Ammonia Removal Using Biotrickling Filters: Part A: Determination of the Ionic Nitrogen Concentration of Water Using Electrical Conductivity Measurement
Abstract
:1. Introduction
2. Rationale
3. Materials and Methods
3.1. Water Samples
3.2. Analytical
4. Results
4.1. Balance between [NH4+] and Σ ([NO2−] + [NO3−])
4.2. Electrical Conductivity vs. Ion Concentration
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hamon, L.; Andrès, Y.; Dumont, E. Aerial Pollutants in Swine Buildings: A Review of Their Characterization and Methods to Reduce Them. Environ. Sci. Technol. 2012, 46, 12287–12301. [Google Scholar] [CrossRef]
- De Vries, J.W.; Melse, R.W. Comparing environmental impact of air scrubbers for ammonia abatement at pig houses: A life cycle assessment. Biosyst. Eng. 2017, 161, 53–61. [Google Scholar] [CrossRef]
- Philippe, F.-X.; Nicks, B. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ. 2015, 199, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Philippe, F.-X.; Cabaraux, J.-F.; Nicks, B. Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecosyst. Environ. 2011, 141, 245–260. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe (UNECE). Framework Code for Good Agricultural Practice for Reducing Ammonia Emissions; Geneva: UN: Genève, Switzerland, 2015.
- Van der Heyden, C.; Demeyer, P.; Volcke, E.I.P. Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: State-of-the-art and perspectives. Biosyst. Eng. 2015, 134, 74–93. [Google Scholar] [CrossRef]
- Anthonisen, A.C.; Loehr, R.C.; Prakasam, T.B.S.; Srinath, E.G. Inhibition of Nitrification by Ammonia and Nitrous Acid. J. Water Pollut. Control. Fed. 1976, 48, 835–852. [Google Scholar]
- Ottosen, L.D.M.; Juhler, S.; Guldberg, L.B.; Feilberg, A.; Revsbech, N.P.; Nielsen, L.P. Regulation of ammonia oxidation in biotrickling airfilters with high ammonium load. Chem. Eng. J. 2011, 167, 198–205. [Google Scholar] [CrossRef]
- Juhler, S.; Revsbech, N.P.; Schramm, A.; Herrmann, M.; Ottosen, L.D.M.; Nielsen, L.P. Distribution and Rate of Microbial Processes in an Ammonia-Loaded Air Filter Biofilm. Appl. Environ. Microbiol. 2009, 75, 3705–3713. [Google Scholar] [CrossRef] [Green Version]
- Vadivelu, V.M.; Keller, J.; Yuan, Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Water Sci. Technol. 2007, 56, 89–97. [Google Scholar] [CrossRef]
- Buday, J.; Drtil, M.; Hutnan, M.; Derco, J. Substrate and product inhibition of nitrification. Chem. Pap. 1999, 53, 379–383. [Google Scholar]
- Philippe, F.X.; Laitat, M.; Nicks, B.; Cabaraux, J.F. Ammonia and greenhouse gas emissions during the fattening of pigs kept on two types of straw floor. Agric. Ecosyst. Environ. 2012, 150, 45–53. [Google Scholar] [CrossRef]
- Hassouna, M.; Robin, P.; Charpiot, A.; Edouard, N.; Méda, B. Infrared photoacoustic spectroscopy in animal houses: Effect of non-compensated interferences on ammonia, nitrous oxide and methane air concentrations. Biosyst. Eng. 2013, 114, 318–326. [Google Scholar] [CrossRef]
- Ngwabie, N.M.; Jeppsson, K.H.; Nimmermark, S.; Swensson, C.; Gustafsson, G. Multi-location measurements of greenhouse gases and emission rates of methane and ammonia from a naturally-ventilated barn for dairy cows. Biosyst. Eng. 2009, 103, 68–77. [Google Scholar] [CrossRef]
- Melse, R.W.; Ogink, N.W.M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: Review of on-farm research in the Netherlands. Trans. ASAE 2005, 48, 2303–2313. [Google Scholar] [CrossRef]
