Advanced Heat Exchangers for Waste Heat Recovery Applications
Conflicts of Interest
References
- Guichet, V.; Khordehgah, N.; Jouhara, H. Experimental investigation and analytical prediction of a multi-channel flat heat pipe thermal performance. Int. J. Thermofluids 2020, 5–6, 100038. [Google Scholar] [CrossRef]
- Koh, K.S.; Chew, S.J.; Choo, C.M.; Chok, V.S. Heat Integration of a Boiler and Its Corresponding Environmental Study in an Oleochemical Production Plant: An Industry Case Study in Malaysia. ChemEngineering 2019, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Doraghi, Q.; Ahmad, L.; Norman, L.; Axcell, B.; Wrobel, L.; Dai, S. Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids 2021, 9, 100063. [Google Scholar] [CrossRef]
- Doraghi, Q.; Khordehgah, N.; Żabnieńska-Góra, A.; Ahmad, L.; Norman, L.; Ahmad, D.; Jouhara, H. Investigation and computational modelling of variable teg leg geometries. ChemEngineering 2021, 5, 45. [Google Scholar] [CrossRef]
- Khanna, S.; Paneliya, S.; Prajapati, P.; Mukhopadhyay, I.; Jouhara, H. Ultra-stable silica/exfoliated graphite encapsulated n-hexacosane phase change nanocomposite: A promising material for thermal energy storage applications. Energy 2022, 250, 123729. [Google Scholar] [CrossRef]
- Auckland, D.W.; Shuttleworth, R.; Luff, A.C.; Axcell, B.P.; Rahman, M. Design of a semiconductor thermoelectric generator for remote subsea wellheads. IEE Proc.-Electr. Power Appl. 1995, 142, 65–70. [Google Scholar] [CrossRef]
- Olabi, A.G.; Al-Murisi, M.; Maghrabie, H.M.; Yousef, B.A.A.; Sayed, E.T.; Alami, A.H.; Abdelkareem, M.A. Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems. Int. J. Thermofluids 2022, 16, 100249. [Google Scholar] [CrossRef]
- Jouhara, H.; Bertrand, D.; Axcell, B.; Montorsi, L.; Venturelli, M.; Almahmoud, S.; Milani, M.; Ahmad, L.; Chauhan, A. Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery. Energy 2021, 223, 120037. [Google Scholar] [CrossRef]
- Delpech, B.; Axcell, B.; Jouhara, H. Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln. Energy 2019, 170, 636–651. [Google Scholar] [CrossRef]
- Almahmoud, S.; Jouhara, H. Experimental and theoretical investigation on a radiative flat heat pipe heat exchanger. Energy 2019, 174, 972–984. [Google Scholar] [CrossRef]
- Brough, D.; Ramos, J.; Delpech, B.; Jouhara, H. Development and validation of a TRNSYS type to simulate heat pipe heat exchangers in transient applications of waste heat recovery. Int. J. Thermofluids 2021, 9, 100056. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouhara, H. Advanced Heat Exchangers for Waste Heat Recovery Applications. ChemEngineering 2023, 7, 3. https://doi.org/10.3390/chemengineering7010003
Jouhara H. Advanced Heat Exchangers for Waste Heat Recovery Applications. ChemEngineering. 2023; 7(1):3. https://doi.org/10.3390/chemengineering7010003
Chicago/Turabian StyleJouhara, Hussam. 2023. "Advanced Heat Exchangers for Waste Heat Recovery Applications" ChemEngineering 7, no. 1: 3. https://doi.org/10.3390/chemengineering7010003