lairini, S. Recent advances in adsorption kinetic models: Their application to dye types. Arab. J. Chem. 2021, 14, 103031. [Google Scholar] [CrossRef]
- Mosoarca, G.; Popa, S.; Vancea, C.; Dan, M.; Boran, S. Removal of Methylene blue from aqueous solutions using a new natural lignocellulosic adsorbent–Raspberry (Rubus idaeus) leaves powder. Polymers 2022, 14, 1966. [Google Scholar] [CrossRef]
- Piras, A.; Olla, C.; Reekmans, G.; Kelchtermans, A.; Sloovere, D.; Elen, K.; Carbonaro, C.M.; Fusaro, L.; Adriaensens, P.; Hardy, A.; et al. Photocatalytic performance of undoped and Al-doped ZnO nmanoparticles in the degradation of Rhodamine B under UV-visible light: The role of defects and morphology. Int. J. Mol. Sci. 2022, 23, 15459. [Google Scholar] [CrossRef]
- Ahamad, Z.; Nasar, A. Utilization of Azadirachta indica Sawdust as a Potential Adsorbent for the Removal of Crystal Violet Dye. Sustain. Chem. 2023, 4, 110–126. [Google Scholar] [CrossRef]
- Ardekani, P.S.; Karimi, H.; Ghaedi, M.; Asfaram, A.; Purkait, M.K. Ultrasonic assisted removal of Methylene blue on ultrasonically synthesized zinc hydroxide nanoparticles on activated carbon prepared from wood of cherry tree: Experimental design methodology and artificial neural network. J. Mol. Liq. 2017, 229, 114–124. [Google Scholar] [CrossRef]
- Raja, A.; Ashokkumar, S.; Pavithra, R.; Jayachandiran, J.; Prasad, C.; Kaviyarasu, K.; Ganapathi Raman, R.; Swaminathan, M. Eco-friendly preparation of Zinc oxide nanoparticles using Tabernaemontana divaricate and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B Biol. 2018, 181, 53–58. [Google Scholar] [CrossRef]
- Awadh, A.A.; Shet, A.R.; Patil, L.R.; Shaikh, I.A.; Alshahrani, M.M.; Nadaf, R.; Mahnashi, M.H.; Desai, S.V.; Muddapur, U.M.; Achappa, S.; et al. Sustainable synthesis and characterization of zinc oxide nanoparticles using Raphanus sativus extract and its biomedical applications. Crystals 2022, 12, 1142. [Google Scholar] [CrossRef]
- Ivanov, K.I.; Kolentsova, E.N.; Nguyen, N.C.; Peltekov, A.B.; Angelova, V.R. Synthesis and stability of zinc hydroxide nitrate nanoparticles. Bulg. Chem. Commun. 2017, 49, 225–230. Available online: http://www.bcc.bas.bg/bcc_volumes/Volume_49_Special_G_2017/BCC-49-G-Ivanov-225-230.pdf (accessed on 3 January 2017).