- Liu, F.; Fiencke, C.; Guo, J.; Rieth, R.; Dong, R.; Pfeiffer, E.-M. Performance evaluation and optimization of field-scale bioscrubbers for intensive pig house exhaust air treatment in northern Germany. Sci. Total Environ. 2017, 579, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Fiencke, C.; Guo, J.; Rieth, R.; Cuhls, C.; Dong, R.; Pfeiffer, E.-M. Bioscrubber treatment of exhaust air from intensive pig production: Case study in northern Germany at mild climate condition. Eng. Life Sci. 2017, 17, 458–466. [Google Scholar] [CrossRef]
- Van der Heyden, C.; Volcke, E.I.P.; Brusselman, E.; Demeyer, P. Comparative 1-year performance study of two full-scale biotrickling filters for ammonia removal including nitrous oxide emission monitoring. Biosyst. Eng. 2019, 188, 178–189. [Google Scholar] [CrossRef]
- Melse, R.W.; Ploegaert, J.P.M.; Ogink, N.W.M. Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations. Biosyst. Eng. 2012, 113, 242–252. [Google Scholar] [CrossRef]
- Lagadec, S.; Bellec, F.; Masson, L.; Dappelo, C.; Landrain, P.; Guingand, N. Enquête sur 31 laveurs d’air de porcherie en Bretagne, clés d’amélioration de l’efficacité sur l’abattement de l’ammoniac. Journées Rech. Porc. 2015, 47, 177–182. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 80th ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 5–95. [Google Scholar]
- Atekwana, E.A.; Atekwana, E.A.; Rowe, R.S.; Werkema, D.D.; Legall, F.D. The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. J. Appl. Geophys. 2004, 56, 281–294. [Google Scholar] [CrossRef]
- Tutmez, B.; Hatipoglu, Z.; Kaymak, U. Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system. Comput. Geosci. 2006, 32, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Van der Heyden, C.; De Mulder, T.; Volcke, E.I.P.; Demeyer, P.; Heyndrickx, M.; Rasschaert, G. Long-term microbial community dynamics at two full-scale biotrickling filters treating pig house exhaust air. Microb. Biotechnol. 2019, 12, 775–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumont, É.; Lagadec, S.; Guingand, N.; Loyon, L.; Amrane, A.; Couroussé, V.; Couvert, A. Ammonia Removal Using Biotrickling Filters: Part A: Determination of the Ionic Nitrogen Concentration of Water Using Electrical Conductivity Measurement. ChemEngineering 2020, 4, 49. https://doi.org/10.3390/chemengineering4030049
Dumont É, Lagadec S, Guingand N, Loyon L, Amrane A, Couroussé V, Couvert A. Ammonia Removal Using Biotrickling Filters: Part A: Determination of the Ionic Nitrogen Concentration of Water Using Electrical Conductivity Measurement. ChemEngineering. 2020; 4(3):49. https://doi.org/10.3390/chemengineering4030049
Chicago/Turabian StyleDumont, Éric, Solène Lagadec, Nadine Guingand, Laurence Loyon, Abdeltif Amrane, Valérie Couroussé, and Annabelle Couvert. 2020. "Ammonia Removal Using Biotrickling Filters: Part A: Determination of the Ionic Nitrogen Concentration of Water Using Electrical Conductivity Measurement" ChemEngineering 4, no. 3: 49. https://doi.org/10.3390/chemengineering4030049
APA StyleDumont, É., Lagadec, S., Guingand, N., Loyon, L., Amrane, A., Couroussé, V., & Couvert, A. (2020). Ammonia Removal Using Biotrickling Filters: Part A: Determination of the Ionic Nitrogen Concentration of Water Using Electrical Conductivity Measurement. ChemEngineering, 4(3), 49. https://doi.org/10.3390/chemengineering4030049