- Sharwani, A.A.; Narayanan, K.B.; Khan, M.E.; Han, S.S. Photocatalytic degradation activity of goji berry extract synthesized silver-loaded mesoporous zinc oxide (Ag@ZnO) nanocomposites under simulated solar light irradiation. Sci. Rep. 2022, 12, 10017. [Google Scholar] [CrossRef]
- Ramya, V.; Kalaiselvi, V.; Karthik Kannan, S.; Shkir, M.; Ghramh, H.A.; Ahmad, Z.; Nithiya, P.; Vidhya, N. Facile synthesis and characterization of zinc oxide nanoparticles using Psidium guajava leaf extract and their antibacterial applications. Arab. J. Sci. Eng. 2022, 47, 909–918. [Google Scholar] [CrossRef]
- Yusof, H.M.; Rahman, N.A.; Mohamad, R.; Zaidan, U.H.; Samsudin, A.A. Optimization of biosynthesis zinc oxide nanoparticles: Desirability-function based response surface methodology, physicochemical characteristics, and its antioxidant properties. OpenNano 2022, 8, 100106. [Google Scholar] [CrossRef]
- Subashini, K.; Prakash, S.; Sujatha, V. Biological applications of green synthesized zinc oxide and nickel oxide nanoparticles mediated poly(glutaric acid-co-ethylene glycol-co-acrylic acid) polymer nanocomposites. Inorg. Chem. Commun. 2022, 139, 109314. [Google Scholar] [CrossRef]
- Aldeen, T.S.; Mohamed, H.E.; Maaza, M. ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 2022, 160, 110313. [Google Scholar] [CrossRef]
- Benettayeb, A.; Morsli, A.; Elwakeel, K.Z.; Hamza, M.F.; Guibal, E. Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan-Application to Aqueous Solutions and Tailing Leachate. Appl. Sci. 2021, 11, 8377. [Google Scholar] [CrossRef]
- Khani, R.; Roostaei, B.; Bagherzade, G.; Moudi, M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 2018, 255, 541–549. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Shah, M.H.; Reddy, V.B.; Aminabhavi, T.M. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J. Environ. Manag. 2022, 321, 115981. [Google Scholar] [CrossRef] [PubMed]
- Chemingui, H.; Rezma, S.; Lafi, R.; Alhalili, Z.; Missaoui, T.; Harbi, I.; Smiri, M.; Hafiane, A. Investigation of Methylene blue adsorption from aqueous solution onto ZnO nanoparticles: Equilibrium and Box-Behnken optimisation design. Int. J. Environ. Anal. Chem. 2021; in press. [Google Scholar] [CrossRef]
- Tehrani, M.S.; Zare-Dorabei, R. Highly efficient simultaneous ultrasonic-assisted adsorption of Methylene blue and Rhodamine B onto metal organic framework MIL-68(Al): Central composite design optimization. RSC Adv. 2016, 6, 27416. [Google Scholar] [CrossRef]
- Kerzabi, Y.; Benomara, A.; Merghache, S. Removal of Methyl violet 2B dye from aqueous solution by adsorption onto raw and modified carobs (Ceratonia siliqua L.). Glob. Nest J. 2022, 24, 706–719. [Google Scholar] [CrossRef]
- Messaoudi, N.E.; Khomri, M.E.; Fernine, Y.; Bouich, A.; Lacherai, A.; Jada, A.; Sher, F.; Lima, E.C. Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with potential applications in wastewater treatment. Groundw. Sustain. Dev. 2022, 16, 100728. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 7th ed.; John Wiley & Sons Ltd.: New York, NY, USA, 2020. [Google Scholar]
- Delpiano, G.R.; Tocco, D.; Medda, L.; Magner, E.; Salis, A. Adsorption of Malachite green and Alizarin red S dyes using Fe-BTC metal organic framework as adsorbent. Int. J. Mol. Sci. 2021, 22, 788. [Google Scholar] [CrossRef] [PubMed]
- Chandra, C.; Khan, F. Nano-scale zerovalent copper: Green synthesis, characterization and efficient removal of uranium. J. Radioanal. Nucl. Chem. 2020, 324, 589–597. [Google Scholar] [CrossRef]
- Namasivayam, C.; Yamuna, R.T.; Arasi, D.J.S.E. Removal of Acid violet from wastewater by adsorption on waste red mud. Environ. Geol. 2001, 41, 269–273. [Google Scholar] [CrossRef]
- Anjaneya, O.; Santoshkumar, M.; Anand, S.N.; Karegoudar, T.B. Biosorption of Acid violet dye from aqueous solutions using native biomass of a new isolate of Penicillium sp. Int. Biodeterior. Biodegrad. 2009, 63, 782–787. [Google Scholar] [CrossRef]
- Ata, S.; Din, M.I.; Rasool, A.; Qasim, I.; Mohsin, I.U. Equilibrium, thermodynamics, and kinetic sorption studies for the removal of Coomassie brilliant Blue on wheat bran as a low-cost adsorbent. J. Anal. Methods Chem. 2012, 2012, 405980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannan, N.; Murugavel, S. Comparative study on the removal of Acid violet by adsorption on various low-cost adsorbents. Glob. Nest J. 2008, 10, 395–403. [Google Scholar] [CrossRef]
- Kadeche, A.; Ramdani, A.; Adjdir, M.; Guendouzi, A.; Taleb, S.; Kaid, M.; Deratani, A. Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions. Res. Chem. Intermed. 2020, 46, 4985–5008. [Google Scholar] [CrossRef]
- Abbas, M.; Cherfi, A.; Kaddour, S.; Aksil, T. Adsorption in simple batch experiments of Coomassie blue G-250 by apricot stone activated carbon-Kinetics and isotherms modelling. Desalination Water Treat. 2016, 57, 15037–15048. [Google Scholar] [CrossRef]
- De Sales, P.F.; Magriotis, Z.M.; Rossi, M.; Resende, R.F.; Nunes, C.A. Optimization by Response Surface Methodology of the adsorption of Coomassie blue dye on natural and acid-treated clays. J. Environ. Manag. 2013, 130, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Namasivayam, C.; Kanchana, N. Waste banana pith as adsorbent for color removal from wastewaters. Chemosphere 1992, 25, 1691–1705. [Google Scholar] [CrossRef]
- Rajeshwari, S.; Namasivayam, C.; Kadirvelu, K. Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions. Waste Manag. 2001, 21, 105–110. [Google Scholar] [CrossRef]
- Senturk, I.; Alzein, M. Adsorption of Acid Violet 17 onto Acid-activated pistachio shell: Isotherm, kinetic and thermodynamic studies. Acta Chim. Slov. 2020, 67, 55–69. [Google Scholar] [CrossRef]
- Sharma, G.; Naushad, M.; Kumar, A.; Rana, S.; Sharma, S.; Bhatnagar, A.; Stadler, F.J.; Ghfar, A.A.; Khan, M.R. Efficient removal of Coomassie brilliant blue R-250 dye using starch/poly(alginic acid-cl-acrylamide) nanohydrogel. Process Saf. Environ. Prot. 2017, 109, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Sumanjit; Walia, T.P.S.; Kaur, R. Removal of health hazards causing acidic dyes from aqueous solutions by the process of adsorption. Online J. Health Allied Scs. 2007, 6, 1–10. Available online: https://web-archive.southampton.ac.uk/cogprints.org/5929/1/2007-3-3.pdf (accessed on 24 January 2008).
- Mallampati, R.; Tan, K.S.; Valiyaveettil, S. Utilization of corn fibers and luffa peels for extraction of pollutants from water. Int. Biodeterior. Biodegrad. 2015, 103, 8–15. [Google Scholar] [CrossRef]
- Chakhtouna, H.; Benzeid, H.; Zari, N.; Qaiss, A.; Bouhfid, R. Microwave-assisted synthesis of MIL–53(Fe)/biochar composite from date palm for Ciprofloxacin and Ofloxacin antibiotics removal. Sep. Purif. Technol. 2023, 308, 122850. [Google Scholar] [CrossRef]
- Omer, A.S.; El-Naeem, G.A.; Abd-Elhamid, A.I.; Farahat, O.M.; El-Bardan, A.A.; Soliman, H.M.A.; Nayl, A.A. Adsorption of Crystal violet and Methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: Characterization, kinetic and isotherm studies. J. Mater. Res. Technol. 2002, 19, 3241–3254. [Google Scholar] [CrossRef]
- Mahmood, U.B.; Eisa, M.Y.; Hammed, A.K. Adsorption of the Eosin yellow dye by nickel oxide nanoparticles catalyzes via oxalate co-precipitation method: Isotherm, kinetic and thermodynamic studies. Phys. Scr. 2021, 96, 124056. [Google Scholar] [CrossRef]
- Mehta, J.; Dhaka, R.K.; Dilbaghi, N.; Lim, D.K.; Hassan, A.A.; Kim, K.; Kumar, S. Recent advancements in adsorptive removal of organophosphate pesticides from aqueous phase using nanomaterials. J. Nanostruct. Chem. 2022; in press. [Google Scholar] [CrossRef]
- Rathee, G.; Awasthi, A.; Sood, D.; Tomar, R.; Tomar, V.; Chandra, R. A new biocompatible ternary layered double hydroxide adsorbent for ultrafast removal of anionic organic dyes. Sci. Rep. 2019, 9, 16225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aniagorb, C.O.; Menkitia, M.C. Kinetics and mechanistic description of adsorptive uptake of Crystal violet dye by lignified elephant grass complexed isolate. J. Environ. Chem. Eng. 2018, 6, 2105–2118. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Wen, H.Y.; Gollakota, A.; Wen, J.C.; Lin, K.Y.; Shu, C.M.; Reddy, G.M.; Zyryanov, G.V.; Wen, J.H.; Tian, Z. Removal of sulfonated azo Reactive red 195 textile dye from liquid phase using surface-modified lychee (Litchi chinensis) peels with quaternary ammonium groups: Adsorption performance, regeneration, and mechanism. J. Mol. Liq. 2022, 368, 120657. [Google Scholar] [CrossRef]
Independent Variables | Range and Level | ||||
---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |
Initial pH (X1) | 1.6 | 1.8 | 2.0 | 2.2 | 2.4 |
Initial dye concentration, mg L−1 (X2) | 150 | 175 | 200 | 225 | 250 |
CG-Zn(OH)2NPs adsorbent dosage, g L−1 (X3) | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
Adsorbent particle size, µm (X4) | 42 | 78 | 114 | 150 | 186 |
Sl. No. | Wavenumber of Absorption | Vibrational Mode | Functional Group | Assigned Species | |
---|---|---|---|---|---|
Before Adsorption | After Adsorption | ||||
1 | 3444 | 3433 | Stretching | O-H | Hydroxyl groups of Alcohols, phenols, and carboxylic acid (4000–3200 cm−1) |
2 | 1640 | 1629 | Stretching | C=O | Carbonyl groups of aldehyde and ketones (1650–1600 cm−1) |
3 | 1360 | 1348 | Stretching | C-O | Aromatic esters/anhydrides/alcohols and phenols (1300–1100 cm−1) |
4 | 1012 | 1001 | Bending | C-H | Alcohols and ethers (1050–1000 cm−1) |
5 | 765 | 744 | Out-of-plane Bending | C-H | Carboxylic acid (900–700 cm−1) |
6 | 620 | 609 | Stretching | S-S | Sulfur compounds (700–450 cm−1) |
Run No. | X1 | X2 (mg L−1) | X3 (g L−1) | X4 (µm) | % CV Color Removal | Equilibrium Dye Uptake, qe (mg g−1) | ||
---|---|---|---|---|---|---|---|---|
Experiment | Calculated | Experiment | Calculated | |||||
1 | 2.2 | 225 | 5 | 78 | 76.38 | 76.04 | 34.37 | 33.86 |
2 | 2.0 | 200 | 4 | 114 | 69.94 | 71.38 | 34.97 | 35.63 |
3 | 2.0 | 200 | 6 | 114 | 83.82 | 83.91 | 27.94 | 27.97 |
4 | 2.2 | 175 | 7 | 78 | 87.24 | 86.53 | 21.81 | 21.61 |
5 | 2.2 | 175 | 5 | 78 | 79.66 | 80.18 | 27.88 | 28.23 |
6 | 2.2 | 175 | 7 | 150 | 82.35 | 82.59 | 20.59 | 20.73 |
7 | 1.8 | 175 | 5 | 150 | 84.26 | 82.99 | 29.49 | 29.17 |
8 | 1.8 | 225 | 7 | 78 | 82.12 | 84.25 | 26.40 | 26.66 |
9 | 2.0 | 200 | 6 | 114 | 83.65 | 83.91 | 27.88 | 27.97 |
10 | 1.8 | 225 | 5 | 150 | 73.54 | 74.58 | 33.09 | 33.15 |
11 | 1.8 | 175 | 7 | 78 | 90.74 | 91.39 | 22.69 | 23.05 |
12 | 1.8 | 175 | 7 | 150 | 86.46 | 87.13 | 21.62 | 21.98 |
13 | 2.0 | 200 | 6 | 114 | 83.74 | 83.91 | 27.91 | 27.97 |
14 | 1.8 | 225 | 7 | 150 | 79.87 | 79.34 | 25.67 | 25.01 |
15 | 2.2 | 225 | 7 | 150 | 78.29 | 78.43 | 25.16 | 24.82 |
16 | 2.2 | 225 | 7 | 78 | 81.75 | 83.01 | 26.28 | 26.28 |
17 | 2.2 | 225 | 5 | 150 | 73.92 | 73.25 | 33.26 | 32.58 |
18 | 1.8 | 225 | 5 | 78 | 77.96 | 77.70 | 35.08 | 34.62 |
19 | 2.0 | 200 | 8 | 114 | 84.25 | 82.49 | 21.06 | 20.86 |
20 | 2.0 | 200 | 6 | 186 | 76.89 | 78.13 | 25.63 | 26.33 |
21 | 2.4 | 200 | 6 | 114 | 80.46 | 81.30 | 26.82 | 27.41 |
22 | 2.0 | 200 | 6 | 114 | 84.38 | 83.91 | 28.13 | 27.97 |
23 | 1.8 | 175 | 5 | 78 | 85.27 | 85.46 | 29.84 | 30.05 |
24 | 2.0 | 200 | 6 | 42 | 86.75 | 85.19 | 28.92 | 28.68 |
25 | 2.2 | 175 | 5 | 150 | 79.83 | 78.03 | 27.94 | 27.53 |
26 | 2.0 | 150 | 6 | 114 | 87.29 | 88.20 | 21.82 | 21.34 |
27 | 2.0 | 200 | 6 | 114 | 84.12 | 83.91 | 28.04 | 27.97 |
28 | 2.0 | 200 | 6 | 114 | 83.87 | 83.91 | 27.96 | 27.97 |
29 | 2.0 | 250 | 6 | 114 | 77.50 | 76.27 | 29.06 | 30.00 |
30 | 2.0 | 200 | 6 | 114 | 83.79 | 83.91 | 27.93 | 27.97 |
31 | 1.6 | 200 | 6 | 114 | 88.65 | 87.49 | 29.55 | 29.42 |
Term | Coefficient | SE of Coefficient | Tstatistics | DF | Seq SS | Adj SS | Adj MS | Fstatistics | Probability |
---|---|---|---|---|---|---|---|---|---|
Constant | 83.9100 | 0.5057 | 165.920 | 0.000 | |||||
Regression | 14 | 640.930 | 640.930 | 45.995 | 25.69 | 0.000 | |||
Linear | 4 | 530.516 | 530.516 | 132.629 | 74.08 | 0.000 | |||
X1 | −1.5492 | 0.2731 | −5.672 | 1 | 57.598 | 57.598 | 57.598 | 32.17 | 0.000 |
X2 (mg L−1) | −2.9817 | 0.2731 | −10.917 | 1 | 213.368 | 213.368 | 213.368 | 119.18 | 0.000 |
X3 (g L−1) | 2.7758 | 0.2731 | −10.163 | 1 | 184.926 | 184.926 | 184.926 | 103.29 | 0.000 |
X4 (µm) | −1.7633 | 0.2731 | −6.456 | 1 | 74.624 | 74.624 | 74.624 | 41.68 | 0.000 |
Square | 4 | 95.989 | 95.989 | 23.997 | 13.40 | 0.000 | |||
X1 ∗ X1 | 0.1215 | 0.2502 | 0.485 | 1 | 3.822 | 0.422 | 0.422 | 0.24 | 0.634 |
X2 (mg L−1) ∗ X2 (mg L−1) | −0.4185 | 0.2502 | −1.673 | 1 | 1.131 | 5.009 | 5.009 | 2.80 | 0.114 |
X3 (g L−1) ∗ X3 (g L−1) | −1.7435 | 0.2502 | −6.968 | 1 | 81.995 | 86.929 | 86.929 | 48.56 | 0.000 |
X4 (µm) ∗ X4 (µm) | 0.5623 | 0.2502 | −2.247 | 1 | 9.041 | 9.041 | 9.041 | 5.05 | 0.039 |
Interaction | 6 | 17.424 | 17.424 | 2.904 | 1.62 | 0.205 | |||
X1 ∗ X2 (mg L−1) | −0.9062 | 0.3345 | 2.709 | 1 | 13.141 | 13.141 | 13.141 | 7.34 | 0.015 |
X1 ∗ X3 (g L−1) | 0.1050 | 0.3345 | 0.314 | 1 | 0.176 | 0.176 | 0.176 | 0.10 | 0.758 |
X1 ∗ X4 (µm) | 0.0825 | 0.3345 | 0.247 | 1 | 0.109 | 0.109 | 0.109 | 0.06 | 0.808 |
X2 (mg L−1) ∗ X3 (g L−1) | 0.1538 | 0.3345 | 0.460 | 1 | 0.378 | 0.378 | 0.378 | 0.21 | 0.652 |
X2 (mg L−1) ∗ X4 (µm) | −0.1612 | 0.3345 | −0.482 | 1 | 0.416 | 0.416 | 0.416 | 0.23 | 0.636 |
X3 (g L−1) ∗ X4 (µm) | −0.4475 | 0.3345 | −1.338 | 1 | 3.204 | 3.204 | 3.204 | 1.79 | 0.200 |
Residual error | 16 | 28.645 | 28.645 | 1.790 | |||||
Lack-of-fit | 10 | 28.259 | 28.259 | 2.826 | 43.97 | 0.000 | |||
Pure error | 6 | 0.386 | 0.386 | 0.064 | |||||
Total | 30 | 672.575 |
Term | Coefficient | SE of Coefficient | Tstatistics | DF | Seq SS | Adj SS | Adj MS | Fstatistics | Probability |
---|---|---|---|---|---|---|---|---|---|
Constant | 27.9700 | 0.2085 | 134.120 | 0.000 | |||||
Regression | 14 | 467.123 | 467.123 | 33.366 | 109.60 | 0.000 | |||
Linear | 4 | 453.642 | 453.642 | 113.410 | 372.53 | 0.000 | |||
X1 | −0.5018 | 0.1126 | −4.455 | 1 | 6.043 | 6.043 | 6.043 | 19.85 | 0.000 |
X2 (mg L−1) | 2.1644 | 0.1126 | −19.217 | 1 | 112.429 | 112.429 | 112.429 | 369.31 | 0.000 |
X3 (g L−1) | −3.6906 | 0.1126 | −32.769 | 1 | 326.896 | 326.896 | 326.896 | 1073.78 | 0.000 |
X4 (µm) | −0.5871 | 0.1126 | −5.213 | 1 | 8.273 | 8.273 | 8.273 | 27.18 | 0.000 |
Square | 4 | 10.871 | 10.871 | 2.718 | 8.93 | 0.001 | |||
X1 ∗ X1 | 0.1111 | 0.1032 | 1.077 | 1 | 0.808 | 0.353 | 0.353 | 1.16 | 0.298 |
X2 (mg L−1) ∗ X2 (mg L−1) | −0.5745 | 0.1032 | −5.568 | 1 | 9.482 | 9.439 | 9.439 | 31.00 | 0.000 |
X3 (g L−1) ∗ X3 (g L−1) | 0.0689 | 0.1032 | 0.668 | 1 | 0.191 | 0.136 | 0.136 | 0.45 | 0.514 |
X4 (µm) ∗ X4 (µm) | −0.1168 | 0.1032 | −1.132 | 1 | 0.390 | 0.390 | 0.390 | 1.28 | 0.274 |
Interaction | 6 | 2.609 | 2.609 | 0.435 | 1.43 | 0.264 | |||
X1 ∗ X2 (mg L−1) | 0.2656 | 0.1379 | 1.926 | 1 | 1.129 | 1.129 | 1.129 | 3.71 | 0.072 |
X1 ∗ X3 (g L−1) | 0.0953 | 0.1379 | 0.691 | 1 | 0.145 | 0.145 | 0.145 | 0.48 | 0.500 |
X1 ∗ X4 (µm) | 0.0471 | 0.1379 | 0.341 | 1 | 0.035 | 0.035 | 0.035 | 0.12 | 0.737 |
X2 (mg L−1) ∗ X3 (g L−1) | −0.2401 | 0.1379 | −1.740 | 1 | 0.922 | 0.922 | 0.922 | 3.03 | 0.101 |
X2 (mg L−1) ∗ X4 (µm) | −0.1466 | 0.1379 | −1.062 | 1 | 0.344 | 0.344 | 0.344 | 1.13 | 0.304 |
X3 (g L−1) ∗ X4 (µm) | −0.0461 | 0.1379 | −0.334 | 1 | 0.034 | 0.034 | 0.034 | 0.11 | 0.742 |
Residual error | 16 | 4.871 | 4.871 | 0.304 | |||||
Lack-of-fit | 10 | 4.828 | 4.828 | 0.483 | 67.61 | 0.000 | |||
Pure error | 6 | 0.043 | 0.043 | 0.007 | |||||
Total | 30 | 471.993 |
Expt. | Parameters of the Process and Operating Conditions | % CV Color Removal (%) | ||||
---|---|---|---|---|---|---|
X1 | X2 (mg L−1) | X3 (g L−1) | X4 (µm) | Experimental Value | Calculated Value | |
1 | 2.2 | 175 | 5 | 78 | 79.56 | 80.64 |
2 | 2.0 | 200 | 6 | 186 | 75.45 | 77.12 |
3 | 1.8 | 175 | 7 | 78 | 90.74 | 91.39 |
4 | 2.4 | 200 | 6 | 114 | 81.06 | 82.45 |
Expt. | Parameters of the Process and Operating Conditions | CV Dye Adsorption Capacity at Equilibrium, qe (mg g−1) | ||||
---|---|---|---|---|---|---|
X1 | X2 (mg L−1) | X3 (g L−1) | X4 (µm) | Experimental Value | Calculated Value | |
1 | 2.0 | 200 | 6 | 114 | 27.58 | 28.72 |
2 | 1.8 | 175 | 7 | 150 | 21.65 | 22.18 |
3 | 1.6 | 200 | 6 | 114 | 29.46 | 31.24 |
4 | 1.8 | 225 | 5 | 78 | 35.12 | 36.85 |
Process Parameters | Optimal Value for CV Dye Removal | CV Decolorization Efficiency (%) | Optimal Value for CV Dye Uptake | CV Dye Adsorption Capacity at Equilibrium, qe (mg g−1) |
---|---|---|---|---|
X1 | 1.8 | 90.74 | 1.8 | 35.12 |
X2 (mg L−1) | 175 | 225 | ||
X3 (g L−1) | 7.0 | 5.0 | ||
X4 (µm) | 78 | 78 |
Isotherm | Model Parameters | Values | Model Equation |
---|---|---|---|
Freundlich | n | 1.8584 | |
KF (L g−1) | 4.5752 | ||
R2 | 0.9746 | ||
2.6159 | |||
Langmuir | qmax (mg g−1) | 40.2576 | |
KL (L mg−1) | 0.1092 | ||
R2 | 0.9994 | ||
0.0451 | |||
Temkin | KT (L g−1) | 1.2846 | |
bT (kJ mole−1) | 0.3055 | ||
R2 | 0.9826 | ||
1.4035 |
Adsorbent | Maximum Adsorption Capacity qmax (mg g−1) | References |
---|---|---|
Red mud | 1.37 | [71] |
Penicillium sp. | 4.32 | [72] |
Wheat bran | 6.41 | [73] |
Iron-chromium oxide | 6.49 | [74] |
Iron-pillared bentonite | 9.13 | [75] |
Apricot stone-activated carbon | 10.09 | [76] |
Natural agalmatolite | 11.29 | [77] |
Banana pith | 13.10 | [78] |
Orange peel | 19.88 | [79] |
Natural kaolinite | 22.89 | [77] |
Pistachio shell | 26.45 | [80] |
Starch/poly (alginic acid cl-acrylamide) nano hydrogel | 31.24 | [81] |
Used tea leaf charcoal | 37.72 | [82] |
Cement kiln ash | 38.39 | [82] |
Azadirachta indica (neem) leaf powder | 39.64 | [6] |
Luffa peels | 40.00 | [83] |
Calotropis gigantea leaf-extracted Zn(OH)2 nanoparticles | 40.25 | Present work |
Temperature (K) | Maximum Capacity for Adsorption, qmax (mg g−1) | Thermodynamic Parameters | ||
---|---|---|---|---|
ΔG (kJ mole−1) | ΔH (kJ mole−1) | ΔS (kJ mole−1 K−1) | ||
299 | 40.2576 | −20.8528 | 42.5364 | 0.1524 |
313 | 45.5864 | −22.7167 | ||
323 | 52.5762 | −24.5517 |
Parameters of the Kinetic Model | Initial Adsorbate Concentration, Co (mg L−1) | ||||
---|---|---|---|---|---|
25 | 65 | 135 | 200 | 300 | |
qe,expt (mg g−1) | 3.9754 | 10.6226 | 20.7045 | 28.4232 | 38.4200 |
Pseudo-first-order model | |||||
qe,pred (mg g−1) | 2.0506 | 4.2772 | 6.0276 | 7.8824 | 9.4796 |
K1 (min−1) | 0.0929 | 0.0442 | 0.0364 | 0.0218 | 0.0125 |
Normalized standard deviation (%) NSD | 17.1182 | 18.8898 | 21.3733 | 19.8618 | 20.8917 |
Regression coefficient R2 | 0.9738 | 0.9780 | 0.9522 | 0.9610 | 0.9498 |
Pseudo-second-order model | |||||
qe,pred (mg g−1) | 4.0261 | 10.9313 | 20.6612 | 28.4495 | 38.6249 |
K2 (g mg−1 min−1) | 0.0457 | 0.0264 | 0.0118 | 0.0081 | 0.0046 |
Initial adsorption rate h (mg g−1 min−1) | 0.7222 | 2.9789 | 5.0583 | 6.5438 | 6.7900 |
Normalized standard deviation (%), NSD | 0.6473 | 0.8764 | 0.0604 | 0.0257 | 0.1425 |
Regression coefficient R2 | 0.9988 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
Intra-particle diffusion model | |||||
Ki (mg g−1 min−1/2) | 0.2087 | 0.1647 | 0.1812 | 0.2136 | 0.3208 |
C (mg g−1) | 2.7146 | 8.7954 | 17.7825 | 24.7172 | 32.3548 |
Regression coefficient R2 | 0.9332 | 0.9512 | 0.9861 | 0.9929 | 0.9877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parimelazhagan, V.; Natarajan, K.; Shanbhag, S.; Madivada, S.; Kumar, H.S. Effective Adsorptive Removal of Coomassie Violet Dye from Aqueous Solutions Using Green Synthesized Zinc Hydroxide Nanoparticles Prepared from Calotropis gigantea Leaf Extract. ChemEngineering 2023, 7, 31. https://doi.org/10.3390/chemengineering7020031
Parimelazhagan V, Natarajan K, Shanbhag S, Madivada S, Kumar HS. Effective Adsorptive Removal of Coomassie Violet Dye from Aqueous Solutions Using Green Synthesized Zinc Hydroxide Nanoparticles Prepared from Calotropis gigantea Leaf Extract. ChemEngineering. 2023; 7(2):31. https://doi.org/10.3390/chemengineering7020031
Chicago/Turabian StyleParimelazhagan, Vairavel, Kannan Natarajan, Srinath Shanbhag, Sumanth Madivada, and Harish S. Kumar. 2023. "Effective Adsorptive Removal of Coomassie Violet Dye from Aqueous Solutions Using Green Synthesized Zinc Hydroxide Nanoparticles Prepared from Calotropis gigantea Leaf Extract" ChemEngineering 7, no. 2: 31. https://doi.org/10.3390/chemengineering7020031
APA StyleParimelazhagan, V., Natarajan, K., Shanbhag, S., Madivada, S., & Kumar, H. S. (2023). Effective Adsorptive Removal of Coomassie Violet Dye from Aqueous Solutions Using Green Synthesized Zinc Hydroxide Nanoparticles Prepared from Calotropis gigantea Leaf Extract. ChemEngineering, 7(2), 31. https://doi.org/10.3390/chemengineering7020031